
J. Math. Computer Sci., 26 (2022), 322–329

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Iterative methods for solving absolute value equations

Rashid Alia,b, Asad Alib,∗, Shahid Iqbalb

aSchool of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, Hunan, P.R. China.
bDepartment of Mathematics, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan.

Abstract
We suggest and analyze some iterative methods called Jacobi, Gauss–Seidel, SOR (successive over-relaxation), and modified

Picard methods for solving absolute value equations Ax− |x| = b, where A is an M-matrix, b ∈ Rn is a real vector, and x ∈ Rn is
unknown. Furthermore, we discuss the convergence of the suggested methods under suitable assumptions and represent their
performance through our numerical results. Results are very encouraging and may stimulate further research in this direction.
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1. Introduction

Consider the absolute value equation (AVE) with matrix A ∈ Rn×n is an M-matrix, b ∈ Rn and | ∗ |
indicates the absolute value given by

Ax− |x| = b. (1.1)

In addition, the Eq. (1.1) is simplified form of the general AVE

Ax+B|x| = b,

where B ∈ Rn×n was introduced by Rohn [32] and investigated in [23]. The AVEs have received much
attention because they are used as a useful tool in the optimization field, such as the linear and quadratic
programming, the optimal stopping in Markov chain, the structural mechanics, the network prices, the
network equilibrium problems, the journal bearings, and the contact problems; see [3, 8, 16, 17, 24, 27, 35,
36, 38] and the references therein.

The AVE is also equivalently reformulated to linear complementarity problem (LCP) and mixed-
integer programming; see [7, 22, 26] and the references therein. For example, consider the LCP(M,q)
that contains of finding a vector z ∈ Rn, such that

z > 0, Ω = (Mz+ q) > 0, zTΩ = 0, (1.2)
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where M ∈ Rn×n and q ∈ Rn. The above LCP (1.2) can be reduced to the following AVE

Ax−B|x| = q,

with
x =

1
2
(Bz+ q),

where A = (M+ I) and B = (M− I). Abdallah et al. [1] transformed AVE (1.1) into a horizontal LCP,
and solved it by a smoothing method. Prokopyev [31] has discussed the unique solvability of AVE, and
its relation with LCP. Mangasarian [20] has shown that AVE is equivalent to a concave minimization
problem and considered solving the latter problem instead of AVE. Hu and Huang [15] reformulated the
AVE system to the standard LCP and provided some outcomes for the solution of AVE (1.1). Mezzadri
[25] presented the equivalence between AVEs and horizontal LCPs.

In recent years, more and more studies have been conducted on the existence and uniqueness of
the AVE solution and effective numerical solution algorithms of the AVE. For example, Hashemi and
Ketabchi [14] proposed the numerical comparisons of smoothing functions for optimal correction of an
infeasible system of AVEs. Saheya et al. [34] studied smoothing type algorithms for solving AVE (1.1) and
proved that their algorithms have local and global quadratic convergence. Mangasarian [21] proposed
an approximated generalized Newton method for solving AVE (1.1) and showed that this algorithm

converges linearly from any initial point to the unique solution under the condition that ‖A−1‖ < 1
4

.
Caccetta et al. [5] studied a smoothing Newton method for solving AVE (1.1) and proved that the method
is globally convergent and the convergence rate is quadratical under the weak condition that ‖A−1‖ < 1.
Haghani [13] suggested the generalized Traub’s method, which is better than the Mangasarian’s method.
Dong et al. [9] presented the SOR-like method for solving AVE (1.1). Nguyen et al. [30] presented unified
smoothing functions associated with second-order cone for solving AVE (1.1). Gu et al. [12] suggested
the nonlinear CSCS-like iteration method and the Picard-CSCS iteration method for solving AVE (1.1),
which involves the toeplitz matrix. Moosaei et al. [28] showed that AVE (1.1) is equivalent to a bilinear
programming problem. They solved the AVE by the principle of simulated annealing, and then found
the minimum norm solution of AVE (1.1). Zhang et al. [37] introduced a new algorithm that relaxed
the AVE into a convex optimization problem. They discovered the sparsest solution of the AVE through
the minimum l∞-norm. Feng and Liu [10, 11] suggested and analyzed an improved generalized Newton
method and two-step iterative method for solving AVE (1.1).

Recently, Li and Dai [19] and Najafi and Edalatpanah [29] presented different approaches using the
fixed point principle to solve the LCPs. This research aims to extend this approach to AVE using the fixed
point principle and formulate efficient iterative methods for solving AVE (1.1). The main contributions of
this paper are given as follows. We split matrix A into different parts and connect with Eq. (1.1) using
different tools, which can speed up the convergence of the suggested iteration methods. Furthermore, we
discuss the convergence of the novel methods under new conditions.

The rest of this paper is organized as follows. In Sec. 2, various notations and definitions are presented.
In Sec. 3, we discuss the proposed methods and their convergence for solving AVE (1.1). Numerical results
and concluding remarks are given in Secs. 4 and 5, respectively.

2. Preparatory knowledge

Here, we present some notations, the definition of M-matrix and a useful lemma for later analysis.
Let A = (aij) ∈ Rn×n, we write A > 0 if aij > 0 holds for all 1 6 i, j 6 n. We express the absolute

value, spectral radius and norm of A ∈ Rn×n as |A| = (|aij|), ρ(A) and ‖ A ‖∞, respectively.

Definition 2.1 ([18]). Let A ∈ Rn×n. It is called
1. a Z-matrix if aij 6 0 for i 6= j;
2. an M-matrix if it is a non-singular Z-matrix satisfying A−1 > 0.

Lemma 2.2 ([23]). Let A ∈ Rn×n, if ‖A−1‖2 < 1, then the AVE (1.1) has a unique solution for any b ∈ Rn.
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3. Proposed methods

In this section, we discuss the suggested iterative methods. This section contains two parts. The first
part includes the Jacobi, Gauss-Seidel, SOR methods and their convergence, and the second part includes
the modified Picard method and their convergence for solving AVEs.

3.1. Jacobi, Gauss-Seidel and SOR methods for AVE

In this section, we discuss the Jacobi, Gauss-Seidel and SOR methods for solving AVEs. To propose
and analyze the algorithms, we split the A matrix as

A = D̂A − L̂A − ÛA,

where, D̂A, L̂A, and ÛA are the diagonal, the strictly lower-triangular and the strictly upper-triangular
parts of A, respectively. If A ∈ Rn×n with det(A) 6= 0, then the Jacobi, Gauss-Seidel, and SOR methods
with relaxation factor 0 < λ < 2, for solving AVE (1.1) are given respectively as,

xm+1 = D̂−1
A (L̂A + ÛA)xm + D̂−1

A (|xm|+ b),

xm+1 = (D̂A − L̂A)−1ÛAx
m + (D̂A − L̂A)−1(|xm|+ b),

xm+1 = (D̂A − λL̂A)−1[(1 − λ)D̂A + λÛA]xm + λ(D̂A − λL̂A)−1(|xm|+ b).

(3.1)

and the associated iteration matrices are

Hj = D̂
−1
A (L̂A + ÛA), HGS = (D̂A − L̂A)−1ÛA, HSOR = (D̂A − λL̂A)−1[(1 − λ)D̂A + λÛA]. (3.2)

It is well known that an iterative scheme xm+1 = Hxm + c for solving AVE (1.1) converges for any
initial guess x(0) of the solution if and only if ρ(H) < 1 (see [4]). Therefore, in order to establish the
convergence of the iteration methods defined in (3.1), it is sufficient to examine the spectral radius of the
associated iteration matrix H in (3.2).

Theorem 3.1. Let A = D̂A− L̂A− ÛA, and x(0) ∈ Rn be an arbitrary initial guess. Then for ρ(D̂−1
A (|L̂A+ ÛA|+

I) < 1, the iteration sequence {xm} given by

xm+1 = D̂−1
A (L̂A + ÛA)xm + D̂−1

A (|xm|+ b), (3.3)

converges to the unique solution x? of AVE (1.1).

Proof. Let x? be a solution of AVE (1.1). Then

x? = D̂−1
A (L̂A + ÛA)x? + D̂−1

A (|x?|+ b). (3.4)

After subtracting (3.4) from (3.3), we get

xm+1 − x? = D̂−1
A (L̂A + ÛA)(xm − x?) + D̂−1

A (|xm|− |x?|). (3.5)

From (3.5), we obtain

|xm+1 − x?| = |D̂−1
A (L̂A + ÛA)(xm − x?) + D̂−1

A (|xm|− |x?|)| 6 D̂−1
A |L̂A + ÛA||xm − x?|+ D̂−1

A ||xm|− |x?||,

|xm+1 − x?| 6 D̂−1
A |L̂A + ÛA||xm − x?|+ D̂−1

A |xm − x?|,

|xm+1 − x?| 6 D̂−1
A (|L̂A + ÛA|+ I)|xm − x?|.

This shows that limm→∞ xm = x?, when ρ(D̂−1
A (|L̂A + ÛA|+ I) < 1.
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For uniqueness of the solution, Let x̄ is another solution of AVE. From the equations

Ax? − |x?| = b, Ax̄− |x̄| = b,

written as

x? = D̂−1
A (L̂A + ÛA)x? + D̂−1

A (|x?|+ b), x̄ = D̂−1
A (L̂A + ÛA)x̄+ D̂−1

A (|x̄|+ b),

we obtain
|x? − x̄| 6 (D̂−1

A (|L̂A + ÛA|+ I)|x? − x̄|.

Since ρ(D̂−1
A (|L̂A + ÛA|+ I) < 1, we have x? = x̄. The proof is completed.

Theorem 3.2. Suppose that AVE (1.1) is solvable and A = D̂A − L̂A − ÛA, be the splitting of A. If

|xm+1 − x?| 6 |(D̂A − L̂A)−1|(|ÛA|+ I)|xm − x?|,

then for any initial vector x(0) ∈ Rn, the Gauss-Seidel method converges to the unique solution x? of AVE (1.1).

Proof. Let x? be a solution of AVE (1.1). Then

x? = (D̂A − L̂A)−1ÛAx
? + (D̂A − L̂A)−1(|x?|+ b). (3.6)

After subtracting (3.6) from (3.1), we get

xm+1 − x? = (D̂A − L̂A)−1ÛA(xm − x?) + (D̂A − L̂A)−1(|xm|− |x?|). (3.7)

From (3.7), we obtain

|xm+1 − x?| = |(D̂A − L̂A)−1ÛA(xm − x?) + (D̂A − L̂A)−1(|xm|− |x?|)|

6 |(D̂A − L̂A)−1||ÛA||xm − x?|+ |(D̂A − L̂A)−1|||xm|− |x?||,

|xm+1 − x?| 6 |(D̂A − L̂A)−1||ÛA||xm − x?|+ |(D̂A − L̂A)−1||xm − x?|,

|xm+1 − x?| 6 |(D̂A − L̂A)−1|(|ÛA|+ I)|xm − x?|.

Note that the matrix |(D̂A− L̂A)−1|(|ÛA|+ I) is non-negative. We know that in [2, Theorem 4.1], if ρ(|(D̂A−

L̂A)−1|(|ÛA|+ I)) < 1, then the sequence {xm} of the Gauss-Seidel method converges to the solution x? of
AVE.

The proof of the uniqueness is easy and is omitted here. The uniqueness of the solution, follows the
same steps as Theorem 3.1.

Theorem 3.3. Suppose that AVE (1.1) is solvable and A = D̂A − L̂A − ÛA, be the splitting of A. If

|xm+1 − x?| 6 |(D̂A − λL̂A)−1|(|(1 − λ)D̂A + λÛA|+ λ)|xm − x?|,

then for any initial vector x(0) ∈ Rn, the SOR method converges to the unique solution x? of AVE (1.1).

Proof. Let x? be a solution of AVE (1.1). Then

x? = (D̂A − λL̂A)−1[(1 − λ)D̂A + λÛA]x? + λ(D̂A − λL̂A)−1(|x?|+ b). (3.8)

After subtracting (3.8) from (3.1), we get

xm+1 − x? = (D̂A − λL̂A)−1[(1 − λ)D̂A + λÛA](xm − x?) + λ(D̂A − λL̂A)−1(|xm+1|− |x?|). (3.9)
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From (3.9), we obtain

|xm+1 − x?| = |(D̂A − λL̂A)−1[(1 − λ)D̂A + λÛA](xm − x?) + λ(D̂A − λL̂A)−1(|xm|− |x?|)|

6 |(D̂A − λL̂A)−1||(1 − λ)D̂A + λÛA||xm − x?|+ λ|(D̂A − λL̂A)−1|||xm|− |x?||,

|xm+1 − x?| 6 |(D̂A − λL̂A)−1||(1 − λ)D̂A + λÛA||xm − x?|+ λ|(D̂A − λL̂A)−1||xm − x?|,

|xm+1 − x?| 6 |(D̂A − λL̂A)−1|(|(1 − λ)D̂A + λÛA|+ λ)|xm − x?|.

Evidently, if ρ(|(D̂A − λL̂A)−1|(|(1 − λ)D̂A + λÛA|+ λ)) < 1, the iteration sequence {xm} generated by the
SOR method converges to the solution x? of AVE (1.1).

The uniqueness of the solution, follows the same steps as Theorem 3.1.

3.2. Modified Picard method
Rohn et al. [33] proposed the Picard iteration method for solving AVEs. This method can be summa-

rized as follows:
xm+1 = A−1(|xm|+ b), m = 0, 1, 2, . . . .

In this section, we promote this idea and suggest the modified Picard iterative method for solving AVEs.
Modified Picard method. Let A be a non-singular matrix of order n× n and b be a vector of order n.
Given an initial vector x0 ∈ Rn and for m = 0, 1, 2, . . . , until the iteration sequence {xm}∞m=0 is convergent,
compute {

xm+ 1
2 = A−1|xm|+A−1b,

xm+1 = A−1|xm+ 1
2 |+A−1b.

Now, the following theorem indicates the convergence of the proposed method.

Theorem 3.4. Suppose that (1.1) is solvable and A ∈ Rn×n satisfies Lemma 2.2. If

|xm+1 − x?| 6 |A−1|2|xm − x?|,

then, for any initial vector x(0) ∈ Rn the sequence {xm} generated by the modified Picard method converges to the
unique solution x? ∈ Rn of the AVE (1.1).

Proof. Consider x? is the solution of AVE (1.1), then we have
xm+ 1

2 − x? = (A−1|xm|+A−1b) − (A−1|x?|+A−1b),

xm+1 − x? = (A−1|x
m+

1
2 |+A−1b) − (A−1|x?|+A−1b),

xm+ 1
2 − x? = A−1(|xm|− |x?|),

xm+1 − x? = A−1(|x
m+

1
2 |− |x?|).

(3.10)

By taking the first part of (3.10) and using absolute values on both sides, we get

|xm+ 1
2 − x?| 6 |A−1|||xm|− |x?||, |xm+ 1

2 − x?| 6 |A−1||xm − x?|. (3.11)

Similarly, we get from the second part in (3.10) that

|xm+1 − x?| 6 |A−1||xm+ 1
2 − x?|. (3.12)

From (3.11) and (3.12), we obtain

|xm+1 − x?| 6 |A−1|× |A−1||xm − x?|.

So,
|xm+1 − x?| 6 |A−1|2|xm − x?|.

Note that the matrix |A−1|2 is non-negative. We know if ρ(|A−1|2) < 1, then the sequence {xm} of the
proposed method converges to the unique solution x? of AVE. This completes the proof.
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4. Numerical experiments

Now, we consider some numerical examples to show the performance of the new methods. All
computations are performed on Intel (C) Core (TM) i7-10875H, where the CPU is 5.1 GHz, the memory
is 32 GB, and MATLAB (2017a) programming language. All tests are started from the initial zero vector
and the termination condition is given by

RES :=
‖Axm − |xm|− b‖2

‖b‖2
6 10−6,

where ‖x‖ denotes the 2-norm. To computationally study the performance of the proposed methods, we
examine the following two examples.

Example 4.1 ([6]). Let the AVE (1.1) with A =M+ΨI ∈ Rn×n and b = Ax− |x| ∈ Rn, such that

M =


S −I
−I S −I

−I S
. . .

. . . . . . −I
−I S

 ∈ R
n×n, x = (−1, 1,−1, 1, . . . ,−1, 1)T ∈ Rn,

where S = tridiag(−1, 4,−1) ∈ Rv×v, I ∈ Rv×v is the identity matrix, Ψ = 4 and n = v2. The numerical
results are listed in Table 1.

Table 1: Numerical results of Example 4.1 with λ = 1.2.

Methods n 64 256 1024 4096
JM Iter 32 40 43 44

Time 0.0136 0.0386 0.0683 0.2466
RES 9.10e–07 8.54e–07 9.04e–07 9.32e–07

GSM Iter 20 25 27 27
Time 0.00112 0.0174 0.0358 0.1162
RES 9.11e–07 7.19e–07 7.32e–07 9.73e–07

SORM Iter 16 17 18 19
Time 0.0082 0.099 0.0158 0.1102
RES 5.15e–07 7.20e–07 9.73e–07 6.94e–07

MPM Iter 5 6 6 6
Time 0.0035 0.0068 0.0089 0.0348
RES 6.46e–07 1.47e–07 2.41e–07 2.88e–07

In Table 1, we list the number of iterations (Iter), the CPU times in seconds (Time), and the 2-norm of
residual vectors (RES) of all methods. Moreover, we denote the Jacobi Method by JM, the Gauss-Seidel
method by GSM, the SOR method by SORM, and modified Picard method by MPM. From the numerical
results in Table 1, we notice that the suggested methods can rapidly calculate the AVE solution under
some conditions.

Example 4.2 ([6]). Let

A =


8 −1
−1 8 −1

−1 8
. . .

. . . . . . −1
−1 8

 ∈ R
n×n, x = (−1, 1,−1, 1, . . . ,−1, 1)T ∈ Rn

and b = Ax− |x| ∈ Rn. The numerical results are discussed in Table 2.
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Table 2: Numerical results of Example 4.2 with λ = 0.98.

Methods n 1000 2000 3000 4000
JM Iter 11 11 11 11

Time 0.0024 0.0078 0.0087 0.0120
RES 4.13e–09 5.84e–09 7.15e–09 8.26e–09

GSM Iter 8 8 8 8
Time 0.0015 0.0033 0.0075 0.0089
RES 6.27e–09 9.51e–09 2.59e–09 3.00e–09

SORM Iter 9 9 9 9
Time 0.0019 0.0054 0.077 0.0102
RES 6.27e–09 9.51e–09 2.59e–09 3.00e–09

MPM Iter 4 4 4 4
Time 0.0011 0.0017 0.0037 0.0067
RES 1.06e–09 1.50e–09 1.84e–09 2.12e–09

From Table 2, all tested methods can quickly calculate the solution of AVE (1.1). However, the com-
puting time and the number of iterations of the MPM method is less than the other methods. Finally, we
conclude that our proposed methods are feasible and effective for AVEs.

5. Conclusion

In this work, we dealt with some iterative methods for solving AVE and studied suitable cases to
converge the recommended iterative methods. These methods are easy to implement in practice. In
addition, some numerical results have shown the effectiveness of these methods. Numerical results show
that the proposed schemes are suitable for large and sparse AVE.

This paper successfully examined the new iterative methods for determining AVE (1.1) when the
coefficient matrix is an M-matrix. The cases for more general coefficient matrices and comparison with
other new iteration methods are the next issue to be considered.
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