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Abstract

The main objective of this research is to find the numerical solution of variational inequalities involving quasimonotone
operators in infinite-dimensional real Hilbert spaces. The main advantage of these iterative schemes is that they allow the
uncomplicated calculation of step size rules that depend on the knowledge of an operator explanation instead of the Lipschitz
constant or some other line search method. The proposed iterative schemes follow a monotone and non-monotone step size
procedure based on mapping (operator) information as a replacement for its Lipschitz constant or some other line search
method. The strong convergences are well proven, analogous to the proposed methods, and impose certain control specification
conditions. Finally, to verify the effectiveness of the iterative methods, we present some numerical experiments.
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1. Introduction

The main objective of this paper is to investigate the iterative methods used to estimate the solution
to the variational inequality problem [26] in a real Hilbert space involving quasimonotone operators.
Assume that I is a real Hilbert space and A is a nonempty, closed, and convex subset of Z. Consider the
operator ¥ : £ — X. The variational inequality problem for ¥ on A is defined in the following manner:

Find w* € A such that (Y(w*),y—w*) >0, Vy € A. (VIP)

The mathematical model of the variational inequality problem is a key problem in nonlinear analysis.
It is a significant mathematical model that unifies a number of crucial concepts in applied mathemat-
ics, such as a nonlinear system of equations, optimization conditions for problems with the optimization
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process, complementarity problems, network equilibrium problems, and finance (see for more details
[13, 15-18]). As a consequence, this notion has various applications in the fields of mathematical pro-
gramming, engineering, transport analysis, network economics, game theory, and computer science. The
regularized method and the projection method are two prominent and general procedures for finding
a solution to variational inequalities. It is also noted that the first approach is most commonly used to
deal with the variational inequalities accompanied by the class of monotone operators. The regularized
sub-problem in this method is strongly monotone, and its unique solution is found more conveniently
than the initial problem. In this study, we discuss the projection methods that are well known for their
simpler numerical computing. In addition, projection methods are useful for approximating the numer-
ical solution of variational inequalities. Many researchers have developed various projection methods
to solve such problems (see for more details [4, 6, 7, 10, 11, 14, 19, 22, 24, 28, 35, 36, 39]) and others in
[3,5,8,9, 12, 20, 23, 25, 29-33, 37, 38, 40]. Almost all methods for solving the problem (VIP) are based
on the computation of a projection on the feasible set A. Korpelevich [19] and Antipin [1] introduced the
following extragradient method. Their method takes the following form:

u € A,
Yn = Palun — %T(un)]/ (11)
Un41 = Palun — %Y(yn)]/

where 0 < » < L. Given the above method, we have used two projections on the underlying set A for

each iteration. This, of course, can affect the computational effectiveness of the method if the feasible set
A has a complicated structure. Here, we present some methods that can overcome this drawback. The
first is the following subgradient extragradient method introduced by Censor et al. [10]. This method
takes the following form:

u € A,

Yn = Palun — 2V (un)l,

Un41 = PZn [un — %’Y(yn)]/

where 0 < 5 < £ and
In={zeX:(un—»Y(un)—Yn,z—yn) <0}

In this article, our main focus on the Tseng’s extragradient method [28] that uses only one projection
for each iteration. This method takes the following form:

u; € A,
Yn = PA[un - %’Y(un)}/
Un41 =Yn + %[Y(un) - Y(yn)]/

where 0 < 5 < L. It is important to note that the above-mentioned methods have two major flaws: a fixed
constant step size rule that is dependent on the Lipschitz constant of mapping and generates a weakly
convergent iterative sequence. The Lipschitz constant is generally unknown or difficult to compute. From
a computational point of view, it can be difficult to consider a fixed step size constraint that affects the
method’s efficiency and rate of convergence. In addition, the study of a strongly convergent iterative
sequence is important in the context of an infinite-dimensional Hilbert space.

A natural question has been raised:

“Is it possible to introduce new strongly convergent Tseng’s extragradient-type method by using a monotonic and
non-monotonic variable step size rule to solve variational inequalities involving quasimonotone operator?

This research aims to explore variational inequalities involving quasimonotone operators in infinite-
dimensional Hilbert spaces. Furthermore, to show that the iterative sequences generated by all four sub-
gradient extragradient algorithms strongly converge to a solution. Both the monotone and non-monotone
variable step size rules are used in subgradient and extragradient algorithms. The investigation of inertial
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algorithms is also presented, which usually improves the efficiency of the iterative sequence. The pa-
per’s key contribution is to investigate explicit monotone and non-monotone step size rules with inertial
schemes and achieve strong convergence.

The paper is arranged in the following way. In Sect. 2, preliminary results were presented. Sect. 3
gives all new algorithms and their convergence analysis. Finally, Sect. 4 gives some numerical results to
explain the practical efficiency of the proposed methods.

2. Preliminaries

This section contains a number of important identities and relevant lemmas. For any u,y € L, we have
lu+yl? = [lul® + 20, y) + [yl >
A metric projection Pa(y1) of y; € X is defined by

Pa(y1) = argmin{|ly; —ya2/ : y2 € AL

First, we list some of the important identities of projection mapping and others.

Lemma 2.1 ([2]). Let Pa : £ — A be a metric projection. For any yi1,Yz,y3 € X and { € R, then, the following
inequalities are hold:

(i) y3 = Paly1) if and only if
(Y1—y3,Yy2—y3) <0, Yys € A,

(ii)
ly1 —Pa2) I+ IPa(y2) —val® < ly1 — vl vi € Ay2 € 5
(i)
lyr =Palu)ll < lvi—v2ll, y2€ Ay €L
(iv)
10y + (1= Qyal* = Cyal* + (1= O)ffyal* — (1 = O] [y1 — 2|
(v)

1 + 201 < [yl +2(y2, y1 +y2)-
Lemma 2.2 ([34]). Let {en} C [0, 400) be a sequence satisfies the following condition

ent1 < (1—frlen +fngn, VN € N.

In addition, two sequences {fn} C (0,1) and {gn} C R satisfy the following conditions:

+00
Iim f, =0, Z fn = +o0 and limsup gn < 0.

n=+oo oy n—+00
Then, limy,_, o en = 0.
Lemma 2.3 ([21]). Let {en} C R be a sequence and there exists a subsequence {n} of {n} such that
en; <eng,, Vi€ N.
Then, there exists a nondecreasing sequence my. C IN such that my — 400 as k — +oo, with

em, <em,,, and ex<em,,,, VkeN.

Indeed, my, = max{j < k:ej < ejy1}.
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3. Main results

In this section, we propose a class of iterative algorithms based on Tseng’s extragradient method for
solving quasimonotone variational inequalities. The methods are all described in detail in the following
text. The following conditions are assumed to be met in order to confirm the strong convergence.

(Y1) The solution set for problem (VIP) is denoted by VI(A,Y) is nonempty.
(Y2) An operator Y : L — L is said to be quasimonotone if
(Y(u)y—u)>0= (T(y),y—u) >0, Yu,y € A.
(Y3) An operator Y : L — L is said to be Lipschitz continuous if there exists a constant L > 0 such that
(W) =YWl < Lu—yl, Yuy €A
(Y4) An operator Y : £ — X is sequentially weakly continuous if {Y(un )} weakly converges to Y'(u) for every
sequence {un } weakly converges to u.

Now, we are in a position to propose a new variant of the extragradient method to solve quasimono-
tone variational inequalities in real Hilbert spaces and prove a strong convergence result for the proposed
method.

Algorithm 1 (Halpern extragradient method with fixed step size rule)

STEP 0: Letu; € A, 0< 2 < % and {9} C (0, 1) meet the following conditions:

“+o00
ngrﬂooﬁn =0 and Z I = +oo.
n=1
STEP 1: Compute
Yn = PA(un - %Y(un))-

If up, =yn, STOP. Otherwise, go to STEP 2.
STEP 2: Compute
Zn =Yn + %[Y(un) - Y(yn)] .

STEP 3: Compute
Un1 = O + (1 —On)zn.

Set n :=n+ 1 and go back to STEP 1.

Lemma 3.1. Suppose that Y : L — X satisfies the conditions (Y1)-(Y4) and sequence {u,, } generated by Algorithm

1. Then, we have . 2
e = "I € =" = (1= 2 .

Proof. Since w* € VI(A,Y), we have
st = @™ 7 = [lyn + T (un) = Ylyn)] - 0"

= Jlyn — @*[* + 52| ¥ (wn) = Y(yn) | + 25efyn — w*, Y (un) = Y(yn))

= [[yn +un —un — 0* | + 5[V (wn) = Y(yn) ||* +25(yn — 0%, T(un) = Y(yn))

= Jlyn —un|* + [[un — @*||* +2(yn — tn, un — @*) 3.1)
+ 52V (un) = Y(yn) || + 2eyn — 0%, Y(un) = Y(yn))

= [[un — @*[* + lyn = tn > +2(yn — tn, yn — @*) + 2(yn — Un, Un —yn)
+ 52V (un) = Y(yn) [ + 2eyn — 0%, Y(un) = Y(yn)).

It is given that yn = Palun — Y (uy )] and it gives that
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(Un — Y (Un) —yn,y—yn) <0, Vy € A.

Thus, we have

(Un —Yn, 0" —yn) < 2(V(un), w" —yn). (3.2)

Combining expressions (3.1) and (3.2), we have
[unn — @ |* < [un — 0* |+ [Jyn — un | + 25V (Un), @* —yn) — 2(un — Yn, Un —Yn)
52 () = Py [[* =252 (wn) = Y (yn), 0" —yn) (3.3)
= [ftm =@ = fftom =y 2wt ) = Ylym)[F = 220 () yn — ).
It is given that w* is the solution of the problem (VIP) implies that
(Y(w*),y—w*) >0, Vy € A.

It implies that
(Y(y),y—w*) >0, Vy € A.

By substituting y = yn € A, we have
(Y(yn), yn —w™) > 0. (3.4)
From expressions (3.3) and (3.4), we obtain
n = @[ < [ — @[ = [fun = yn|* + 2L s~y
= [Jun =@ |* = (1 =520%) un —ya||" -

Next, we introduce a variant of Algorithm 1 in which the constant step size s is chosen adaptively
and thus produced a sequence s, that does not require the knowledge of the Lipschitz-type constants L.

Algorithm 2 (Monotonic explicit Halpern extragradient method with variable step size rule)
STEP 0: Let u; € A, 511 >0, x € (0,1) and {9} C (0, 1) meet the following conditions:

“+o00
ngrﬂoof}n =0 and Zlﬁn = +00.
n—=

STEP 1: Compute
Yn = Pa(un —2n Y (un)).

If uy, =yn, STOP. Otherwise, go to STEP 2.
STEP 2: Compute

Zn =Yn + [Y(un) - Y(yn)] .

STEP 3: Compute un 1 = Iy + (1 — 9 )zn.
STEP 4: Compute

i _Xlun—ynll 1 ey -Y 0
ey = {mll’l{%n, Y (un)—Y (yn) ] }/ if V'(un) (yn) #0, (3.5)

Mn, otherwise.

Set n:=n+1 and go back to STEP 1.

Lemma 3.2. The sequence {sn } generated by (3.5) is decreasing monotonically and converges to » > 0.
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Proof. 1t is given that Y is Lipschitz-continuous with constant L > 0. Let Y(uy,) # Y(yn) such that

X/[un — yn| S X/[un — yn|| s X
1V (un) =Y (yn)| Lun —ynl L

The above expression implies that limy, o 50 = 5. O

Now, we propose a second variant of the first method to solve quasimonotone variational inequalities
in real Hilbert spaces and prove a strong convergence result for the proposed method. The second method
involves a non-monotonic self-adaptive step rule to make the method independent of the Lipschitz con-
stant. The second method is written as follows.

Algorithm 3 (Non-monotonic explicit Halpern extragradient method with variable step size rule)

STEP 0: Let u; € A, 51 > 0, x € (0,1) and sequence {¢n} satisfying Z:iol @n < +o0o. Moreover,
{On} C (0,1) satisfying the following conditions:

+o0o
ngrﬂoo ¥, =0 and Z I = 0.
n=1
STEP 1: Compute
Yn = PA(un - %nY(un))-

If un =yn, STOP. Otherwise, go to STEP 2.
STEP 2: Compute zn, = Yn + 20 [V (un) — V(yn)].
STEP 3: Compute un 1 = dnug + (1 —9n)zn.
STEP 4: Compute

min {en + @n, ol i V() - Y 0,
g = {”ﬂ P ¥ () ¥ (T ( “.) (yn) # (3.6)
»n + ©On, otherwise.
Set n :=n+1 and go back to STEP 1.
Lemma 3.3. A sequence {se, } generated by (3.6) is convergent to s and satisfying the following inequality
400
min{x,m} < <2 +P where P= Z On.
L
n=1
Proof. 1t is given that Y is Lipschitz-continuous with constant L > 0. Let Y(un) # Y(yn) such that
Xllun —yn|| S Xllun —ynll S X
M (un) =Yyn) |~ Hun =yl = L
By using mathematical induction on the definition of sz, 1, we have
)X
mm{L,%l} < <2+ P
Let [ 11 — 0]t = max {0, Ml — %n} and [, 11 — »#n]~ = max {O, —(stni1— %n)}. From the definition

of {5t }, we have
“+o00

“+o00
Z(%“H — )t = Z max {O, M1 — %n} <P < +o0.
n=1

n=1
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“+o00 +00
That is, the series Z (36041 — 5 )" is convergent. Next, we need to prove the convergence of Z (stn41—
n=1 n=1
+o00
»#n )" . Let Z (#n41— #n)” = +o00. Due to the reason that sc 1 — 30 = (3041 — 2n) " — (seng1 — ),
n=1
thus, we have
k k k
1= =) (g1 —sm) =) a1 —sm)t =D (g1 — ) (3.7)
n=0 n=0 n=0

By allowing k — +o0 in (3.7), we have s — —oo as k — +oo. This is a contradiction. Due to the

k k
convergence of the series Z (%41 — sn) " and Z(%nH — »n)~ taking k — 400 in (3.7), we obtain
n=0 n=0
limp 4 o 5n = 22. This completes the proof. O

Lemma 3.4. Assume that Y : L — ¥ satisfies the conditions (Y1)-(Y4). Let {un} be a sequence generated by
Algorithms 2 and 3. For each w* € VI(A,Y), we have

%2
T e O e T
n+1

Proof. Let w* € VI(A,Y) and by definition of u, 41, we have

1 = @™ [[* = [Jyn + 26 [V (1n) = Y(yn)) — 0|

= [lyn — @*[* + 52 [V (un) = Y(yn) [|* + 250 (Yn — ", Y (n) = V(yn))

= Jyn +un —tn — @* | 452 (n) = Y (yn) P + 25 (Yn — @*, V(tn) — Y(yn))

= [[yn —wn]|* + [[un — @*|* + 2(yn — wn, un — w*) (38)
+ 52V (un) = V(yn)||* + 25 (yn — 0%, V(tn) = V(yn))

= [[un = @[+ [[yn = wn||* + 2(yn — U, Yn — @) + 2{yn — Un, Un — Ya)
+ 52V (wn) = Y (yn)||* + 25 (yn — 0%, V() = V(yn)).

It is given that yn = Palun — 56, Y (uy )] and it further implies that
(Un — 2 Y (Un) —Yn,y —yn) <0, Vy € A

Moreover, equivalently for some w* € VI(A,Y), we can write

<un —Yn, w* _Un> < %n<Y(un)/ w* _yn>- (39)
Combining expressions (3.8) and (3.9), we have
|[uns1 — w* H2 < JJun — w* H2 +||un —unHz + 2500 (Y(un), w* —yn) —2(Un —Yn,Un —Yn)
52 P (n) = Y(yn)[|* = 25 (Y (un) = Y (yn), w* —ya) (3.10)
= [un = @ [" = [[uon = yn | + 2P () = Y yn)[[* = 2500 (YY), yn — @)

It is given that w* is the solution of the problem (VIP) implying that

(Y(w*),y—w*) >0, Vy € A.
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Due to the property of Y on A, we obtain
(Y(y),y—w*) >0, Vy € A.

Substituting y = yn € A, we have
(Y(yn),yn —w™) > 0. (3.11)

Combining expressions (3.10) and (3.11) we obtain

2
s =0 [ < [t =" = o 22 =
Vs
n+1
o 4k 2_ 2 %121 o 2
= an =P (128 2

O

Lemma 3.5. Let Y : ¥ — X be an operator satisfying the conditions (Y1)—(Y4). If there exists a subsequence {un, }
weakly convergent to (L and limy_, | o ||Un, —Yn, || =0, then, . € VI(A,Y).

Proof. Since {un, } is weakly convergent to 0t and due to limy_, 4 ||un, —Yn,|| = O, the sequence {yn,}
also is weakly convergent to {i. Next, we need to prove that it € VI(A,Y). By value of y,, we have

Unk = PA [unk - %nkY(unk)]

that is equivalent to
<unk - %nkY(unk) —Yn s Y _yﬂ.k> < 0/ VU €A.

The above inequality implies that
<uTLk ~Yn Y _ynk> < iy <T(unk)ry _Unk>r VU €A
Thus, we obtain

1

M,y

(Unye = Ynw Y —Yny) + (V) Ynge — Ung) < (V(uny ),y —uny), Yy € A (3.12)

By the use of limy_, 4 |[Un, —Yn,|| =0 and k — +o0 in expression (3.12), we have

liminf(Y(un, ),y —un,) >0, Vy € A.

k—+o00

Furthermore, it implies that

<T(ynk)1y _ynk> - <Y(Unk) - Y(unk)/y _unk> + <Y(Unk)/y _uTLk> + <Y(Unk)/unk _ynk>~ (313)
Since limy_, 1 o [[Un, —Yn, || =0, thus, we have

lim HY(unk) - Y(UTW)” =0, (314)

k—+o0

which together with expressions (3.13) and (3.14), we obtain

Liminf(Y(yn, ),y —Un,) =0, Yy € A.

k—+o0

Moreover, let us take a positive sequence {ey} that is decreasing and convergent to zero. For each {ey}
there exists a least positive integer denoted by my such that

(Y(un,),y—un,) +ex >0, Vi>my. (3.15)
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Since {ex} is decreasing sequence and it is easy to see that the sequence {my} is increasing. If there exists
a natural number Ny € IN such that for all Y(unmk) # 0, N, > Np. Consider that

I — M Vn >N
e P (P
Due to the above definition, we have
(P(tny )Ty ) =1, V1, = No. (3.16)

Moreover, from expressions (3.15) and (3.16) for all n,,, > Np, we have
(Y(unmk), y+ eanmk — unmk> > 0.
By the definition of quasimonotone, we have
(Y(y+exln,, ) y+exln, —un,)>0.
For all n,,, > No, we have
(YY), y—un, )= VY =Yy+exn, ) y+exln, —un, )—ex(Ty), M, ) (3.17)

Due to {un, } converges weakly to 1t € A with Y is weakly sequentially continuous on the set A we obtain
{Y(un, )} converges weakly to Y(11). Let V(1) # 0 implies that

N |
¥ (@) < liminf ¥ ()|

Since {unmk} C {un, tand limy_, » €x = 0, we have

. . € 0
0< Jim_lleenlI= Bm e 7 < ey =
By letting k — +o0 in (3.17), we obtain
(Y(y),y—10) >0, Vy € A. (3.18)
Let u € A be an arbitrary element and for 0 < > <1, let
U, = 2eu+ (1 — )0
Then 11,, € A and from (3.18) we have
(Y (), u—1) > 0.
Hence
(Y(f,.),u—1) > 0. (3.19)

Let >z — 0. Then 11, — 1 along a line segment. By the continuity of an operator, Y({L,.) converges to Y(11)
as » — 0. It follows from (3.19) that
(Y(0),u—1) > 0.

Therefore 11 is a solution of problem (VIP). O

Theorem 3.6. Assume that a sequence {un } generated by Algorithm 3 and w* € VI(A,Y). Then, {un} converges
strongly to w* = Pyia,v) ().
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Proof. Since >, — » there exists a positive number € € (0,1 —x?) such that

2,2
lim (1-%7) =1-x%>e>0.
n—+oo i

Thus, there exists a finite number n; € IN such that

2

(1);2%31) >e>0, Vn >n,.

n+1

Hence, by Lemma 3.4, we obtain
lzn — w*[* < [lun — w*|%, ¥n = ny. (3.20)
Since w* € VI(A,Y) and by the use of definition of {u, 41}, we have

HunH - w*H = Hﬁnul +(1—9%)zn — w*H

3.21
— [[9n s — "]+ (1= 8n)lzm — ]| < On [ — 0| + (1= 0p)|zn —*|. 2D

Combining expressions (3.20) with (3.21) and 9, C (0,1), we have

e e

@'} < max{|Ju —a —w'|l}.

Thus, we conclude that the {u,} is a bounded sequence. Next, we need to prove the strong convergence
of the iterative sequence {u, } generated by Algorithm 3. The Lipschitz continuity property indicates that
the solution set VI(A,Y) is a convex and closed set (see for details [27]). Let w* = Py y)(u1) and by
Lemma 2.1 (i) we have

< max{Hul —

(w —w*,y—w*) <0, Vy € VI(A,Y).

By using Lemma 2.1 (iv), we obtain

HunH - w*”2 = Hf}nul +(1—9)zn — w*”2

= [P s — T+ (1 =) zn — ]|

= fu —w* H2+ —On HZn—w ][2—19“(1—8“)”1”—2“”2
2%2

< Onflur — [P 4+ (1= 00) [Jun — @2 = (1= 557 ) fun =y ?]
n+1

— (1= 9n) |y — zn?

2,2

< Ot — @2+ fun = )2 = (1= 00) (1= 272 ) fun — yn
n+1

The above expression implies that
Xz%gl 2 * (12 * (12 * (|2
(1= 8n) (1= 57 ) Jun = yn 2 < Ol — 0P+ = ¥ P = Junin — |2 (3:22)
n+1

The remainder of the proof shall be splited into the following two parts.

Case 1: Assume that there exists a fixed number n, € IN such that

Iuntt— @) < Jun — w*ll, ¥n >,
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Thus, above implies that limy_s 4o [[un — w*|| exists and let limy,_,  « ||[un — w*|| = 1. From expression
(3.22) we have

X2
22

n+1

(1= 80) (1= 5570 ) utn = yn 2 < Ot — 2+t — @2 = [t 1 — 00" . (3.23)

By existence of limn_, { « ||un —w*|| =1 and 9, — 0, we can deduce that

ngrﬂoo [un —yn| =0.

Furthermore, we have
lzn —Ynll = [[yn + 2V (un) = Y(yn)l = yn|l < sLlun —ynl.
It follows that

nl_i}}}oo [un —zn|l < ngrﬂoo [un —ynl + nl_igrloo [yn —zn| =0. (3.24)

Furthermore, we obtain

Hun+1 _unH = ||19nu1 +(1—9n)zn _unH
= H{}n[ul —Un]+ (1 =9)[zn _un]H < 19'n.Hul _unH +(1 _Sn)HZn _unH-

It follows that

[t~ un ] =0,

Thus, the implies that the sequences {yn} and {zn} are bounded. Due to the reflexivity of ¥ and the
boundedness of {u,} guarantees that there exists a subsequence {uy, } such that {u,, } — 4t € L as k —
+o00. Next, we need to prove that (t € VI(A, ). By Lemma 3.4, it follows that @t € VI(A,Y). Next, consider
that

limsup(u; — w*, up —w*) =limsup(u; —w*, up, —w*) = (4 —w*, 44— w*) <0.
n—-+oo k—+o0

By the use of limn_, 4 HunH —Un H = 0, we may deduce that

lim sup(u; — w*, uny1 —w*) <limsup(u; — w*, upn 41 —un) +limsup(uy — w*, un —w*) <0.  (3.25)
n—-+o0o n—+oo n—+oo

By using Lemma 2.1 (v), we have
HunH —w H = Hﬁnul +(1—%)zn—w H
= [[9nlur — w*T+ (1= 9n)lzn — w*]H2
< (1 _1971)2“Zn —w* HZ + 2'8n<u1 —w*, (1 =) zn — W]+ 9wy — w*]> (3.26)
k 2 * *
= (1=9n)%[zn — @7+ 200 (0 — @*, Un 1 — @)
< (1—94) Hun —w* HZ + 207 (W — w*, up — w™).
From expressions (3.25), (3.26), and using Lemma 2.2, we may deduce that Hun —w* H —0asn — +oo.
Case 2: Assume that there exists a subsequence {n;} of {n} such that
tn, — @ < ng, — ", ¥i €N.

Thus, by Lemma 2.3, there exists a sequence {my} C IN as {my} — +o0, such that

[um, —w*|| < um,, —w*|| and |ux — ™| < [[um,,, —w*|, forall k € IN. (3.27)
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As similar to the Case 1, expression (3.23) provides that

2,2
X" #m,

(1= 0m) (1= S5 ) ity = Y 2 < Oy 11 = @07 [P+ utmy, — 2 = g1 — 0"

%gﬂ.k—kl
Due to 9, — 0, we deduce the following:

kl_ifﬂoo Humk _ymkH =0.
It follows that

Hka _ymkH = ||ymk + %[Y(umk) - Y(ymk)] _UmkH < %LHumk _Umk”'

Furthermore, we have

k1—i>r413<>o Humk - kaH < kl—iB;Ioo Humk _ymkH + k1—i>r£oo ||ymk _kaH =0.

Also, we can obtain
Humk+1 - umk H - H.STT‘Lkul + (1 - Smk)zmk - umk H

= H{}mk [ul _umk] + (]— _ﬁmk)[zmk _umk] H
<O ||wr = wmy ||+ (1 =9 ||zme — wmy || — 0.

We use the same argument as in Case 1, which is as follows:

limsup(u; — w*, Uy, 41 —w*) <0. (3.28)
k—+o0

Now, using expressions (3.26) and (3.27), we have

"umk+1 —w” H2 (1 _ﬁmk)Humk —w” HZ + Zﬁmk <u1 - w*/umk+l - w*>

NN

(1—9m,) HumkH —w"* Hz + 20, (W — W™, U, 41 — W),
It continues from that
Humkﬂ —w* H2 <2(w — W™, Uy 41 — W), (3.29)
Since 9, — 0 and ||y, — w*|| is bounded, thus, by expressions (3.28) and (3.29) we obtain
1 — w*|? = 0, as k — +oo.
It implies that

. 2 . 2
A e = @7 < lim i — @77 < 0.

Consequently, u, — w*. This completes the proof of the theorem. O

4. Numerical illustration

This section describes the numerical performance of the proposed algorithms, in contrast to some
related work in the literature, as well as the analysis of how variations in control parameters affect the
numerical effectiveness of the proposed algorithms. All computations are done in MATLAB R2018b and
run on HP i-5 Core(TM)i5-6200 8.00 GB (7.78 GB usable) RAM laptop.
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Example 4.1. Let £ = 1, be a real Hilbert space with with the sequences of real numbers satisfying the
following condition
[ a4 fun [ 4 - < oo

Assume that a mapping ¥V : A — A is defined by
Guw =0B-|uu, YVuesx,

where A = {u € X : |ju]| < 3}. We can easily see that V" is weakly sequentially continuous on X and the
solution set is VI(A, Y) ={0}. For any u,y € X, we have
7 (w) = Y@)|| = [|(5—luu— (5~ lylDy||
— |I5tu—y) - uuu w—y) - (| - iy

< 5wyl + lhulllw =yl + [l = [yl
<Sflu =yl +3fu =yl +3[u—y]
< Ml —yl.

Hence Y is L-Lipschitz continuous with L = 11. For any u,y € £, let (Y(u),y —u) > 0, such that
(5—[ul){(w,y —u) >0.

Since |[u|| < 3, it implies that
<u,y — u> > 0.

Consider that
(YY), y—u)=6-|ylh{yy—u)
> 65—yl {y,y—u)—5-[y{wy—u) >2u—y|* >0

Hence a mapping Y is quasimonotone on A. Let u = (%,O, 0,...,0,...)and y = (3,0,0,...,0,...) such that

(§ —3)3 <0.

(r(w) =Ty, u—y) = (3

Consider the following projection formula:

> Jw iffu <3
alu) = |\37u||' otherwise.

Figures 1-6 and Table 1 show numerical results. The control conditions are taken in the following
way: (i) Algorithm 1 (shortly, AlgOl)' » = 0L7,19 niz) Dy = [[un —uyl; (ii) Algorithm 2 (shortly,
Alg02): 5 =0.22,x =0.44,9,, = n+2) ,Dn = |[lun —yn||; (iii) Algorithm 3 (shortly, Alg03): ¢ = 0.22,x =

0.44, p, = (ng‘{)z,a = (nlﬂ),Dn = [[un — Ynl|-

Table 1: Numerical values for Example 4.1.

Number of iterations Execution time in seconds
ug Alg01 Alg02 Alg03 Alg01 Alg02 Alg03
(1,1,--- ,190000,0,0,---) 111 105 91 4.3553636  6.7229686 7.3973612
(1,2,---,10000,0,0,---) 124 100 87 6.2130909  9.4322004 6.7588432

(8,8, ,810000,0,0,---) 133 116 101 54634891 7.8256418 8.8856192
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Figure 1: Numerical illustration of Algorithms 1, 2, and 3 while u; = (1,1,...,110000,0,0,...).
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Elapsed time [sec]

Figure 2: Numerical illustration of Algorithms 1, 2, and 3 while vy = (1,1,..., 110000, 0,0,...).
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Figure 3: Numerical illustration of Algorithms 1, 2, and 3 while w; = (1,2,...,10000,0,0,...).
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Figure 4: Numerical illustration of Algorithms 1, 2, and 3 while u; = (1,2,
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Figure 5: Numerical illustration of Algorithms 1, 2, and 3 while u; = (8,8,
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Figure 6: Numerical illustration of Algorithms 1, 2, and 3 while u; = (8,8,

5. Conclusion

...,10000,0,0,...).

.++,810000,0,0,...).

.. .,810000,0, 0,. . )

To find a numerical solution to the quasimonotone variational inequality problems in real Hilbert
space, we have developed different modified extragradient-type methods. While following a different
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step size rule, all sequences generated by the proposed method are strongly convergent to the solution.
Numerical findings are summarized to demonstrate the numerical effectiveness of our algorithm in com-
parison to other proposed methods. These numerical studies have indicated that the variable step size
rule outperforms the fixed step size rule in most situations.
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