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Abstract

This paper deals with the problem of delay-range-dependent robust passivity analysis of uncertain neutral-type neural
networks with distributed interval time-varying delay under the effects of leakage delay. The uncertainties under consideration
are norm-bounded uncertainties and the restriction on the derivative of the discrete and distributed interval time-varying delays
is removed, which means that a fast interval time-varying delay is allowed. By applying a novel Lyapunov-Krasovskii functional
approach, improved integral inequalities, Leibniz-Newton formula and utilization of zero equation, then a new delay-range-
dependent passivity criterion of neutral-type neural networks with distributed interval time-varying delay under the effects of
leakage delay is established in terms of linear matrix inequalities (LMIs). Furthermore, some less conservative delay-dependent
passivity criteria are obtained. Moreover, we derived a robust passivity criterion for uncertain neutral-type neural networks with
distributed interval time-varying delay under the effects of leakage delay. Besides, a less conservative delay-dependent robust
passivity criterion is obtained. Finally, five numerical examples are given to show the effectiveness and less conservativeness of
the proposed methods.

Keywords: Neutral type, neural network, leakage delay, Lyapunov-Krasovskii functional, linear matrix inequality,
delay-range-dependent passivity.
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1. Introduction

In the past several years, neural networks (NNs) have found a wide range of applications in a variety of
areas such as combinatorial optimization [10], signal processing, pattern recognition [45], communication,
statistic image processing [13], fix-point computation, associative memory [5, 32, 53], and other scientific
areas see [2, 14, 18, 19, 38, 39, 43]. Many scholars have paid their attentions to NNs which possess many
advantages, including paralel computation, learning ability, function approximation, fault tolerance, etc.
Most of these applications mainly depend on the dynamical behaviors of the considered NNs and their
equilibrium points. Therefore, the study of dynamical behaviors of the delayed NNs is an active research
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topic and has received considerable attention in recent years [1, 6, 9, 17, 21, 31, 34-36, 46, 54]. On the
other hand, neutral-type time delay in the system models have been intensively studied since neutral
systems can be found in many industrial systems such as population ecology [23], water pipes, distributed
networks containing lossless transmission lines [8], chemical reactors, heat exchangers, robots in contact
with rigid environments [33], etc. Moreover, the NNs containing the information of past state derivatives
are called neutral-type neural networks (NTNNs). The existing works on the state estimator of NTNNs
with mixed delays have been presented in [28, 56]. It is known that time delays in the response of neurons
may result in instability or oscillation of NTNNs. Thus, stability analysis of NTNNs with time delays has
been widely studied and so on. Currently, Rakkiyappan et al. [37] studied the new global exponential
stability results for neutral-type neural networks with distributed time delays. Samidurai et al. [40]
discussed the global exponential stability of neutral-type impulsive neural networks with discrete and
distributed delays. In addition, Manivannan et al. [30] studied on the delay-dependent stability criteria
for neutral-type neural networks with interval time-varying delay signals under the effects of leakage
delay and reference therein see [3, 11, 15, 28].

The concept of passivity has played an important role in the analysis of the stability of dynamical
systems, nonlinear control, and other research area [12, 29, 47, 48]. The main idea of the passivity theory
is that the passive properties of a system can keep the system internal stability. Thus, the passivity theory
has received a great deal of attention from the control community since 1970s [20, 50]. In [7, 11, 15, 22,
28, 30, 37, 40, 41, 44, 55, 56], the authors studied the passivity of NTNNs with time delay and obtained
some passivity conditions. Hence, passivity analysis of NTNNs have been considered in recent years.
Furthermore, the stability and passivity analysis of NTNNs with time delay in leakage (or forgetting)
term have become one of impressive research topics and have been widely studied by many researchers.
In fact, the leakage term also has great impact on the dynamical behavior of NTNNs. For example, Li
et al. [25] investigated the delay-dependent stability of neural networks of neutral-type with time delays
in the leakage term. Balasubramaniam et al. [4] discussed the passivity analysis for neural networks of
neutral-type with Markovian jumping parameters and time delay in the leakage term mentioned in [30]
and references therein. However, there is no result has been obtained for passive condition of NTNNs with
distributed interval time-varying delay under the effects of leakage delay. The challenge of this paper is
studying the new results on robust passivity analysis of NTNNs and NNs with non-differentiable discrete
and distributed interval time-varying delays which mean that this works can be used for various systems
with fast interval time-varying delays compared with previous works considered on differentiable delay
(d(t) < p). This motivates our research.

In this paper, we will present a passivity criterion of NTNNs with discrete, neutral, distributed interval
time-varying delays and leakage delay. By constructing a novel Lyapunov-Krasovskii functional, using
new integral inequalities in derivative of Lyapunov functional, Leibniz-Newton formula and utilization
of zero equation, then a passivity criterion of the considered system is established in terms of LMIs.
Furthermore, we obtained some passivity criteria of NNs with discrete and distributed time-varying
delays under the effect of leakage delay and NNs with discrete time-varying delay, respectively. Moreover,
a robust passivity criterion of uncertain NTNNs with discrete, neutral and distributed interval time-
varying delays under the effect of leakage delay is derived. Then, a robust passivity criterion of uncertain
NTNNs with discrete, neutral and distributed time-varying delays is presented. Lastly, five numerical
examples are given to demonstrate the effectiveness of the proposed results.

2. Network model and mathematics preliminaries

Notation: Throughout this paper, the notations are standard. R™ denotes the n-dimensional space with
the vector norm || - ||; ||x|| denotes the Euclidean vector norm of x € R™; R™*" denotes the set n x r real
matrices; AT denotes the transpose of the matrix A; A is symmetric if A = AT: I denotes the identity
matrix; matrix A is called semi-positive definite (A > 0) if xTAx >0, for all x € R™; A is positive definite
(A > 0) if xTAx > 0 for all x # 0; matrix B is called semi-negative definite (B < 0) if x"Bx < 0, for all



P. Singkibud, K. Mukdasai, J. Math. Computer Sci., 26 (2022), 269-290 271

x € R™; B is negative definite (B < 0) if x"Bx < 0 for all x # 0; C([—dy,0],R™) denotes the space of all
continuous vector functions mapping [—d», 0] into R™; x¢ = x(t +s), s € [—dy, 0]; * represents the elements
below the main diagonal of a symmetric matrix.

Consider the following continuous NTNNSs with discrete, neutral, distributed interval time-varying
delays and leakage delay.

z(t) = Cif(&(t)) + Caf (&(t — d(t))) + Ca&(t —r(t)) + Cau(t), 21

{ () = —A&(t— 8) + WA (E(1)) + Wafl(£(t — (1)) + Wak(t—r(t)) + Wy [ o, F(&(5))ds +u(t),
1) =
Et) =(t), t€[-Tmax, 0, Tmax =max{dy, p2,12},

where &(t) = [E1(1), &2(t),..., En(t)] € R™ is the neural state vector. The diagonal matrix A is a self-
feedback connection weight matrix, W1, W5, W3 and W; are the connection weight matrices between neu-
rons with appropriate dimensions, C;, Cp, C3 and C4 are given real matrixes, f(-) = (f1(-), f2(-),..., ()T
represent the activation functions, u(t) and z(t) represent the input and output vectors, respectively; ¢ (t)
is an initial condition. Where & > 0 denotes the constant leakage delay, the variable d(t) is the discrete in-
terval time-varying delay, p(t) is the distributed interval time-varying delay and r(t) is the neutral interval
time-varying delay, satisfying

di <d(t)<dy, pr<p(t)<p2, 11 <r(t) <1y, 0K (L) g, (2.2)

where dy and T\ are positive real constants. The neural activation functions f (), k =1,2,...,n satisfy
fi(0) =0 and for sq, 82 € R, 81 # sp,

_ frlst) —frls2) 4

L, < ——== 1), 2.3

k S1— 82 k ( )
where 1_, 1}, are known real scalars. Moreover, we denote L = diag(1], 1, ..., 1}), L~ = diag(l;,15,...

,1). In addition, if the constant matrices are extended to be the norm-bounded uncertainties of the form:
A=A+AA(t), Wi =W;+AB(t), Wr =W+ AC(t), W3 =W3+ADy(t), Wi= W+ AD;(t),
then system (2.1) extends to the following system:

E(t) = —[A+ AA(D]E(t—8) + Wy + AB(t)If(&(t)) + [Wa + AC(Y)IF(E(t — d(t)))
+HWs + ADy ()IE(t — (1)) + Wy + ADo ()] [{_ ¢ F(E(s))ds +u(t),

z(t) = C1f(&(t) + Cof (&(t — d(t))) + Caé(t — (1)) + Cau(t),

E,(t) = d)(t)/ te [_Tmax; OL Tmax — max{de P2, Tz}.

(2.4)

The uncertain matrices AA(t), AB(t), AC(t) , AD1(t) and AD,(t) are norm bounded and can be described
as

[AA(t) AB(t) AC(t) ADi(t) AD(t)] =EA(t)[G1 G2 Gz Gsi Gsl, (2.5)

where E, G1, G, G3, G4 and Gs are constant matrices with appropriate dimensions. The uncertain matrix
A(t) satisfies

At) = FO)I—JF(] (2.6)
which is said to be admissible where ] is a known matrix satisfying
I—-JJ7 >o0. (2.7)
The uncertain matrix F(t) satisfies

F(t)TF(t) < L. (2.8)
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Deﬁnition 2 1 ([27]). The system (2.1) is said to be passive if there exist a scalar y such that for all t¢ > 0,
2"y YyT(s)u(s)ds > —y fo Ju(s)ds, and for all solution of (2.1) with x(t,0).

Lemma 2.2 ([16]). For any positive definite matrix M € R™*™, scalars hy, > hy > 0, and a vector function
w : [hy, hp]l — R™ such that the integrations concerned are well defined, we have the inequality

t—hy t—hy t—hy

w(s)ds)TM(J w(s)ds).

t—h,

[y — Ty J

t—hy

wT(s)Mw(s)ds < —(J

t—h,

Lemma 2.3 ([26]). Suppose that A(t) is given by (2.6)-(2.8). Let M, S and N be real matrices of appropriate
dimension with M = M. Then, the inequality

M+ SAEN+NTA(R)TST <0,

M S oNT
ST —ol o] | <.
oN o] —ol

holds if and only if, for any scalar o > 0,

Lemma 2.4 ([24]). For a positive matrix M, the following inequality holds:

« _ x(@)]' [-M M ] [x(«)
a= [, <omsioas < [ [ RG]

Lemma 2.5 ([24]). For a positive matrix M, the following inequality holds:

_(“_2[5)2 J; L(x xT (W) Mx(u)duds < —(J;: ch x(u)duds)TM(J; J“x(u)duds).

S N

Lemma 2.6 ([24]). For a positive matrix M, the following inequality holds:

N (“—65)3 L: r JaXT(MMx(MdAduds < —(J: r rx(x)dxduds)TM(J: J“ Jax(x)dhduds).

u S u S u

Lemma 2.7 ([42]). For any constant symmetric positive definite matrix Q € R™*™, d(t) is discrete time-varying
delays with (2.2), vector function w : [—dy, 0] — R™ such that the integrations concerned are well defined, then

—d; —dy —dy —d(t) —d(t)
—[dz—dl]J wT(s)Qw(s)ds < —J wT(s)dsQJ )w(s)ds—J wT(s)dsQJ w(s)ds.

—dy d(t) —d( —dy —dy

Lemma 2.8 ([42]). For any constant matrices Q1,Q2,Q3 € R™*™, Q; > 0,Q3 > 0, [%l 8‘2] >0, d(t) is
3

discrete time-varying delays with (2.2) and vector function x : [—dp, 0] — R™ such that the following integration is
well defined, then

t—dy T
- [T (@ 9 e

t—d, x(s) * Qs [x(s)
x(t—dy) 17 —Q Q 0 —-QI o 7[ x(t—d) ]
x(t—d(1)) S 0ol @ Qf —of| | xt—an)
S E |
x(s)ds % % x  —Q 0 t7dmx(s)ds
t d2 x(s)ds | * * * * —Qil | I:g’z(t) x(s)ds |
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Lemma 2.9 ([42]). Let x(t) € R™ be a vector-valued function with first-order continuous-derivative entries. Then,
the following integral inequality holds for any constant matrices X, My € R™*™, i =1,2,...,5and d(t) is discrete
time-varying delays with (2.2),

t—d;
—J x " (s)Xx(s)ds

t—dp
x(t—dp) 1" [My+M] ~MTI +M, 0 x(t—dy)
< |x(t—d(t)) * Mi+M —Ma—M] —M] +M,| |x(t—d(t))
x(t—dp) * * —le—]\/lér x(t—dy)

xt—d) 1" My My 07 [ x(t—d;)

+[dy — dq] [x(t—d(t)) *  Mz+Ms Myg| [x(t—d(t))],

x(t—dp) * * M5 x(t—dy)
where
X M1 My
x Mg My| =20
x  *x  Ms

3. Main results

3.1. Delay-range-dependent pasivity criteria

We will present the passivity criteria dependent on interval time-varying delays of system (2.1) via
LMIs approach. We introduce the following notations for later use.

Z = [Zid]zlle ’

where L ; = Z].Ti,

i,j=1,2,...,21,

T10=—PiA—ATP1 + P+ 8?P3+P{ G — Q] A+ G'Py+ (da — d1)*Ps + (d2 — d1)*Ry

T1o0=—QfA, I;5=-P/G, Zi4=P{—Qf +(d2—di)°Rs,
T190=PIWs+Q{W;, Zi10=PiWi+Q{Wj+Hiey, Iy =PiWa+QiW,,
T112=Pi(AY)T, Zji3=PWi+QfWy Zi15=(do—d1)P1;, Z117=-P{G+Qu,

2118 = 12 , X199 = 22 , L1 =P14+Qf, Zop=-Py, Ips=-ATQs,

To6=—ATQa Ipi0=-ATKy, Zpi3=AT, Iy =-ATK,,
(dz—d1)4P (A2 —dy)?
4 10 2

dr — d)?
T35 =—M] + Mo+ (dy—d1)My+Rs, Z316=—Rd, Zzp0= (221)

T35 =Ps+ Ry + M +M] + (dy — di)Ms — R + P14,

P14,
T44=—P5—Ri =Mz —M; + (d2 — d1)Ms — Rg,
T45=—M] + Mo+ (da—d))M{ +Rf, Z41=Rd, Z415=R{,
T55 =M +M{ —My—M; + (d2—d1) (M3 +Ms) —Rg —R§ —2Hze;
T56=—Q3, Zs50=Q3Ws, ZIs10=Q3Wi, IZs11=Hres—Ri +Q3W;,
T513=QiWs, Isis=-Rs, Zsi6=Rs, Zsi7=-—Qs 501 =0Q5,
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(dq1)® (d2)®

Z66 =—Q3 — Qo+ (12— 71)Ps5 + (d2 — d1)Pg + (do — d1)Re + 36 T2t 5 P
T60=QiWs3, Zei0=QiWi+K1T, Zg11=QiW,s, Zg13=QiW,+]I,

d —dq{)* d, —dq)®
Y621 = Q) +KJ, Zy7=Ps+Rs3+ %Pn + (2?>61)P14' 1gs = —Ps— Ry,

T99=—(rn—m)(1—ra)P5, Zgn=-WIPIAT, Zg15=-Wj,

Too1 =—Cs,  ZLigto = (p2—p1)? —2H1 —KeWi — WK, Zig11 = —KiW;,
Ti012 = -WiPIAT, o3 =W, Zygm =—Ci—Ki—W/K],
111 =—Ps—Rs—2Hy, Zyn=-WiPIAT, Zy3=W;,
1o =—Co—WiKJ, Zpin=-P3, Zpi3=—-APIW,, g =—APy,
T3z =-Ws—W), Zpoi=-1, Zuguu=-Ps Li515=—Pn,
T1606 = —Ps—Ry, L1717 =—Qf —Qu4, Zig18=—Pr2,

Y1909 = —P13, Z2020=—P1o—Pus, Zzio1 =v—Cs—CJ —Ky—XKJ,

and the other terms are 0.

Theorem 3.1. The delayed NTNNs (2.1) are passive in Definition 2.1, if there exist positive definite symmetric
matrices Q1, Ra, Re Pi, 1 € {1,2,...,15}, any appropriate dimensional matrices G, K1, K2, Rm, Qn, M, and
m=12,...,6n=12,...,40=1,2,...,5 such that the following symmetric linear matrix inequalities hold

P M; M,
[Rl RZ] >0, {R‘* Rﬂ >0, |+ Mz M| >0, (3.1)
* R * Re x  *x  Ms

Z <0. (3.2)

Proof. Choose the Lyapunov-Krasovskii functional candidate for the system (2.1) of the form

where

t

£(5)ds) Pr(EW - A | E(s)as)

t—9o

rt 0 t
Va(E(t), 1) = aT(s)Pza(s)dsHJ j £T(5)PsE (s)dsdo,
Jt—06 —5 Jt+0
) 1100 0][Ps 0 0 0 E(t)
E(t) 000O0/0 O 0 O &(t)
Va(&[t), ) = E(t—d(t)) 00000 0 0 of] &t—dw) |’
[t awélsids] (00 0 0] [ Q2 Qs Quf [Ji g Els)ds

t

—p1 t
V4(E(t),t)=(T2—T1)J aT(s)P5£(sts+(pz—p1)J j F(£(0))TPF(£(6))d0ds,

t—r(t) —p2 Jts
t—d t—d t—d T
B - - . 1TE(s) R1 Ra| [&(s)
Vs(&(1),1) _Ldz 3 (S)P7£(S)dS+Jtd2 § (S)Psi(s)derLdz [E(S)] L RJ [5(8)] ds,

—d; pt —d; pt . .
J &T(G)Pgé(G)des+J J ET(0)P1pé(0)d0ds

t+s —dy Jt+s

Ve(E(1), 1) = (dz—dl)J

—d,
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~dt TE0)] " [Ry Rs| [£(6)
“dz‘d“J_dJ [ae)} [ RJ [é(e)} a0ds,

_ 2 pt—d; pt—d; pt—dg
V7(&(1),t) :w-szl)J X J J £T(A)P11&E(N)dAduds
t—ds

_ 2 pt—d; pt—d; pt—dg

(dy—di)? J J J ET(MP12£(A)dAduds,
2 t—d;

3

d3 t t pt et . ) d
Vg(&(t),t) = 1J J J J &T(G)Plgé(ﬁ)dedkduds + ZJ
6 t—dy Js JuJA 6

— 3 pt—dy pt—d; pt—d; pt—d
wzadl) J J J J £ (0)P15£(0)d0dAduds.
A

t+s

S u

+

S u

t t rt t. .
JJ J £T(0)P14£(0)d0dNduds
—ds

t s JuJA

+

t—dy Js u

The derivative of V(t) along the trajectory of system (2.1) is given by

i=1
The time derivative of V;(t) can be represented as
Vi(E(), ) =2((0) - A | E(s)ds) TPy (~ AL(t) + Warl(E()
t . (3.3)
+WaflE(t— d(t))) + Wad(t —r(0) + Wi | | FEs o),
t—p(t

It is from Lemma 2.2 that we have

t
Vo(&(t),t) = ET(t) (P2 + 8%P3) E(t) + & (t — 8)(—P2)&(t —8) — & J £T(s)P3&(s)ds

-5
¢ . (3.4)
SET()(P2+8%P3)E(t) + & (t—8)(—P2)&(t — ) — ( . a(s)ds)Tps(J . £(s)ds).
t— t—
Calculating V3(&(t),t) and utilizing the following zero equation
t ) t .
0= &) -Elt-dt)— | Eslds 0=GEMN-GEt-d()-G|  islds @)
t—d(t) t—d(t)

where G € R™*™ will be chosen to guarantee the stability of the system (2.1), leads to

Er) 1T reI 0 0 QI [é
. E(t) 0 0 0 Qf 0
ftfdmi(s)ds 0 00 Q 0
t
=2&T ()P [E(t) + GE(t) — GE(t—d(t) — G at £(s)ds]
t—d(t

+ 28T (1) QT [—&(t) — AE(t—8) + Wif(&(t))

+WHf(E(t— d(t))) + Wak(t — (1)) +W4J | FLE)ds (o)
t—p(t

+ 28T (1) QI [E(t) — AE(t — 8) + Wi f(&(t)) (3.6)
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rt

+ Wof (E(t — d(t))) + Wag(t —1(t)) + Wy " f(&(s))ds +u(t)]
Jt—p(t

+28T(t—d(1) QI [-&(t) — AE(t— &) + Wif(E(t))

rt

+Wof(E(t—d(t))) + W3 (t —7(t)) + Wy f(&(s))ds +u(t)]

+2J 'aT(s)dsQ;{[a(t)—a(t—d(t))—J (s)ds].
t—d(t) t

—d(t)
Using Lemma 2.2, the increments of V4(&(t), t) is easily computed as

VA(E(E), 1) = (12— 1) ET (OPsE(t) — (r2 — 1) (1 — +(E))ET (£ — (1)) Pt — (1))
t—p1
+(pz—leZf(aT(t))Péf(a(t))—(pz—pl)J F(ET (5))PeF(E(s)) ds
. . e . 3.7
< (=) ET()PsE(t) — (rp — 1) (1 —r@)ET (t — (1)) Psé (t —r(t)) 67)

t—p1 t—p1
4 (pa— o1 PA(ET (1) PeFE(1)) — L f(aT(s))dsPéj f(&(s))ds.
—pP2

t—p2
Taking the time derivative of V5(t), we have
Vs(£(t),t) = & (t—di)P7&(t —di) — &7 (t — d2)PrE(t — d2)
+ET(t—d1)Ps(t—dy) — ET(t — dp)Psé(t — do) (3.8)
n F(t— dl)]T {Rl Rz} [?(t— dl)} _ [?(t— dz)]T [Rl Rz] [@(t—dz)] ‘
E(t—di)] |[R) Rsf |&(t—dy) £(t—d2)] [R) Rsf [&(t—dy)

Using Lemmas 2.7, 2.8, and 2.9, we obtain

t—d;
Vs(E(t), 1) = (d2—d1)2£T(t)Pga(t)—(dz—dnj . ET(S)PoE(s)ds
t—do
. . tidl . .
+(dz—d1)aT(t)Pma(t)—J (5P (s)ds
t—do
2 [E(0)]" [Re Rs] [E(1) N [a(t)ﬁm RS] [a(t)]
(a2 —dp) [ém] [R; Ré] [é(t)] +(d2 dl)Ld2 Et) [RI Re) E(1)
- - W] [Re Rs| [E(D)
< (dy— & PET(PoE() 4 (dy — d)ET (P& () + (d — ) [Em] {RST RJ [E(t)}
rt—d; t—d; t—d(t) t—d(t)
— dSPgJ a( )ds—J £T(s)dsP9J £(s)ds
t—d; t—d,
M1+MT “MI + M, 0 ge—dy1 @Y
+ M1+M2 Mi+M —My—M] —MT + M| [E(t—d(t))
t—dz —M; + M, ~Ma—MJ | | &(t—dy)
E(t— My 0 E(t—dq)
d2—d1 E(t— d(t MT Msz+Ms My E(t—d(t))
E(t— 0 M{  Ms] [ &(t—dy)
—d) 1 1Ry R 0 —RI 07 &t—di)
( d(t)) RI —R¢—R] Ry RI —RS E(t—d(t))
4| &lt—d2) 0 R Ry 0 RS &(t—do)
i Es)ds| | —Rs  Rs 0 —Ry 0 | [Jidl&ls)ds
t dz E(s)ds 0 —Rs Rs 0 —Rgf | I:git)i(s)ds_
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By Lemma 2.5, we get

; (dp—d1)?* 1 it todi ot
Vile(t), ) = 27 (t—dl)Pna(t—dl)J J 3 ()\)d7\dup11J J £(\) dAdu
t—d; Ju t—d; Ju
(dz—d1)4 ST . t—dy rt T t—hy ot
+4a(t—anuau—«h)—J j a(AkMduPuj J E(\) dhdu
t—dy Ju t—h, Ju
14
< wzﬁ”éﬁ(t— di)P1&(t—dq) (3.10)
t—d; pt t—dp pt (dz_d )4 i .
——J J aT(A)dAduPllj J endndu+ 2T - an)
t—dy Ju t—dy Ju 4
t—d; t—dy
f@-aeTo - | el - aen - | ewa)
t—d; t—d>
By Lemma 2.6 and calculating Vs(t), we have
. de . . ds. ) d> —dq)°. .
Va(e(1), 1) < SLET(0PRE) + 2T OPuEW + BT a0
t t pt . t t pt .
— J J aT(e)dedAduPBJ J J £(0)dodAadu
Jt—d; JuJA t—d; JuJA
rt t pt . t t pt .
— J J &T(e)dedAduPMJ J J £(0)dodrdu
Jt—dpy JuJA t—dy JuJA
rt—dy pt—dy pt—d; . t—dq pt—dq pt—dy .
— J J éT(e)ded?\dquJ J J £(0)dodrdu
Jt—d; Ju A t—d, Ju A
de . . ds. ) d> —dq)°. .
= 2 ET(OPBE) + 22ET (DPuLE(t) + (2361)£T(t — di)Pisé(t— i)
_dZ t t d2 t t
S[Feo-| | Twaadrs[Few-| | eniaa
'2 t*dl u 2 tidl u
_dZ t t d2 t t
(2o | TwaadrZen-| | e
L 2 t—dp Ju 2 t—dp Ju
_ o 2 t—d; pt—dy
S| S
t—d; Ju
r _ 2 t—d; pt—dy
X Mé(t—dl)—J J E(}\)d)\du}.
- 2 t—dp; Ju
From (2.1), we have
t
ZJ f(E(s))ds x [&(t) + AE(t—8) — Wif(&(t)) — Waf(E(t —d(t))) — Waé(t —r(t))
t—p(t) 3 11)
t (3
—WJ F(£(s))ds — u(t)] = 0.
t—p(t)
From (2.3), we obtain for any positive real constants e€; and €,
[ &t) }T [—2H1€1 H1€2] { &t) ] >0
f(E(t)) edHI  —2Hy| [f(E(t)] 7 7 (3.12)
> 0.

[au—dun]T-aHﬁl}hq][au—dun]
fE(t—d(t))] | eJHI  —2H,] [f(E(t—d(1)))
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By utilization of zero equation, the following equations are true for any real constant matrices Ki, i =1,2
with appropriate dimensions

2Kt (£()) + 2KauT ()] [E(1) + AE(t—8) = WAF(E(t) — Wa (E(t — d(£)) — Wad (t —T(t)

. (3.13)
—W4J £(&(s))ds —u(t)} —0.
t—p(t)

According to (3.3)-(3.13), it is straightforward to see that
V(E(t) —yu' (Hu(t) = 22" (Hu(t) < o' (YZo(t),
where

ol (1) =[ET(t), T (t—8),&T(t—d1), & (t—d), T (t—d(t), ET (1), ET(t — 1), ET (t — do),

' t t t—pq
ET(t—r(0), T (E(1), FT(E(t— (1)), J aT(s)ds,J fT(a(s))ds,j £ (&(s))ds,
t—5 t—p(t) t—p2
t—d(t) t—d t t t t t
T :T T T
t—dp et
J J £T(A)dAdu, u(t)].
t—d; Ju
If the conditions (3.1) hold and }_ < 0, then
V(&) —yuT (tu(t) —2z" (t)u(t) <0, (3.14)

for any o(t) # 0. Since V(§(0)) = 0 under zero initial condition, let &(t) = 0 for t € [Tmax,o] after
integrating (3.14) with respect to t over the time period from 0 to t¢, we get

te

tr
ZL zT(s)u(s)ds>V(a(tf))—V(a(0))—ij W (s)u(s)ds

> —y J: ul(s)u(s)ds.

Thus, the NTNNSs (2.1) is passive in the sense of Definition 2.1. This completes the proof. O

Remark 3.2. The proof of Theorem 3.1 shows estimating of integral terms by Lemmas 2.7, 2.8, and 2.9
applying Vi(&(t),t). Moreover, we have created these lemmas ourselves, which obtained a tighter upper
bound than [7, 41, 44, 49, 51, 52, 55, 57].

Remark 3.3. When W3 =0,C; =1, Cy = C3 = C4 =0, the system (2.1) without neutral term is reduced to
the following NNs

E(t) = —AE(t—8) + WA(E()) + Waf(E(t — d(t))) + Wi [y, FE(s))ds +u(t),
z(t) = f(&(t)), (3.15)
Et) =d(t), t€[—Tmax,0l, Tmax = max{dy, p2}.

By employing the following Lyapunov-Krasovskii functional as

t t

a(s)ds)TPl(a(t)—AJ £(s)ds),

t—5

Vi), 0 = () - A |
t—5

t 0 t
Vale(t, ) = | ET(eIPats)ds 45| | e (sIPat(sdsae,

t—5 t+0
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T

[ &) I 000][Ps 0O 0 O &(t)
E(t) 000O0O1/0 O 0 O E(t)
Va(&(t), ) = | gt —qqp) 0000/]0 0 0 o0 E(t—d(t) |-
ﬁ_d(t)‘i(s)ds 000 0] [Qi Q2 Q3 Qq f:_d(t) £(s)ds
t v - t O TEls)] [Re Ro] [E(s)
V4(E(t),t)=ddZET(S)P7€(S)dS+LdZET(S)PSE(S)dSJr L [zx(s)] Ll RJ {a(s)} s,

t

0t 0 ' '
VS(E(t),t):dZJdJ aT(e)Pga(e)dedHJdJ ET(0)P1of(0)d0ds

t+s t+s
0t a(e)ﬁm R5] [a(e)]
+d2JdZL+S [é(e) R |£(0)] 499

2 rt t prt 2 rt t rt
vé(a(t),t)‘bj j J £ (VPN dAduds + - J B j J ET(A\)P1oé(A)dAduds,

2 t—dy Js Ju t s Ju

a3 rt topt ot _ a3 rt topt ot _

wmmuzzj Jjjéwmgwwmmm+zj Jjjﬁmmﬁmwﬂm@
6 Ji—d,Js Jula 6 Ji—a,Js Jula

we can obtain the following Corollary 3.4 for the passivity of the above NNs (3.15) by using Theorem 3.1.

We introduce the following notations for later use:

Z = [iifi]zoxzo'

where )ii,j = }ijT,i =2y, 1j=1,23,...,21, except

219=259 =269 =299 = L129 = 2139 = 2219 =0,

= T (d2)®
266 =—Qr — Qo+ doPy + daRs + ?Pw,

101 =-WiKJ, ZIyo=vy—Ky—KJ.

Corollary 3.4. The delayed NNs (3.15) are passive in Definition 2.1, if there exist positive definite matrices Q1,
Ry, Re Pi, 1 € {1,2,...,15}, except Ps = 0, any appropriate dimensional matrices G, Ky, K3, Rin, Qn, M, and
m=12,...,6n=12,...,4,0=1,2,...,5 such that the following symmetric linear matrix inequalities hold

P My M -
El?]>Q[T ?Lxx £ Mz My >0, ) <0
3 6 * * M5
Proof. The proof is similar to that in Theorem 3.1, and so it is omitted. O

Remark 3.5. When W3 =W, =0,C; =1,Cy = C3 = C4 = 0 and 6 = 0, the system (2.1) without neutral,
leakage and distributed term is reduced to the following NNs

E(t) = —AE(t) + WAT(E()) + Waf(E(t —d(t))) +ult),
z(t) = f(&(1)), (3.16)
E(t) =d(t), te[—dy,0l

By employing the following Lyapunov-Krasovskii functional as

Vi(&(t),t) = E(1)P1E(L),

E(t) 1 000][Ps 0O 0 O &(t)
() 000O01/0 O 0 O E(t)
Va(&(t), 1) = E(t—d(v) 0000/|0 0 o of] &t—dw) |-
It aw éls)ds] [0 0 0 0] [Q1 Q2 Qs Qu) [Ji_ap&ls)ds
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t t t T
vem o= pemes | demisas |50 R R)E as
t

0 [t 0 ' .
V4(E(t),t):d2JdJ aT(e)Pga(e)dededJ £T(0)P1of(0)d0ds

t+s t+s
O [t Te0)]" [Re Rs] [E(6)
*dzj_dz J [é(e)} [ RJ [é(e)] a0ds,
2 rt t rt 2 rt t rt
Vs5(&(1),t) = % Ldz L L ET(NP11&E(N)dAduds + d% Ldz L L ET(N)P1é(N)dNduds,

d3 t t pt t_ . d3 t t rt t_ .
Vé(é(t),t):gj . J J L &T(G)P14£(6)d6d7\duds+62J . J J L £T(0)P15£(0)d0dNduds,
t—dy Js Ju t—dy Js Ju

we can obtain the following Corollary 3.6 for the passivity of the above NNs (3.16) by using Theorem 3.1.
We introduce the following notations for later use:

A

Z - [Zi/i]wxw'
where )Aii,j = iT =Ly 1,j=123,...,21, except

$19="350="540=299="2109="2139=13719=0,
) dy)8
$66=—QF — Qa2+ daPo + daRe + (36)P13’

1101 = -WIKJ, Sy =v—Ka—KJ,

2112 = 2912 = 210,12 = 211,12 = 21212 = 21312 = 221,12 = 0,

£11=—PIA—ATPI+P]G— QI A+ GTPs + iP5 + 3Ry + 3Py — =2

Sop="505="526="5013="51414 =0,

S113 =013 = L5153 = L6153 = L0153 = L1013 = L1103 = L1213 = L1313 = L1321 = 0.
Corollary 3.6. The delayed NNs (3.16) are passive in Definition 2.1, if there exist positive definite matrices Q1,
Ry, R Pi, 1 € {1,2,...,15}, except P, = P3 = P5s = Py = 0, any appropriate dimensional matrices G, K1, Ky
Rm, Qn, Moand m=1,2,...,6, n=1,2,...,4,0=1,2,...,5 such that the following symmetric linear matrix
inequalities hold

Po My M;

[Rl RZ] >0, [R‘* RS] >0, |+ Mz My| >0, ) <O
* R3 * R6
* * Mg
Proof. The proof is similar to that in Theorem 3.1, and so it is omitted. O

3.2. Delay-range-dependent robust passivity criteria
According to Theorem 3.1, we can obtain delay-range-dependent robustly passivity criteria of system
(2.4). We introduce the following notations for later use.

Z = [Zij] 01501/ (3.17)

where fi,j = f;l:l = Zi,j/ i,j = 1,2,3,...,21, Zl = PirW3, Z2 = PirWl, Z3 = PIWQ, Z4 = PirW4, Z5 =
G1Pir, Z6 = G1P1 and

ST=[E"™ 00 00O0O0OOOOO0OO0OOOOO0O0O0OO0 0 0
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Np=I[ZsAT 0 0 0 0 0 0 0 —GPj —GP/ —GPf 00 00O0O0O0OO O 0]
Nip=[0 0 0 0 0 0 0 0 ZAT+Zs 0 0 0 0 0 0 0 0 0],

Np=[0 0 0 0 0 0000 Z 0O0O0O0O0OO0OO0 O]

=[Gi 0000 O0OOO Gs G2 G3 OG5 0 O0OOOOO O O

Theorem 3.7. The delayed uncertain NTNNs (2.4) are robust passivity in Definition 2.1, if there exist positive

definite matrices Q1, Ra, Rg Pi, 1 € {1,2,...,15}, any appropriate dimensional matrices G, K1, K2 Ry, Zm Qn,
Moandm=1,2,...,6,n=1,2,...,4,0=1,2,...,5 such that the following symmetric linear matrix inequalities

0 00
000

ST=[E"™Q; 00 00O O0ODODO0OO0OOOOOO0OO0OOOO0 0 0]
Sa=[0 0 0 0 E'Q3 E'"Q, 0 0 0 0 0 0O O OOOOO 0 0]
S{=0 00 0O0O0O0O0O0O0O0OOTE 00O0OOTO0O0O0 0,
S4=0 0 0 00O0O0O0ODO0O0OGO0OTE 00O0O0OOGOO0O0 0],
S¢=0 0000O0O0O0ODO0O0O0O —E"00O0UO0OUOOO0O0 0]
ST=0 000O0O0O0OO0OO0OO —E"™A 0O0O0O0O0O0O0 0 0
Se=0 0 0 00O0O0O0O0O0OGO0O —E'"AT 0000O0O0O0 O 0
Sd=0 00 00O0O0DO0ODO0O0O0O —E"00O0UO0OUOOO0O0 0]
Sly=[0 0000 0OOOOOOTE 0O0OOO0O0GO0 O 0]
S;,=[E" 00 00O0O0OOOOOOOOOO0O0O0 0 0]
SL,=[0 000 00O0O0O0OO0OO0TE 0000O0OO0TO0OO0O 0],
S;3=[0 00 000O0O0O0GOOTE 00O0OO0O0O0GO0 O 0
Ni=[-G; 0 00 00 O0O Gy G, Gz 0G5 00 0O0OTO0O O 0],
N=[-G; 0 00 00 0O Gy G, Gz 0 G5 00 0O OO0 O 0],
Ng=[0 —G; 0 00 00O Gy G, Gz 0 Gs 00 0O0O0O0 0 0],
Nyg=[0 G, 000000 -Gy -G, —G3 0 —G5 00 00 OO0 O 0],
Ns=[0 0000000 —GZ —GZ, —GiZ3 000 000 O0 0 0 0]
Ne=[0 000 0O0O0O0OO0OOO0OO0OO0O0O0O0 0 0 GiPl,
Ny=[0 00 000 O0O0 Gy, G, GG OO OOOOOO0 0 0],
Ng=[0 00 00O0O0O0O0O0OO0Gs 000O0O0OO0 0 0
No=[0 00 0 00 0O GZg 00 0O0O0O0OO0O0O0 0 0]

[

[

[

[

hold
Ry R, Ry Rs
[* R3]>o, [ RJ>0, (3.18)
Py M; Mj]
x Mz My| >0, (3.19)
* *  Ms]|
13[>Sk oNJ]
Y |+ —ol o7 <0. (3.20)
k=1 | % * —ol |

Proof. Replacing A, Wi, W5, W3 and W in (3.2) with A = A4+ EA(t)Gy , W) = Wj + EA(1)Gy, Wr =
W, + EA(t)G3, W3 = W3 4+ EA(t)G4 and Wy = Wy + EA(t)Gs, respectively, we find that condition (3.2) is
equivalent to the following condition

Y +SAMN+NTA[)TST <0, (3.21)
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where ) are defined in (3.17). By using Lemma 2.3, we can find that (3.21) is equivalent to the LMIs as
follows

13 [Y Sk oN]
> |+ —ol &7 | <0, (3.22)
k=1 | % * —ol

and o is positive real constant. From Theorem 3.1 and conditions (3.18)-(3.20), the system (2.4) is robust
passivity. The proof of theorem is complete. O

Remark 3.8. When 6 = 0,C; =1,Cy = C3 = C4 = 0, the system (2.4) without leakage term is reduced to
the following uncertain NTNNs with parameter uncertainties satisfying (2.5)-(2.8),

E(t) = —[A + AA(L)]E(t) + W1 + AB(1)If(E(t)) + W2+Ac(t)] (&(t—d(t)))
+W3 +AD(1)]E(t —1(t)) + Wi + AE(1) ft o(t E(s))ds +u(t),

z(t) = f(&(1)),

Et) =(t), te [~Tmax, 0], Tmax = max{dy, P2, T2},

(3.23)

By employing the following Lyapunov-Krasovskii functional as

Vi(E(1),1) = E(H)P1&(t),

Et) 1'[L oo o] 0 0 0 (1)
E(t) 0000O01/]0 O 0 O E(t)
Va(&(t), 1) = E(t—d(1)) oooollo o o o Et—d(t) |’
[ awélsds] [0 0 0 0] [Qi Q Qs Quf L[t qp éls)ds

t

p1 t
V3(E(t),t)=(T2—T1)J éT(S)P5E(S)ds+(pz—pl)J j £(£(0))TP4F(£(0))d0ds,

t—r(t) —p2 Jt+s
Nk T Yo : t &(s) T Ri R {E(S)}
VilE, 0 = [ s | Eepkeas | TR s
0 t 0 t . )
Vs(E(t), 1) = dzJ J £T(8)Poc(0)d0ds + J J £T(0)P10é (6)d0ds
dy Jt+s dy Jt+s

Ot q£0)]" [Ry Rs] [£(0)
*df [é(e)} [ RJ [é(e)] 40ds,

dZ t rt pt d22 t t pt . .
Vi(E(0), 1) = 2J J ET(\)PHE(N) dAduds + 2J J J ET(A)P12E(\) dAduds,
t d2 J d2 w

2 sJu t— S

d3 t rt pt pt T . d3 t t pt et T )
V7 (&(t),t) = ZJ . J J')\ & (0)P14é(0)dOdAduds + 62J . J J L\ &' (0)P15&(0)d0dAduds,
t 2 J 2

6 sJu t— s Ju

we can obtain the following Corollary 3.9 for the passivity of the above uncertain NTNNs (3.23) by using
Theorem 3.1.

Z = [Zi/j]19><19’
where ¥ ; = ZjT,i =% 1,j=1,23,...,21, except
$11=—PIA—ATP; + P, +5P3 +P{G— Qf A+ G'Ps+ d3Ps
2 2 d%P13 T
+d2R4—d2P11 — 4 —2H1€1 —QlA—Pz,
Yip=30p=1350="2¢2="2102 =132 = 22120 =0,
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$15=—P{G—ATQs,

$16=Pf —QJ +d3Rs—ATQ,,

S110=PiW1 + QI W) + Hies + ATK,

S113 =PIWL+ QIWL+ AT, 515 =P +Qf +ATK,,

S112 = Lo12 = X102 = 11,12 = 1,12 = L1312 = L2112 = 0.
Corollary 3.9. The delayed uncertain NTNNs (3.23) are robust passivity in Definition 2.1, if there exist positive
definite matrices Q1, Ra, Rg Pi, 1 € {1,2,...,15}, except P, = P3 = 0, any appropriate dimensional matrices G, Ky,

Ko Rm, Zm Qn, Moand m=1,2,...,6, n=1,2,...,4,0=1,2,...,5 such that the following symmetric linear
matrix inequalities hold

Ps My My 13 Z S 6N;£
[Rl R2] >0, [R4 R5] >0, |* Mz My|>0, > [+ =8I §T|<0.
* R3 * R6

x  x  Ms k=1 | * * =0l

Proof. The proof is similar to that in Theorem 3.7, and so it is omitted.

4. Numerical examples

Example 4.1. Consider the following continuous NTNNs with discrete, neutral, distributed interval time-
varying delays and leakage delay (2.1). We consider passivity analysis of system (2.1) by using Theorem
3.1. The system (2.1) is specified as follow

22 0 [1.2 1 [ 0.8 04
A=1o 1.8}’ Wi = 0.2 0.3}' W2 = 0.2 0.1}'
(0.2 1.2 (0.5 0.4 1 0
Wa=1l13 0.3}' Wi=lo5 3 } “1=1o 4.2]'
1 03 1 0 [1 05 10
C2= 0 1.3}' G = 0 3.1]' Ca= 0 2.5]' 1= [0 1}'
d(t) = | cos(t)], o(t) = sin2(0.6t), r(t) = cos(058),  b(t) = [_00'33'], te[—1,0].
The activation function are assumed to be
fk(Xk) = 05(‘Xk + 1| — |Xk — 1|),k = 1,2.
It is easy to check that the activation functions are satisfied (2.3) with 1, = 0, lz =1, k=1,2. For
6=05 v=07, € =05 1€=06, d=01, d,=07, p1 =01, p,=03 1 =01 1,=0.6,

and rq = 0.5. By using LMI Toolbox in MATLAB and by solving the LMIs in Theorem 3.1. This example
shows that the solutions of LMIs are given as follows:

b _ [194347 —15847 b _ [45271 00021]
17| -1.5847 41.6291 7 27 [0.0021 4.5278 '
_ [9.5240 0.0402] _ . 4 12518 0.0015] __ 4
Ps= |o.0a02 84138 <10 P4= o015 1.2506] <10
_ [41971 0.0014] _ . 4 _ [9.8610 0.0000] . 4
Ps=lo.0014 42147) ¥ 10" Ps=10.000 9s610) * 17
98610 0 ., 43146 0.0023] . 4
7= 0 9se10] <17 Ps = lo.0023 4.3161] <10
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b _ [ 15375  —0.0000] s b _ [905.8027  0.4087
? 7 |-0.0000 4.3161 / 107 04037  906.1232) "
b _ [ 82612 —0.0071] . b _ [1.4532 0.0030
17 1-0.0071 8.3253 ' 27 10.0030 1.4583|"
b _ [3:3852 0.0080] . b _ [945.2841 —0.4866
137 10.0080 3.3725 ' 704866 944.5719) 7
_ [9.8610 0 . ~ [22317 —0.0000 "
Pis=1" ¢ 9.8610} x10% R1=1"0.0000 2.2305] x10°%
R, _ [ 0.0025  —0.0000 R. _ [9-8610 —0.0000] _
27 |-0.0000 0.0025 |’ 37 10.0000 9.8610 '
R, _ [6:0027 0.0022] R. _ [F94.6213  28.8074
*70.0022 6.0041 ' > | 288074 —11.2297|’
_ [13333 —0.0001] . s [94.8348  —3.4949]
Ro=|_0.0001 13339 | * 10" Q=1 34949 751631
_ [-0.1927 —0.1155] [23.6291 —1.2434]
Q=1 01155 —28088)" Q=1 12434 246800
_[19272 —0.0024] . 4 _ [-4.8991 0.0013] . 4
Q=1 00024 19202 | * 10" Mi=1 00013 —49047] ¥ 10"
_ [-9.5622  —0.0171 3 ~ [1.2089 0.0004 5
M= o071 —0.96267] x10° Ms = |0.0004 1.2083} x10°%
_ [~1.1839 —0.0006 5 _ [1.6993 0.0008 5
Ma= | _0.0006 —1.1829} x10°% Ms = 0.0008 1.6988} x10°%
~ [39346 —0.0081 5 33267 —0.0007 s
Hi=1"0.0081 3.8945} x 10 M2 =1 _0.0007 13.3528] x10%
G _ 8242293 —11.9000 (. _ [5:3643 00110] s
~ |~11.9000 814.0333 | 17 0.0110 5.3822 ’
K, — | 35750 —0.0026} 106,

|1—0.0026  3.5942

The above result show that all the conditions stated in Theorem 3.1 have been satisfied and hence system
(2.1) with the above given parameters is passive.

—— 0
—

Figure 1: The trajectories of &;(t) and &,(t) with u(t) = 0 in Example 4.1.
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Example 4.2. Consider neural networks (3.15) with

15 0 05 02 04 —0.1 00 10
A:[o 1.3]' Wl_[o.4 0.3]' WZ_[O.l 0.2]’ W‘*_[o 0}' Cl_[o 1}

The activation functions are assumed to be
fi(x) =tanh(x), k=1,2.

It is easy to check that the activation functions are satisfied (2.3) with 1, = 0.5, lz =0, k =1,2. Using
Corollary 3.4 for various leakage delay 6, the maximal upper bounds of d, are shown in Table 1. From
Table 1, it can be easily seen that the method proposed in this paper is much less conservative than the
corresponding method in [41, 57].

Table 1: The Maximal allowable delay d, of Example 4.2 for different values of leakage delay .
1) 0.01 0.05 0.1

Zhao (2014) [57] 0.6231 0.4341 0.2
Samidurai (2016) [41] 1.0112 0.6213 0.4131
Corollary 3.4 21189 1.1010 1.0123

Example 4.3. Consider neural networks (3.16) with

22 0 12 1 0.8 04 10
A= [0 1.8]’ Wi= {—0.2 0.3}’ Wa= [—0.2 0.1]' G = [o 1]'

The activation functions are assumed to be
fr(xk) = 0.5(Ixx + 1] =[xk — 1)), k=12

Using the MATLAB LMI Toolbox to solve the LMIs in Corollary 3.6, we have that the delayed neural
networks in this example, which guarantee the passivity of neural network (3.16), that are list in Table 2.
It can be seen that the passivity result we proposed is less conservative than that in [7, 44, 49, 52, 55].

Table 2: The maximum upper bound d; of Example 4.3.
Xu (2009) [49] 0.6791

Zeng (2011) [52] 1.3027
Thuan (2016) [44] 2.9068
Zhang (2018) [55] 3.7113
Botmart (2021) [7] 4.1010
Corollary 3.6 4.1124

Example 4.4. Consider the following uncertain NTNNs with discrete, neutral, distributed interval time-
varying delays and leakage delay (2.4). We consider passivity analysis of system (2.4) by using Theorem
3.7. The system (2.4) is specified as follow

13 0 03 —0.2 05 0.1
A=1o 1.5]' Wl_[os 01}' Wz_[oe. 04}'

0.1 —0.3 —0.2
Ws=1lo2 1.2]' Ws = {o.z —005] [ }

1 05 10 1 05 0
©2=1o 1.5}' C3_[0 3}' C4= [0 25] J= [ 0.1]'
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1 0
E=01, G; =01 G,=02 G3=03, G;4=04, G5=0 I= [O 1] ,
. . > —0.1,
d(t) =[|sin(t)], p(t) =sin“(0.1t), r(t) =cos“(0.3t), ()= 01 | te [-1,0].
The activation functions are assumed to be
fr(xik) = 0.5(]xx + 1] =[xk — 1)),k =1,2.
It is easy to check that the activation functions are satisfied (2.3) with 1, = 0, lfg =1, k=1,2. For

=05, 06=05 v=07 €6, =05,e,=06,d, =01, dpb =2, p1 =01, pp =03, 71 =0.1, 1, = 0.6, and
ra = 0.5, by using MATLAB LMI control toolbox and by solving the LMIs in Theorem 3.7 in our paper
we obtain the following feasible solutions:

=

P15 =
R, =

Ry =

Q2=
Q4=

M, =

(495.7480 2.7398]
| 27398 441.6610|"
oo eony | *10"
s oz
_7'4318 7.4(4)118] x 107,

= Jozm 14106 | <10
B
“osoer ayase | X1
7'46118 7.4(4)118] x10%,

[942.2893  —4.8363
| —4.8363 831.4867|"

(21523 —0.0150]
—0.0150  2.4499 ’
[2.6206 —0.4679 5
—0.4679 2.1380} x 10%,
[—45.4274 —16.1953
161953 24.6726 |’
(15917 —0.0014 .
|—0.0014 1.5347} x 107
[ 969.0124 —157.8168
—157.8168  758.9788 |’
[—745.8570  139.1913

| 139.1913  —578.8167]"
[6.0371 —0.2713 .
—0.2713 6.4835} x 10
(7033671 —95.0924
—95.0924  669.5938 |’
(69086 —0.8192 .
08192 49141 } x 107
[1.2429 —0.8969 5
08969  2.6923 } x10%

P, =

Py =

[ 25703 —0.1695]

[677.8933 —28.3527
|—28.3527  690.1097 |’

[65.5743  49.0451
149.0451 70.2736|’

(9731174 1527987
| 1527987 —752.0766]
[ 23028 —0.1600] 3
01600 18332 | <10
[3.8545 —03016] _ . 5
03016 29758 | <10
[1.0162 0.1817] _ . s
0.1817 0.6859] x10°%
(95808 —0.2651] _ . 4
02651 79451 | <10
[—238.1269  3.2910
| 32910 —212.3648]"
(—1.8274 —0.1978] _ . 3
—0.1978 1.3873} x10%

“01605 26821 | X107
[909.8406 —10.5743

105743 949.1335 "

]
s
o0 17264 % 10
o, 2]
s s | <10
e
s 4]
a0 —aesy| X1
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| 14.1088 —11.8786

240.8660 —3.6914 7
’ > |-11.8786  44.2535 |’

24 = {—3.6914 211.6639

;. _ [09210 0.0555
6= 10.0555 1.0598]"

The above result shows that all the conditions stated in Theorem 3.7 have been satisfied and hence system
(2.4) with the above given parameters is passive.

Figure 2: The trajectories of &;(t) and &;(t) with u(t) = 0 in Example 4.4.

Example 4.5. Consider the uncertain neutral-type neural networks (3.23) with

A [1.3 0 ] oWy = [—1.198 0.1 }’ W,y = [0.1 0.16} ’

0 15 01 —1.198 0.05 0.1
04 —02 03 —0.15 10
Ws = [0.3 0.2 ] Wa= [0.5 —0.2}' C= [o 1]' E=02

G; =020, G2=025 G3=0.15G4=0.20, Gs5=0.25.
The activation functions are assumed to be
fr(xk) =05(x + 1 —xx —1]), k=1,2.
Obviously, (2.3) is satisfied with 1, = 0.5, 1 =0, k = 1,2. Using Corollary 3.9, the maximal upper

bounds of d, are shown in Table 3. From Table 3, it can be easily seen that the method proposed in this
paper is much less conservative than the corresponding method in [41, 51].

Table 3: The maximum upper bound d; of Example 4.5.

Zeng (20013) [51] 2.3642
Samidurai (2016) [41] 3.5138
Corollary 3.9 4.1458

Remark 4.6. In this work, the Lyapunov-Krasovskii functional consists of single, double, triple, and
quadruple integral terms, which full of the information of the delays 9, d;, d2, p1, P2, 71,12 and a state
variable &(t). Furthermore, we have used various integral inequalities to estimate the derivative of Lya-
punov functional, Leibniz-Newton formula and utilization of zero equation. Hence, the construction and
the technique for computation of the Lyapunov-Krasovskii functional are the main key to improve results
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of this work. All of these lead to the improved results in our work as we can see the compared results
with some existing works in numerical examples. However, the complex computation of the Lyapunov-
Krasovskii functional leads to the LMIs derived in this work which contains many information of the
system. It is feasible for NTNNs and NNs with leakage delay which can be solved by using the Matlab
LMI toolbox. Consequently, for further work, it is interesting for researchers to improve these technique
for a simple Lyapunov-Krasovskii functional and also achieve better results.

5. Conclusions

In this research, We focused on new results for robust passivity analysis of uncertain NTNNs with
distributed interval time-varying delay under the effects of leakage delay. By applying a novel Lyapunov-
Krasovskii functional approach and using new integral inequalities to estimate the derivative of Lyapunov
functional, Leibniz-Newton formula and utilization of zero equation. The new delay-range-dependent
criteria for the passivity of the addressed NTNNs, NNs and uncertain NTNNs have been established in
term of LMIs, which can be checked by using LMI toolbox in MATLAB. Besides, these results are less
conservative than the existing ones and can be an effective method. Five numerical examples have been
given to demonstrate the usefulness and the merits of the proposed method.
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