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Abstract

Some real life problems are modeled using difference equations. Extracting the exact solutions of such equations is an
active topic for some scientists. This paper investigates the equilibrium points, stability, boundedness, periodicity, and some
exact solutions for eighth order rational difference equations. The exact solutions are obtained using the iterations method. We
also present some 2D figures to show the validity of the obtained results. The used methods can be applied for other nonlinear
difference equations.
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1. Introduction

Difference equations are widely considered as an important tool that plays a significant role in im-
proving mathematics as a whole. Even though these equations have been analyzed, they have not received
the attention that they deserve. Nowadays, several phenomena such as those occurring in finite mathe-
matics, probability theory, economy, biology, queuing problems, physics, chemistry, electrical networks,
control theory, are described using difference equations and systems of difference equations. Thus, dif-
ference equations can be used to solve various natural problems. Difference equations are also used to
discretize the derivatives which appear in differential equations. For instance, some phenomena such as
propagation of annual plants and trade models have been modeled by using difference equations [11].
Furthermore, Murray [21] used difference equations to describe a single species population growth.

Exact solutions and long term behaviors of difference equations play a significant role in interpret-
ing the future pattern of the relevant model. However, the exact solutions of some nonlinear difference
equations cannot be sometimes found. As a result, some researchers have discussed some qualitative be-
haviors of such equations. In other words, scientists have examined equilibrium points and their stability,
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periodicity and boundedness of the solutions. For instance, Gumus et al. [15] investigated the behavior
of the following third order difference equation

xn+1 =
αxn

β+ γxpn−1x
q
n−2

.

Almatrafi and Alzubaidi [4] analyzed the stability, periodicity, and analytic solutions of the difference
equation

xn+1 = c1xn−3 +
c2xn−3

c3xn−3 − c4xn−7
.

Elsayed [12] studied the stability of the rational difference equation

xn+1 = a+
bxn−l + cxn−k
dxn−l + exn−k

.

Alayachi et al. [1] examined the qualitative properties of the difference equation

yn+1 = Ayn−1 +
Byn−1yn−3

Cyn−3 +Dyn−5
, n = 0, 1, . . . .

In [5], the authors discussed the stability, periodicity and some solutions of the difference equation

um+1 = aum−1 +
bum−1um−4

cum−4 − dum−6
, m = 0, 1, . . . .

Moreover, Amleh and Drymonis [10] explored the global stability of solution of the difference equation

xn+1 =
(αxn +βxnxn−1 + γxn−1) xn
Axn +Bxnxn−1 +Cxn−1

.

Furthermore, Al-Shabi and Abo-Zeid [9] investigated the qualitative behaviors of the solutions of the
difference equation

xn+1 =
Axn−2r−1

B+Cxn−2lxn−2k
.

The study in [22] discussed the stability and the periodicity of the following difference equation

xn+1 =
α+βxn + γxn−k
Bxn +Cxn−k

.

More results about difference equations can be found in the refs. [2, 3, 6–8, 13, 14, 16, 17, 19, 20].
The main purpose of this paper is to explore the equilibrium points, stability and the exact solutions

of the following difference equations

xm+1 =
xm−1xm−7

xm−5 (−A+Bxm−1xm−7)
, m = 0, 1, . . . ,

xm+1 =
xm−1xm−7

xm−5 (A−Bxm−1xm−7)
, m = 0, 1, . . . ,

where A and B are positive real numbers and the initial conditions xi for all i=−7,−6, . . . , 0, are arbitrary
non-zero real numbers. We also plot some 2D graphs for the obtained results.

Next, we recall some definitions and theorems used in verifying the obtained results. The following
concepts can be found in [18].

Definition 1.1. Let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function. Then, for every set of initial condition x−k, x−k+1, . . . , x0 ∈ I,
the difference equation

xn+1 = F(xn, xn−1, xn−2, . . . , xn−k), n = 0, 1, . . . , (1.1)

has a unique solution {xn}
∞
n=−k.
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2. Linearized stability theorem

Let F be a continuously differentiable function in some open neighborhood of an equilibrium point
x∗. Let

pi =
∂F

∂ui
(x∗, x∗, . . . , x∗) for i = 0, 1, . . . , k,

denote the partial derivatives of F(u0,u1, . . . ,uk) evaluated at the equilibrium x∗ of Eq. (1.1). Then, the
equation

yn+1 = p0yn + p1yn−1 + · · ·+ pkyn−k , n = 0, 1, . . . , (2.1)

is called the linearized equation associated of Eq. (1.1) about the equilibrium point x∗ and the equation

λk+1 − p0λ
k − · · ·− pk−1λ− pk = 0, (2.2)

is called the characteristic equation of Eq. (2.1) about x∗.

Theorem 2.1 (Linear stability theorem, [18]). Assume that p0,p1, . . . ,pk are real numbers such that

|p0|+ |p1|+ · · ·+ |pk| < 1, or
k∑
i=1

|pi| < 1.

Then, all roots of Eq. (2.2) lie inside the unit disk.

3. Qualitative behavior of xm+1 = xm−1xm−7
xm−5(−A+Bxm−1xm−7)

Here, we consider the equilibrium point, stability and some solutions for the following difference
equation:

xm+1 =
xm−1xm−7

xm−5 (−A+Bxm−1xm−7)
, (3.1)

where the initial conditions x−7, x−6, x−5, x−4, x−3, x−2, x−1, and x0 are arbitrary real numbers with
x−1x−7 6= −1 and x0x−6 6= −1.

3.1. Equilibrium points
This subsection analyzes the equilibrium points of Eq. (3.1) as shown in the following theorem.

Theorem 3.1. The equilibrium points of Eq. (3.1) are x = 0 and x =
√

1+A
B .

Proof. The equilibrium points of Eq. (3.1) are given by

x =
x2

x
(
−A+Bx2) ,

which can be written as
x2 (−1 −A+Bx2) = 0.

Hence, x = 0 and x =
√

1+A
B .

Theorem 3.2. The equilibrium point x =
√

1+A
B is unstable.

Proof. Let F be a function defined on I3 by

F (u, v,w) =
uw

v (−A+Buw)
, (3.2)

where I ⊆ R, such that 0 ∈ I and F(I3) ⊆ I. Hence,

Fu (u, v,w) =
−Aw

v (−A+Buw)2 , Fv (u, v,w) =
−uw

v2 (−A+Buw)
, Fw (u, v,w) =

−Au

v (−A+Buw)2 .
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Evaluating these derivatives at the equilibrium point x =
√

1+A
B gives

Fu (x, x, x) =
−A(

−A+B x2)2 =
−A(

−A+B
(1+A
B

))2 = −A = p1,

Fv (x, x, x) =
− x2

x2 (−A+Bx2) =
− 1(

−A+B
(1+A
B

)) = −1 = p2,

Fw (x, x, x) =
−Ax

x
(
−A+Bx2)2 =

−A(
−A+B

(1+A
B

))2 = −A = p3.

Then, the linearized equation of Eq. (3.1) about x =
√

1+A
B is given by

ym+1 − p1ym−1 − p2ym−5 − p3ym−7 = 0.

Or,

ym+1 +Aym−1 + ym−5 +Aym−7 = 0.

According to Theorem 2.1, the stability occurs if

|p1|+ |p2|+ |p3| < 1.

Therefore,
|A|+ |−1|+ |A| < 1.

This leads to A < 0, which contradicts the fact that A > 0.

Theorem 3.3. If A > 3, then the equilibrium point x = 0 is asymptotically stable.

Proof. From Eq. (3.2) and its derivatives, we have

Fu (x, x, x) = −
1
A

, Fv (x, x, x) =
1
A

, Fw (x, x, x) = −
1
A

.

The linearized equation of Eq. (3.1) about x = 0 is given by

ym+1 +
1
A
ym−1 −

1
A
ym−5 +

1
A
ym−7 = 0.

According to Theorem 2.1, the stability occurs if∣∣∣∣ 1
A

∣∣∣∣+ ∣∣∣∣− 1
A

∣∣∣∣+ ∣∣∣∣ 1
A

∣∣∣∣ < 1.

This leads to A > 3.

3.2. Qualitative behavior of solution of xm+1 = xm−1xm−7
xm−5(−1+xm−1xm−7)

In this subsection, we discuss the solutions of the following difference equation:

xm+1 =
xm−1xm−7

xm−5 (−1 + xm−1xm−7)
, (3.3)

where the initial conditions x−7, x−6, x−5, x−4, x−3, x−2, x−1, and x0 are arbitrary real numbers.
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Theorem 3.4. Let {xm}
∞
m=−7 , be a solution of Eq. (3.3). Then, for m = 0, 1, 2, . . . , we have

x12m−7 =
α

(αµ− 1)m
, x12m−6 =

β

(βτ− 1)m
,

x12m−5 = γ (αµ− 1)m , x12m−4 = δ (βτ− 1)m ,

x12m−3 =
η

(αµ− 1)m
, x12m−2 =

κ

(βτ− 1)m
,

x12m−1 = µ (αµ− 1)m , x12m = τ (βτ− 1)m ,

x12m+1 =
αµ

γ (αµ− 1)m+1 , x12m+2 =
βτ

δ (βτ− 1)m+1 ,

x12m+3 =
αµ (αµ− 1)m

η
, x12m+4 =

βτ (βτ− 1)m

κ
,

where x−7 = α, x−6 = β, x−5 = γ, x−4 = δ, x−3 = η, x−2 = κ, x−1 = µ, and x0 = τ.

Proof. For m = 0, the result holds. Now, we assume that m > 0 and that our assumption holds for m− 1.
That is,

x12m−19 =
α

(αµ− 1)m−1 , x12m−18 =
β

(βτ− 1)m−1 ,

x12m−17 = γ (αµ− 1)m−1 , x12m−16 = δ (βτ− 1)m−1 ,

x12m−15 =
η

(αµ− 1)m−1 , x12m−14 =
κ

(βτ− 1)m−1 ,

x12m−13 = µ (αµ− 1)m−1 , x12m−12 = τ (βτ− 1)m−1 ,

x12m−11 =
αµ

γ (αµ− 1)m
, x12m−10 =

βτ

δ (βτ− 1)m
,

x12m−9 =
αµ (αµ− 1)m−1

η
, x12m−8 =

βτ (βτ− 1)m−1

κ
.

Now, it follows from Eq. (3.3) that

x12m−7 =
x12m−9x12m−15

x12m−13 (−1 + x12m−9x12m−15)
,

x12m−7 =

(
αµ(αµ−1)m−1

η

)(
η

(αµ−1)m−1

)
µ (αµ− 1)m−1

(
−1 +

(
αµ(αµ−1)m−1

η

)(
η

(αµ−1)m−1

))
=

α

(αµ− 1)m−1 (−1 +αµ)
=

α

−(αµ+ 1)m−1 (αµ− 1)
=

α

(αµ− 1)m
.

Similarly, from Eq. (3.3), we have

x12m−5 =
x12m−7x12m−13

x12m−11 (−1 − x12m−7x12m−13)

=

(
α

(αµ−1)m

)(
µ (αµ− 1)m−1

)
αµ

γ(αµ−1)m

(
−1 +

(
α

(αµ−1)m

)(
µ (αµ− 1)m−1

))
=

1
αµ−1

1
γ(αµ−1)m

(
−1 + αµ

αµ−1

) =

1
αµ−1

1
γ(αµ−1)m

(
−αµ+1+αµ
αµ−1

) =
1
1

γ(αµ−1)m
= γ (αµ− 1)m .
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Theorem 3.5. Eq. (3.3) has a periodic solution of period twelve if and only if αµ = 2 and βτ = 2 and it will take
the form {

α,β,γ, δ,η, κ,µ, τ,
αµ

γ
,
βτ

δ
,
αµ

η
,
βτ

κ
,α,β,γ, δ,η, κ,µ, τ,

αµ

γ
,
βτ

δ
,
αµ

η
,
βτ

κ
, . . .
}

.

Proof. Assume that there exists a prime period twelve solution for Eq. (3.3) on the form

α,β,γ, δ,η, κ,µ, τ,
αµ

γ
,
βτ

δ
,
αµ

η
,
βτ

κ
,α,β,γ, δ,η, κ,µ, τ,

αµ

γ
,
βτ

δ
,
αµ

η
,
βτ

κ
, . . . .

Then, from Eq. (3.3), we obtain

x12m−7 = α =
α

(αµ− 1)m
, x12m−6 = β =

β

(βτ− 1)m
,

x12m−5 = γ = γ (αµ− 1)m , x12m−4 = δ = δ (βτ− 1)m ,

x12m−3 = η =
η

(αµ− 1)m
, x12m−2 = κ =

κ

(βτ− 1)m
,

x12m−1 = µ = µ (αµ− 1)m , x12m = τ = τ (βτ− 1)m ,

x12m+1 =
αµ

γ
=

αµ

γ (αµ− 1)m+1 , x12m+2 =
βτ

δ
=

βτ

δ (βτ− 1)m+1 ,

x12m+3 =
αµ

η
=
αµ (αµ− 1)m

η
, x12m+4 =

βτ

κ
=
βτ (βτ− 1)m

κ
.

Then, we can see that αµ = 2 and βτ = 2. Conversely, suppose that αµ = 2 and βτ = 2 . Then we can see
that,

x12m−7 =
α

(αµ− 1)m
=

α

(2 − 1)m
= α, x12m−6 =

β

(βτ− 1)m
=

β

(2 − 1)m
= β,

x12m−5 = γ (αµ− 1)m = γ (2 − 1)m = γ, x12m−4 = δ (βτ− 1)m = δ (2 − 1)m = δ,

x12m−3 =
η

(αµ− 1)m
=

η

(2 − 1)m
= η, x12m−2 =

κ

(βτ− 1)m
=

κ

(2 − 1)m
= κ,

x12m−1 = µ (αµ− 1)m = µ (2 − 1)m = µ, x12m = τ (βτ− 1)m = τ (2 − 1)m = τ,

x12m+1 =
αµ

γ (αµ− 1)m+1 =
αµ

γ (2 − 1)m+1 =
αµ

γ
, x12m+2 =

βτ

δ (βτ− 1)m+1 =
βτ

δ (2 − 1)m+1 =
βτ

δ
,

x12m+3 =
αµ (αµ− 1)m

η
=
αµ (2 − 1)m

η
=
αµ

η
, x12m+4 =

βτ (βτ− 1)m

κ
=
βτ (2 − 1)m

κ
=
βτ

κ
.

4. Qualitative behaviors of xm+1 = xm−1xm−7
xm−5(A−Bxm−1xm−7)

In this section, we explore the qualitative properties of the following difference equation

xm+1 =
xm−1xm−7

xm−5 (A−Bxm−1xm−7)
, (4.1)

where the initial conditions x−7, x−6, x−5, x−4, x−3, x−2, x−1, and x0 are arbitrary real numbers with
x−1x−7 6= −1 and x0x−6 6= −1.
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4.1. Equilibrium points and local stability
This subsection is devoted to investigate the equilibrium points and the local stability of Eq. (4.1).

Theorem 4.1. The equilibrium points of Eq. (4.1) are x = 0 and x =
√
A−1
B .

Proof. The equilibrium points of Eq. (4.1) are given by

x =
x2

x
(
A−Bx2) .

Thus,
x2 (−1 +A−Bx2) = 0.

Hence, x = 0 and x =
√
A−1
B ,A > 1.

Theorem 4.2. The equilibrium point x =
√
A−1
B is unstable.

Proof. Suppose that G is a function defined on I3 by

G (u, v,w) =
uw

v (A−Buw)
,

where I ⊆ R, such that 0 ∈ I and G(I3) ⊆ I. Then,

Gu (u, v,w) =
Aw

v (A−Buw)2 , Gv (u, v,w) =
−uw

v2 (A−Buw)
, Gw (u, v,w) =

Au

v (A−Buw)2 .

Calculating these derivatives at the equilibrium point x =
√
A−1
B , leads to

Gu (x, x, x) =
A(

A−B x2)2 =
A(

A−B
(
A−1
B

))2 = A = p1,

Gv (x, x, x) =
− x2

x2 (A−Bx2) =
− 1(

A−B
(
A−1
B

)) = −1 = p2,

Gw (x, x, x) =
Ax

x
(
A−Bx2)2 =

A(
A−B

(
A−1
B

))2 = A = p3.

The linearized equation of Eq. (4.1) about x =
√
A−1
B can be expressed as

ym+1 − p1ym−1 − p2ym−5 − p3ym−7 = 0.

Or,
ym+1 −Aym−1 + ym−5 −Aym−7 = 0.

According to Theorem 2.1, the stability occurs if

|p1|+ |p2|+ |p3| < 1.

That is
|A|+ |−1|+ |A| < 1,

which gives A < 0. However, this result contradicts the fact that A > 1.

Theorem 4.3. If A > 3, then the equilibrium point x = 0 is asymptotically stable.

Proof. The proof is similar to the proof of Theorem 3.3.
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4.2. Solutions of xm+1 = xm−1xm−7
xm−5(1−xm−1xm−7)

We now introduce the exact solutions of the following difference equation:

xm+1 =
xm−1xm−7

xm−5 (1 − xm−1xm−7)
, (4.2)

where the initial conditions x−7, x−6, x−5, x−4, x−3, x−2, x−1, and x0 are arbitrary real numbers.

Theorem 4.4. Let {xm}
∞
m=−7 , be a solution to Eq. (4.2). Then, for m = 0, 1, 2, . . . , we have

x12m−7 = α

m−1∏
j=0

(1 − 6jαµ)
(1 − (6j+ 3)αµ)

, x12m−6 = β

m−1∏
j=0

(1 − 6jβτ)
(1 − (6j+ 3)βτ)

,

x12m−5 = γ

m−1∏
j=0

(1 − (6j+ 1)αµ)
(1 − (6j+ 4)αµ)

, x12m−4 = δ

m−1∏
j=0

(1 − (6j+ 1)βτ)
(1 − (6j+ 4)βτ)

,

x12m−3 = η

m−1∏
j=0

(1 − (6j+ 2)αµ)
(1 − (6j+ 5)αµ)

, x12m−2 = κ

m−1∏
j=0

(1 − (6j+ 2)βτ)
(1 − (6j+ 5)βτ)

,

x12m−1 = µ

m−1∏
j=0

(1 − (6j+ 3)αµ)
(1 − (6j+ 6)αµ)

, x12m = τ

m−1∏
j=0

(1 − (6j+ 3)βτ)
(1 − (6j+ 6)βτ)

,

x12m+1 =
αµ

γ (1 −αµ)

m−1∏
j=0

(1 − (6j+ 4)αµ)
(1 − (6j+ 7)αµ)

, x12m+2 =
βτ

δ (1 −βτ)

m−1∏
j=0

(1 − (6j+ 4)βτ)
(1 − (6j+ 7)βτ)

,

x12m+3 =
αµ

η (1 − 2αµ)

m−1∏
j=0

(1 − (6j+ 5)αµ)
(1 − (6j+ 8)αµ)

, x12m+4 =
βτ

κ (1 − 2βτ)

m−1∏
j=0

(1 − (6j+ 5)βτ)
(1 − (6j+ 8)βτ)

,

where x−7 = α, x−6 = β, x−5 = γ, x−4 = δ, x−3 = η, x−2 = κ, x−1 = µ, and x0 = τ.

Proof. For m = 0, the solutions hold. Next, we suppose that m > 0 and that our assumption holds for
m− 1. That is,

x12m−19 = α

m−2∏
j=0

(1 − 6jαµ)
(1 − (6j+ 3)αµ)

, x12m−18 = β

m−2∏
j=0

(1 − 6jβτ)
(1 − (6j+ 3)βτ)

,

x12m−17 = γ

m−2∏
j=0

(1 − (6j+ 1)αµ)
(1 − (6j+ 4)αµ)

, x12m−16 = δ

m−2∏
j=0

(1 − (6j+ 1)βτ)
(1 − (6j+ 4)βτ)

,

x12m−15 = η

m−2∏
j=0

(1 − (6j+ 2)αµ)
(1 − (6j+ 5)αµ)

, x12m−14 = κ

m−2∏
j=0

(1 − (6j+ 2)βτ)
(1 − (6j+ 5)βτ)

,

x12m−13 = µ

m−2∏
j=0

(1 − (6j+ 3)αµ)
(1 − (6j+ 6)αµ)

, x12m−12 = τ

m−2∏
j=0

(1 − (6j+ 3)βτ)
(1 − (6j+ 6)βτ)

,

x12m−11 =
αµ

γ (1 −αµ)

m−2∏
j=0

(1 − (6j+ 4)αµ)
(1 − (6j+ 7)αµ)

, x12m−10 =
βτ

δ (1 −βτ)

m−2∏
j=0

(1 − (6j+ 4)βτ)
(1 − (6j+ 7)βτ)

,

x12m−9 =
αµ

η (1 − 2αµ)

m−2∏
j=0

(1 − (6j+ 5)αµ)
(1 − (6j+ 8)αµ)

, x12m−8 =
βτ

κ (1 − 2βτ)

m−2∏
j=0

(1 − (6j+ 5)βτ)
(1 − (6j+ 8)βτ)

.
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Eq. (4.2) leads to

x12m−7 =
x12m−9x12m−15

x12m−13(1−x12m−9x12m−15)

=

 αµ
η(1−2αµ)

m−2∏
j=0

(1−(6j+5)αµ)
(1−(6j+8)αµ)

ηm−2∏
j=0

(1−(6j+2)αµ)
(1−(6j+5)αµ)


µ

m−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ)

1 −

 αµ
η(1−2αµ)

m−2∏
j=0

(1−(6j+5)αµ)
(1−(6j+8)αµ)

ηm−2∏
j=0

(1−(6j+2)αµ)
(1−(6j+5)αµ)



=

α
(1−2αµ)

m−2∏
j=0

(1−(6j+2)αµ)
(1−(6j+8)αµ)

m−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ)

1 − αµ
(1−2αµ)

m−2∏
j=0

(1−(6j+2)αµ)
(1−(6j+8)αµ)


=

α(1−2αµ)(1−8αµ)···(1−(6m−10)αµ)
(1−2αµ)(1−8αµ)(1−14αµ)···(1−(6m−4)αµ)

m−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ)

[
1 − αµ

(1−2αµ)
(1−2αµ)(1−8αµ)···(1−(6m−10)αµ)
(1−8αµ)(1−14αµ)···(1−(6m−4)αµ)

]
=

α
1−(6m−4)αµ

m−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ)

[
1 − αµ

1−(6m−4)αµ

]

=

α
1−(6m−4)αµ

m−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ)

[
1−(6m−4)αµ−αµ

1−(6m−4)αµ

] =
α

m−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ) [1 − (6m− 3)αµ]

=
α

1 − (6m− 3)αµ

m−2∏
j=0

(1 − (6j+ 6)αµ)
(1 − (6j+ 3)αµ)

= α

m−1∏
j=0

(1 − 6jαµ)
(1 − (6j+ 3)αµ)

.

Moreover, from Eq. (4.2), we have

x12m−5 =
x12m−7x12m−13

x12m−11 (1 − x12m−7x12m−13)

=

αm−1∏
j=0

(1−6jαµ)
(1−(6j+3)αµ)

µm−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ)


αµ

γ(1−αµ)

m−2∏
j=0

(1−(6j+4)αµ)
(1−(6j+7)αµ)

1 −

αm−1∏
j=0

(1−6jαµ)
(1−(6j+3)αµ)

µm−2∏
j=0

(1−(6j+3)αµ)
(1−(6j+6)αµ)



=

m−1∏
j=0

1
(1−(6j+3)αµ)

m−2∏
j=0

(1 − (6j+ 3)αµ)

1
γ(1−αµ)

m−2∏
j=0

(1−(6j+4)αµ)
(1−(6j+7)αµ)

1 −αµ

m−1∏
j=0

1
(1−(6j+3)αµ)

m−2∏
j=0

(1 − (6j+ 3)αµ)
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=

1
1−(6m−3)αµ

1
γ(1−αµ)

m−2∏
j=0

(1−(6j+4)αµ)
(1−(6j+7)αµ)

[
1 − αµ

1−(6m−3)αµ

]

=

1
1+(6m−3)αµ

1
γ(1−αµ)

m−2∏
j=0

(1−(6j+4)αµ)
(1−(6j+7)αµ)

[
1−(6m−3)αµ−αµ

1−(6m−3)αµ

]
=

1

1
γ(1−αµ)

m−2∏
j=0

(1−(6j+4)αµ)
(1−(6j+7)αµ) [1 − (6m− 2)αµ]

=
γ (1 −αµ)

1 − (6m− 2)αµ

m−2∏
j=0

(1 − (6j+ 7)αµ)
(1 − (6j+ 4)αµ)

= γ

m−1∏
j=0

(1 − (6j+ 1)αµ)
(1 − (6j+ 4)αµ)

.

5. Numerical examples

The obtained results are plotted in this section. We select the parameters according to the above-
mentioned conditions.

Example 5.1. Figure 1 illustrates a stable solution for Eq. (3.1) about x = 0 and under the conditions
A = 5, B = 1, x−7 = −2, x−6 = 2, x−5 = −1, x−4 = 1, x−3 = −1.5, x−2 = 1.5, x−1 = −2, and x0 = 2.

0 20 40 60 80 100 120 140 160 180 200

n

-3
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0

1

2

3

x
(n

)

Stable solution

Figure 1: Stable solution for Eq. (3.1).

Example 5.2. Figure 2 shows an unstable solution for Eq. (3.1) under the conditions A = 1, B = 1, x−7 =
−2, x−6 = 2, x−5 = −1, x−4 = 1, x−3 = −1.5, x−2 = 1.5, x−1 = −2, and x0 = 2.
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Unstable solution

Figure 2: Unstable solution for Eq. (3.1).

Example 5.3. Figure 3 shows a periodic solution for Eq. (3.3) according to the assumptions x−7 = 4, x−6 =
4, x−5 = 2, x−4 = 2, x−3 = 1, x−2 = 1, x−1 = 1, and x0 = 1.
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Periodicity

Figure 3: Periodic solution for Eq. (3.3).

Example 5.4. A stable solution for Eq. (4.1) about x = 0 and under the parameters A = 6, B = 1, x−7 =
2, x−6 = −2, x−5 = 1.5, x−4 = −1.5, x−3 = 1, x−2 = −1, x−1 = 2, and x0 = −2, is plotted in Figure 4.
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Figure 4: Stable solution for Eq. (4.1).

6. Conclusion

To sum up, we investigated the stability, periodicity and the solutions of Eqs. (3.1) and (4.1). In

Theorem 3.2, we showed that the equilibrium point x =
√

1+A
B is unstable while Theorem 3.3 presented

the asymptotic stability of the equilibrium point x = 0 which occurs if A > 3. We also investigated the
periodicity of Eq. (3.3) which has a periodic solution of period twelve if and only if αµ = 2 and βτ = 2.
Section 5 presented some 2D figures on the obtained results. For example, Figure 3 shows the periodic
solution of Eq. (3.3).
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[13] M. Garić-Demirović, M. Nurkanović, Z. Nurkanović, Stability, periodicity and Neimark-Sacker bifurcation of certain
homogeneous fractional difference equations, Int. J. Difference Equ., 12 (2017), 27–53. 1

[14] M. Ghazel, E. M. Elsayed, A. E. Matouk, A. M. Mousallam, Investigating dynamical behaviors of the difference equation
xn+1 = Cxn−5/(A+Bxn−2xn−5), J. Nonlinear Sci. Appl., 10 (2017), 4662–4679. 1
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