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Abstract 
In this paper, two important methods which apply for solving Fuzzy differential equations 
are compared. These methods are: 
1. Zadeh extension principal  
2. Standard Euler method 
The methods are compared by numerical examples.Also in each  case  by approximating the 
errors,the converges of the methods will be considered. 

The results are shown in tables and figures. 
 
Keywords: Fuzzy differential equations, Zadeh’s extension, Euler method.  
 
 

1. Introduction 
In 1972, Chang and Zadeh [27] first introduced the concept of fuzzy derivative, followed up ten years 

later by Dubois and Prade [28], who used the extension principle in their approach. 
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This paper is organized as follows: in Section 2, we recall some basic definitions and theoretical 
background that we need throughout this paper. 

In section 3 we define the problem, this is a fuzzy Cauchy problem [11,9] whose numerical solution is 
the main interest of this work and we apply the standard Euler method for systems [1,7,8,13] followed by 
a complete error analysis and show that the numerical solution converges to the unique solution. 

In section 4, we study FDE where the fuzzy function is obtained via Zadeh’s extension principle. We get 
a fuzzy solution for this class of  FDE[2,4]. 

In section 5, the mentioned method has been applied to two examples , finally we compare these two 
methods with each other. 
 

 2. Preliminaries 
In this following the most basic notations used in fuzzy calculus are introduced. We start by defining 

the fuzzy number. 
 

 

 Definition 2.1 
A fuzzy number is a fuzzy set u ∶  R1  →  I =  [0, 1]  which satisfies 
i. u is upper semicontinuous. 
ii. u(x)  = 0 outside some interval [c, d]. 
iii. There are real numbers a,b:     c ≤ a ≤ b ≤ d   for which 
 
1. u(x) is monotonic increasing on [c, a], 
2. u(x) is monotonic decreasing on [b, d], 
3.u(x) =  1      ,      a ≤ x ≤ b 
The set of all the fuzzy numbers (as given by Definition 2.1) is denoted by  E1 . 
An alternative definition which yields the same E1  is given by Kaleva [21]. 

 
Definition 2.2 
 Let U be a fuzzy set on R [4]. U is called a fuzzy interval if: 
(i) U is normal: there exists x0 ∈ R such that U(x0)  =  1; 
(ii) U is convex: for all x , t ∈ R and  0 ≤ λ ≤ 1, it holds that 

U λx +  1 − λ t ≥ min U x , U t   

(iii) U is upper semi-continuous: for any x0 ∈ R , it holds that 
                                   U(x0) ≥ lim

x→x0
−
+ U(x); 

(iv) [U]0 = CL{x ∈ R ⋮ U(x) > 0} is a compact subset of R. 
The α −cut of a fuzzy interval U, with0 < α ≤ 1 is the crisp set 
 
                                  [U]0 = {x ∈ R ⋮ U(x) > 0}. 
For a fuzzy interval U, its α −cuts are closed intervals in R. Let denote them by 
 
                                 [U]0 = [u1

α, u2
α] . 

 
If u ∈  F(R), then u is called a fuzzy interval and the α −level set [u]α is a nonempty compact interval for 
all  α ∈ [0,1].  
Let      𝑢, 𝑣 ∈  𝐸𝑛     and let c be a positive number. The addition  𝑢 + 𝑣   and (positive) scalar 
Multiplication  c.u  in En are defined in terms of the a-level sets by 
[𝑢 + 𝑣]𝛼  =  [𝑢]𝛼 + [𝑣]𝛼 ,        [𝑐. 𝑢]𝛼 =  𝑐[𝑢]𝛼 ,        (1) 
for every  𝛼 ∈  [0,1] 
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Definition 2.3  
A fuzzy interval U is called a triangular fuzzy interval if its membership function has the following form: 

𝑈 𝑥 =

 
 
 

 
 

0                                 𝑖𝑓 𝑥 < 𝑎
𝑥−𝑎

𝑏−𝑎
                         𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
                         𝑖𝑓 𝑏 ≤ 𝑥 ≤ 𝑐

0                                  𝑖𝑓 𝑥 > 𝑐

   (2) 

 
and its 𝛼 − cuts are simply 
  U α =  a + α b − a , c − α c − b  , α ∈  0,1      [5]. 
In this paper, the set of all fuzzy intervals is denoted by F(R). 
 

 
 
 
 
 
 
 
 
 

 
Figure 1: Triangular fuzzy interval U(0, 1, 2). 

 
 
  
We denote by (a, b, c) the triangular fuzzy number with support [a, c]. 
 
We will next define a metric D in E1and the fuzzy function notation [20]. 

Definition 2.4  
For arbitrary fuzzy numbers 𝑢 =  𝑢 , 𝑢 and v =  v , v  the quantity 

 

D u, v = sup0≤α≤1  max  u α , v α  ,  u α , v α        (3) 
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is the distance between u and v. 
This metric is equivalent to the one used by Purl and Ralescu [23] and Kaleva [21]. It is shown [24] that 
 E1 , D  is a complete metric space. 
 
This fuzzy number space as shown in [16], can be embedded into the Banach space B = 𝐶 [0, 1] ×𝐶  [0, 1 ] 
where the metric is usually defined as 
 
  u, v  = max sup0≤α≤1 u α   , sup0≤α≤1 v α           (4) 
 
for arbitrary (u,v) ∈ 𝐶 [0. 1 ] × 𝐶 [0. 1]. Throughout this work we will use the sup norm given by Eq. (4) 
rather than the Lp norm [12.15]. Using this norm enables to obtain stronger results related to the 
numerical procedure. 
Also , we can extend the Housdorff metric H on 
 𝐷 ∶  RF  ×  𝑅𝐹  →  𝑅+ ∪  0     by   means of  

D u, v = supα∈ 0,1 max{ uα − vα ,  uα − vα }             , ∀u , v ∈ RF      (5) 

(see [10]). 

Definition 2.5  

A function f: R1 → E1 is called a fuzzy function. If for arbitrary fixed t0 ∈ R1 and ε > 0,  a δ > 0  such that 
 
 t − t0 < δ  

 
  D f t , f t0  < ε          (6) 

 
exists, f is said to be continuous. 
Throughout this work we also consider fuzzy functions which are defined only over a finite interval [a, b] 
(we simply replace R1 by [a, b] in Definition 2.5). 
 

Definition 2.6  
Let 𝑢, 𝑣 ∈ 𝐹 𝑅𝑛  be . If there exists w ∈ F Rn  such that 
 𝑢 = 𝑣 + 𝑤 then w is called the H-difference of u and v and it is denoted by  u − v. 
 

Definition 2.7  
Let     f: T → F Rn  be and  t0 ∈ T  .We say that x is differentiable at t0 if: 
(I) There exists an element 𝑓 ′ 𝑡0 ∈ 𝐹 𝑅𝑛  such that, for all h > 0  sufficiently near to 0,there are 

f t0 + h − f t0  , f t0 − f t0 − h  and the limits (in D-metric) 

f ′ t0 = lim
h→0+

f t0+h −f t0 

h
= limh→0+

f t0 −f t0−h 

h
        (7) 

           Or 
(II)  There is an element f ′ t0 ∈ F Rn  such that,for all h < 0 sufficiently near to 0,there are 

f t0 + h − f t0  , f t0 − f t0 − h  and the limits 
                                                                                

f ′ t0 = lim
h→0−

f t0+h −f t0 

h
= limh→0−

f t0 −f t0−h 

h
       (8) 

  
Note  that derivative in the first form (I) is coincident with the H-derivative .Also, if  x is differentiable in 
the first form (I) and f ′ t0 ∈ F Rn Rn   then, from Definition 2.7, it is not differentiable in the second 
form (II) and vice versa.  

 

Theorem 1.  
(Chalco-Cano et al. [17]). Let x : T → F(R) be a function and denote 
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  𝑥 𝑡  𝛼 =  𝑓𝛼 𝑡 , 𝑔𝛼 𝑡              
 
for each 𝛼 ∈ [0, 1].  Then:  
(i) If x is differentiable in the first form (I), then 𝑓𝛼  and   𝑔𝛼are differentiable functions and  
 

 𝑥 ′ 𝑡  
𝛼

=  𝑓𝛼
′  𝑡 , 𝑔𝛼

′  𝑡               (9) 

 
(ii) If x is differentiable  in the second form (II), then  𝑓𝛼and  𝑔𝛼  are differentiable functions and 
  

 𝑥 ′ 𝑡  
𝛼

=  𝑔𝛼
′  𝑡 , 𝑓𝛼

′  𝑡                  (10) 

 
The result of Theorem 1, gives us a procedure to solve the fuzzy initial value problem    𝑋′ 𝑡 =

 𝑓  𝑡, 𝑋 𝑡    

                           𝑋(0)  =  𝑋0 ,         (11) 
     
where 𝑋′ 𝑡  is the generalized derivative (in the first form (I) or second form (II) ) in the sense of 
Definition 2.7, see [17,18]. In the following result we will show the relationships between the fuzzy 
solution for  problem (11) proposed in Section 3 and the solution of problem (11) when X(t) is the 
generalized derivative. 
 
The elements 𝑓 𝑡0 + h  , 𝑓 𝑡0  at the fight-hand side of Eq. (8), (7) are observed as elements in the Banach 
space B = 𝐶 [0, 1] × 𝐶 [0, 1] [29]. Thus if                    

  𝑓 𝑡0 + h =  𝑎, 𝑎   and 𝑓 𝑡0 =  𝑏, 𝑏  , the difference is simply 

 

𝑓 𝑡0 + h − 𝑓 𝑡0 =  𝑎 − 𝑏, 𝑎 − 𝑏  . 

 
Clearly  𝑓 𝑡0 + h − 𝑓 𝑡0  /h  may not be a fuzzy number for all h. However, if it approaches𝑓 ′ 𝑡0   in B, 

and 𝑓 ′ 𝑡0    is a fuzzy number, this number is the fuzzy derivative of f ( t ) at t0. In this case if 𝑓 =  𝑓, 𝑓  it 

can be easily shown that 
 

𝑓 ′ 𝑡0 =  𝑓 ′ 𝑡0 , 𝑓 ′  𝑡0   

 

Where 𝑓 ′ and 𝑓 ′  are the classic derivatives of 𝑓 and 𝑓 , respectively. 

 

Example 1.  
Consider the fuzzy function 
 

𝑓 𝑡; 𝛼 =  𝛼𝑡2 ,  2 − 𝛼2 𝑡  ,           0 ≤ 𝑡 ≤ 1 
 
for which 
 

limh→0
𝑓 𝑡+h;α −𝑓 𝑡0;𝛼 

h
=  2𝛼𝑡0 ,  2 − 𝛼2              (12) 
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is a fuzzy number for t:0 ≤ 𝑡 ≤
1

2
. If 𝑡 >

1

2
 the right-hand side of Eq. (12) is not a fuzzy number. 

Consequently, f ' ( t ) does not exist for
1

2
< 𝑡 ≤ 1. 

Furthermore, in [25] if 𝑓: 𝑅 → 𝑅  is a real continuous function, then 𝑓 : 𝐹(𝑅) → 𝐹(𝑅) is well-defined 
function and 

 𝑓  𝑈  
𝛼

= 𝑓  𝑈 𝛼  ,    ∀𝛼 ∈  0,1  ,   𝑈 ∈ 𝐹 𝑅         (13) 

where 𝑓  𝑈 𝛼 =  𝑓 𝑥  𝑥 ∈  𝑈 𝛼   . Consequently, if U is a fuzzy interval with the closure of  it’s support  is 
[U]0 = [u1, u2] and f is a real continuous function, then we have that 
 

 𝑓  𝑈  
𝛼

=  min𝑥∈ 𝑢1 ,𝑢2 𝑓(𝑥) , max𝑥∈ 𝑢1 ,𝑢2 𝑓(𝑥) .    (14) 

 
Therefore, in order to find the endpoints of (14), we need optimization technique. On the other hand, if  f : 

Rn → Rn is a continuous function, then 𝑓 : 𝐹(𝑅𝑛) → 𝐹(𝑅𝑛) is a well-defined function, and(see [19]) 

 𝑓  𝑈  
𝛼

= 𝑓  𝑈 𝛼  ,    ∀𝛼 ∈  0,1  , ∀ 𝑈 ∈ 𝐹 𝑅𝑛     

 
 

3. Fuzzy Cauchy problems 
 
In this section we will give a short review on numerical solutions of fuzzy differential equations. For more 
detail, refer to [22]. First, we follow Kaleva [21] and define a first-order fuzzy differential equation. We 
then replace it by its parametric form and solve the new system which consists of two classic ordinary 
differential equations numerically. 
Following [14] we define a first-order fuzzy differential equation by 
 
x' = f ( t , x )             (15) 
 
where x is a fuzzy function of t, f ( t , x ) - a fuzzy function of the crisp variable t and the fuzzy variable x, 
and x' is the fuzzy derivative of x [6]. If an initial value x(t0)=x0 is given, we obtain a fuzzy Cauchy problem 
of first order: 
 
x'= f(t,x),   x(t0)=X0.       (16) 
 By Theorem 5.2 in [14] we may replace  Eq. (16)  by the equivalent system 

𝑥′ 𝑡 = 𝑓 𝑡, 𝑥 = 𝐹 𝑡, 𝑥, 𝑥 ,            𝑥 𝑡0 = 𝑥0 , 

               (17) 

𝑥
′
 𝑡 = 𝑓 𝑡, 𝑥 = 𝐺 𝑡, 𝑥, 𝑥 ,            𝑥 𝑡0 = 𝑥0 

 

which possesses a unique solution    𝑥, 𝑥 ∈ 𝐵   which is a fuzzy function, i.e. for each t, the pair 

 𝑥 𝑡; 𝛼 , 𝑥 𝑡; 𝛼   is a fuzzy number. 

The parametric form of Eq. (17) is given by  
 

𝑥′ 𝑡; 𝛼 = 𝐹  𝑡, 𝑥(𝑡; 𝛼), 𝑥(𝑡; 𝛼) ,            𝑥 𝑡0; 𝛼 = 𝑥0(𝛼), 

                                                                                                  (18) 

𝑥
′
 𝑡; 𝛼 = 𝐺  𝑡, 𝑥 𝑡; 𝛼 , 𝑥(𝑡; 𝛼) ,            𝑥 𝑡0; 𝛼 = 𝑥0(𝛼) 

 
For   𝛼 ∈  0,1   A solution to Eq. (18) must solve Eq. (17) 
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3.1 The fuzzy Euler method 
 
To integrate the system given in Eq. (18) from to a prefixed T > t0, we replace the interval [t0, T] by a set of 
discrete equally spaced grid points 

𝑡0 < 𝑡1  < 𝑡2 <  …  < 𝑡𝑁  =  T   at which the exact solution  𝑌 𝑡; 𝛼 , 𝑌  𝑡; 𝛼   is approximated by some 

 𝑦 𝑡; 𝛼 , 𝑦  𝑡; 𝛼  . (Note that throughout each integration ,α is unchanged.) The exact and approximate 

solutions at tn , 0 ≤ 𝑛 ≤ 𝑁  are denoted by 𝑌𝑛 𝛼 =  𝑌𝑛 𝛼 , 𝑌𝑛    𝛼   and 𝑦𝑛 𝛼 =  𝑦𝑛 𝛼 , 𝑦𝑛    𝛼  , 

respectively. The grid points at which the solution is calculated are 
𝑡𝑛 = 𝑡0 + 𝑛h ,       h =  T − t0 N  ;        1 ≤ n ≤ N .                                    (19) 

The Euler method [13] is based on the first-order approximation of 𝑌′ 𝑡; 𝛼  and 𝑌′  𝑡; 𝛼  and is given by 
 

𝑍′ 𝑡; 𝛼 ≈
Z t+h;α −Z t;α 

h
                                      (20) 

 
where𝑍(𝑡; 𝛼) is 𝑌 𝑡; 𝛼  and 𝑌  𝑡; 𝛼  alternatively. By virtue of Eq. (20) we obtain 

𝑌𝑛+1 𝛼 ≈ 𝑌𝑛 𝛼 + 𝐹𝑛 𝛼  

 (21) 
𝑌 𝑛+1 𝛼 ≈ 𝑌 𝑛 𝛼 + 𝐺𝑛 𝛼  

where 

𝐹𝑛 𝛼 ≜ 𝐹  𝑡𝑛 , 𝑌𝑛 𝛼 , 𝑌𝑛    𝛼   

 (22) 

𝐺𝑛 𝛼 ≜ 𝐺  𝑡𝑛 , 𝑌𝑛 𝛼 , 𝑌𝑛    𝛼   

Following Eq. (21) we define 

𝑦𝑛+1 𝛼 = 𝑦𝑛 𝛼 + 𝐹  𝑡𝑛 , 𝑦𝑛 𝛼 , 𝑦 𝑛 𝛼              (23) 

 
where 𝑦0 𝛼 ≜ 𝑥0 𝛼  , 𝑦 0 𝛼 ≜ 𝑥 0 𝛼 . The polygon curves 

𝑦 𝑡; ; 𝛼 ≜   𝑡0 , 𝑦0 𝛼  ,  𝑡1 , 𝑦1 𝛼  , … ,  𝑡𝑁 , 𝑦𝑁 𝛼    

 (24) 
𝑦  𝑡; ; 𝛼 ≜   𝑡0 , 𝑦 0 𝛼  ,  𝑡1 , 𝑦 1 𝛼  , … ,  𝑡𝑁 , 𝑦 𝑁 𝛼    

 
are the Euler approximates to 𝑌 𝑡; 𝛼  and 𝑌  𝑡; 𝛼 , respectively, over the interval 𝑡0 ≤ 𝑡 ≤ 𝑡𝑁 . The following 
lemmas will be applied to show convergence of these approximates, i.e., 
lim→0 𝑦 𝑡; ; 𝛼 = 𝑌  𝑡; 𝛼  ,                     lim→0 𝑦  𝑡; ; 𝛼 = 𝑌  𝑡; 𝛼  .               (25) 

Lemma 1.  
Let a sequence of numbers 𝑊𝑛 𝑛=0

𝑁  satisfy 
 𝑊𝑛+1 ≤ 𝐴 𝑊𝑛  + 𝐵 ,           0 ≤ 𝑛 ≤ 𝑁 − 1              (26) 
for some given positive constants A and B. Then 

 𝑊𝑛  ≤ 𝐴𝑁 𝑊0 + 𝐵
𝐴𝑛−1`

𝐴−1
 ,       0 ≤ 𝑛 ≤ 𝑁 − 1           (27) 

The proof, using mathematical induction is straightforward. 

Lemma 2.  
Let the sequences of numbers  𝑊𝑛 𝑛=0

𝑁 ,  𝑉𝑛  𝑛=0
𝑁  satisfy 

 
 𝑊𝑛+1 ≤  𝑊𝑛  + 𝐴 𝑚𝑎𝑥  𝑊𝑛  ,  𝑉𝑛   + 𝐵 
            (28) 
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 𝑉𝑛+1 ≤  𝑉𝑛  + 𝐴 𝑚𝑎𝑥  𝑉𝑛  ,  𝑊𝑛   + 𝐵      
 
for some given positive constants A and B, and denote 

𝑈𝑛 =  𝑊𝑛  +  𝑉𝑛   ,    0 ≤ 𝑛 ≤ 𝑁 
Then 

𝑈𝑛 ≤ 𝐴 𝑛𝑈0 + 𝐵 
𝐴 𝑛 − 1

𝐴 − 1
  ,      0 ≤ 𝑛 ≤ 𝑁 

where 𝐴 = 1 + 2𝐴 𝑎𝑛𝑑 𝐵 = 2𝐵. 
 
Our next result determines the point wise convergence of the Euler approximates to the exact solution. Let 
𝐹(𝑡, 𝑢, 𝑣) and 𝐺(𝑡, 𝑢, 𝑣) be the functions F and G of Eq. (17) where u and v are constants and 𝑢 ≤ 𝑣. In 
other words 𝐹 𝑡, 𝑢, 𝑣  and 𝐺(𝑡, 𝑢, 𝑣) are obtained by substituting x =  (u, v)in Eq. (17). The domain where 
F and G are defined is therefore 
𝐾 =  𝑡, 𝑢, 𝑣  𝑡0 ≤ 𝑡 ≤ 𝑇 , −∞ < 𝑣 < ∞ , −∞ < 𝑢 ≤ 𝑣 . 
 

Theorem 2  
For arbitrary fixed   :  0 ≤ 𝛼 ≤ 1, the two step approximates of 
Eq.(24) converge to the exact solution[𝑌 (𝑡, 𝛼), 𝑌 (𝑡, 𝛼)]            . 

4. Zadeh’s extension principle 
In [26], Zadeh proposed the so-called extension principle which becomes an important tool in fuzzy 

set theory and its applications. The principal idea of Zadeh’s extension principle is that each function 

𝑓: 𝑋 → 𝑌  induces another function 𝑓 : 𝐹 𝑋 → 𝐹 𝑌  defined for each fuzzy interval U in X by 
 

𝑓  𝑈  𝑦 =  
sup𝑥∈𝑓−1 𝑦 𝑈 𝑥         𝑖𝑓 𝑦 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑓)

0                                     𝑖𝑓 𝑦 ∉ 𝑟𝑎𝑛𝑔𝑒(𝑓)
              (29) 

 

In this case, the function 𝑓  is said to be obtained from f by Zadeh’s extension principle. In general, the 

computation of 𝑓  is not an easy task. An exception occurs when f is monotone. 
The fuzzy initial value problem solving by this method: 
 
𝑋’(𝑡)  =  𝑓 (𝑡, 𝑋(𝑡)) , 𝑋(0)  =  𝑋0,                                   (30) 
 
where 𝑓 ∶  [0, 𝑇 ]  ×  F(𝑈)  →  F(Rn )is obtained by Zadeh’s extension principle from a continuous function  
𝑔 ∶  [0, 𝑇 ]  ×  𝑈 →  Rn , where 𝑈 ⊂  Rn . Note that f  is continuous because g is continuous (see [19]) and 
by(13) we have  
 𝑓 𝑡, 𝑋  𝛼 = 𝑔 𝑡,  𝑋 𝛼                         (31) 
 
, where 𝑔(𝑡, 𝐴)  =  {𝑔 𝑡, 𝑎    𝑎 ∈  𝐴}.  
Associated with FDE(30) we can consider the deterministic differential equation (DDE): 
 
𝑥 ′ 𝑡 = 𝑔 𝑡, 𝑥(𝑡)  ,    𝑥 0 = 𝑐               (32)  
  
where x’(t) is the derivative (crisp) of a function  𝑥 ∶  [0, 𝑇 ]  →  Rn . 
We obtain a fuzzy solution for (30) derived from (32) suppose that problem (32) has the solution  x(t, c). 
Then , applying the Zadeh’s extension principle to x(t, c) in relation to the parameter c, we obtain the 
extension 𝑋 𝑡 = 𝑥  𝑡, 𝑋0  , for each t fixed, which is a fuzzy solution of problem (30)(in the sequel, this 
extended solution will be called the fuzzy solution for problem (30)).  
Theorem3.  
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Let U be an open set in Rn and  𝑋0 
𝛼 ⊂ 𝑈. Suppose that g is continuous and that for each 𝑐 ∈  𝑈 there exists a 

unique solution 𝑥(·, 𝑐) of the deterministic problem (32) and that 𝑥(𝑡,·) is continuous on U for eac 𝑡 ∈
 [0, 𝑇 ]   h fixed. Then, there exists a unique fuzzy solution 𝑋 𝑡 = 𝑥 (𝑡, 𝑋0)  of the FDE (30). 
 
 

5. Example 
Consider the initial value problem  
 

 
𝑦′ 𝑡 = −𝑦 𝑡 

𝑐 = 𝑦 0 = (0.96 + 0.04𝛼, 1.01 − 0.01𝛼)
          (a) 

 
The problem (a) has the exact solution 
𝑦(𝑡, 𝑐)  =  𝑐𝑒−𝑡  .  
Note that x(t, c) is continuous in 𝑐 ∈  R  for each 𝑡 ≥ 0 fixed 
    

5.1.solving by Euler method 
 
𝑦 𝑡 = ( 0.96 + 0.04𝛼 𝑒−𝑡 ,  1.01 − 0.01𝛼 𝑒−𝑡) 
 
𝑦 0.1 = ( 0.96 + 0.04𝛼 𝑒−0.1 ,  1.01 − 0.01𝛼 𝑒−0.1) 
 
The exact solution at t = 1 is given by 
 

𝑌 1, 𝛼 =   0.96 + 0.04𝛼 𝑒−1 ,  1.01 − 0.01𝛼 𝑒−1             0 ≤ 𝛼 ≤ 1 

 
Using the Euler approximation with N = 10 we obtain 

 
Table 1. the numerical results illustrated by applying Euler method

 

 
 

5.2.Solving by Zadeh’s extension principle 
Note that the initial condition C is any fuzzy interval .We apply the Zadeh’s extension principle to 

𝑥(𝑡, 𝑐)  in relation to c, for each 𝑡 ≥ 0  fixed. Then we obtain the unique fuzzy solution 𝑋(𝑡)  =  𝑥 (𝑡, 𝐶) of 
problem (a) for any initial condition C, with C a fuzzy interval, which is given by 
 𝑋 𝑡 =  𝐶 ·  e−t ,            𝑡 ≥ 0, where ( · ) is  the scalar multiplication (1): 
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Table 2. the numerical results illustrated by applying Zadeh’s extension principle 

 

 

 

 
 

ERROR 𝑌 𝑦 ERROR 𝑌 𝑦 α 

−0.025102425269943  0.3715582356  0.3464558103  −0.023605302524811  0.3531642636  0.329558961 1 0 

−0.026093018475126  0.371190356 2 0.3450973376  −0.024745607951792  0.354635781 3 0.3298901733  0.1 

−0.027083611697152  0.3708224767  0.3437388650  −0.025885913454189  0.356107299 1 0.330221385 6 0.2 

−0.028074204919178  0.370454597 3 0.3423803923  −0.027026218956586  0.3575788168  0.330552597 9 0.3 

−0.029064798141205  0.3700867178  0.341021919 7 −0.028166524458982  0.359050334 6 0.3308838101  0.4 

−0.030055391363231  0.369718838 4 0.3396634470  −0.029306829961379  0.360521852 4 0.331215022 4 0.5 

−0.031045984585257  0.36935095 90 0.338304974 4 −0.030447135463776  0.3619933701  0.3315462346  0.6 

−0.032036577807284   0.368983079 5 0.336946501 7 −0.031587440966173  0.363464887 9 0.3318774469  0.7 

−0.033027171029310  0.368615200 1 0.3355880290  −0.032727746468569  0.364936405 7 0.332208659 2 0.8 

−0.034017764251337  0.3682473206  0.334229556 4 −0.033868051970966  0.3664079234  0.3325398714  0.9 

−0.035008357473363  0.367879441 2 0.332871083 7 −0.035008357473363  0.367879441 2 0.332871083 7 1 
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6. Conclusion 

In this paper two numerical algorithms for solving fuzzy ordinary differential equations is 
considered. A scheme based on two different methods is discussed, Zadeh’s extension principle  and Euler 
method. By Euler method we can approximate fuzzy  -reachable set, since  𝑋(𝑡) 𝛼  is an interval. 
Numerical example shows the efficiency of implemented numerical method. Also We obtain a fuzzy 
solution for this class of FDE by applying the Zadeh’s extension principle to the deterministic solution 
associated with the fuzzy problem. 

we study fuzzy differential equations (FDE) and We give some properties and we show that The 
method presented in this paper greatly improve the solution technique for the computation of functions 
that take fuzzy sets as their arguments. 
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