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We present some new general existence theorems for maximal type elements for upper semicontinuous maps with convex
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1. Introduction

In this paper we present a variety of new collectively fixed point and coincidence point results and
from these existence theorems we establish some new maximal type element results for majorized type
maps (see [12]). The maps considered in this paper are Kakutani maps (or more generally, admissible
maps with respect to Gorniewicz) and multivalued maps with continuous selections (see [3, 4, 10, 11] and
the references therein).

Now we describe the maps considered in this paper. Let H be the C̆ech homology functor with com-
pact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space, Hq(X) being the q-
dimensional C̆ech homology group with compact carriers of X. For a continuous map f : X → X, H(f) is
the induced linear map f? = {f?q} where f?q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty,
Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y, and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ → X is called a
Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic;
(ii) p is a perfect map, i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is a nonempty subset of Y). A
pair (p,q) of single valued continuous maps of the form X

p← Γ
q→ Y is called a selected pair of φ (written

(p,q) ⊂ φ) if the following two conditions hold:
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(i) p is a Vietoris map; and
(ii) q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [7]. A upper semicontinuous map φ : X → Y with
compact values is said to be admissible (and we write φ ∈ Ad(X, Y)) provided there exists a selected
pair (p,q) of φ. An example of an admissible map is a Kakutani map. A upper semicontinuous map
φ : X→ K(Y) is said to Kakutani (and we write φ ∈ Kak(X, Y)); here K(Y) denotes the family of nonempty,
convex, compact subsets of Y.

The following classes of maps will play a major role in this paper. Let Z andW be subsets of Hausdorff
topological vector spaces Y1 and Y2 and G a multifunction. We say G ∈ DKT(Z,W) [4] if W is convex
and there exists a map S : Z → W with co(S(x)) ⊆ G(x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and the
fibre S−1(w) = {z ∈ Z : w ∈ S(z)} is open (in Z) for each w ∈ W. We say G ∈ HLPY(Z,W) [11] if W is
convex and there exists a map S : Z → W with co(S(x)) ⊆ G(x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and
Z =

⋃
{intS−1(w) : w ∈W}.

Now we consider a general class of maps, namely the PK maps of Park. Let X and Y be Hausdorff
topological spaces. Given a class X of maps, X(X, Y) denotes the set of maps F : X → 2Y (nonempty
subsets of Y) belonging to X, and Xc the set of finite compositions of maps in X. We let

F(X) = {Z : Fix F 6= ∅ for all F ∈ X(Z,Z)} ,

where Fix F denotes the set of fixed points of F.
The class U of maps is defined by the following properties:

(i) U contains the class C of single valued continuous functions;
(ii) each F ∈ Uc is upper semicontinuous and compact valued; and

(iii) Bn ∈ F(Uc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ Rn : ‖x‖ 6 1}.

We say F ∈ PK(X, Y) if for any compact subset K of X there is a G ∈ Uc(K, Y) with G(x) ⊆ F(x) for each
x ∈ K. Recall PK is closed under compositions.

For a subset K of a topological space X, we denote by CovX(K) the directed set of all coverings of K by
open sets of X (usually we write Cov(K) = CovX(K)). Given two maps F,G : X → 2Y and α ∈ Cov(Y), F
and G are said to be α-close if for any x ∈ X there exists Ux ∈ α, y ∈ F(x)∩Ux and w ∈ G(x)∩Ux.

Let Q be a class of topological spaces. A space Y is an extension space for Q (written Y ∈ ES(Q)) if
for any pair (X,K) in Q with K ⊆ X closed, any continuous function f0 : K → Y extends to a continuous
function f : X → Y. A space Y is an approximate extension space for Q (written Y ∈ AES(Q)) if for any
α ∈ Cov(Y) and any pair (X,K) in Q with K ⊆ X closed, and any continuous function f0 : K → Y there
exists a continuous function f : X→ Y such that f|K is α-close to f0.

Let V be a subset of a Hausdorff topological vector space E. Then we say V is Schauder admissible
if for every compact subset K of V and every covering α ∈ CovV(K) there exists a continuous function
πα : K→ V such that

(i) πα and i : K→ V are α-close;
(ii) πα(K) is contained in a subset C ⊆ V with C ∈ AES(compact).

X is said to be q-Schauder admissible if any nonempty compact convex subset Ω of X is Schauder admis-
sible.

Theorem 1.1 ([1, 8]). Let X be a Schauder admissible subset of a Hausdorff topological vector space and Ψ ∈
PK(X,X) a compact upper semicontinuous map with closed values. Then there exists an x ∈ X with x ∈ Ψ(x).

Remark 1.2. Other variations of Theorem 1.1 can be found in [9].

We now list two well known results from the literature [12] (see also [2]).
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Theorem 1.3. Let X and Y be two topological spaces and A an open subset of X. Suppose F1 : X→ 2Y , F2 : A→ 2Y

are upper semicontinuous such that F2(x) ⊂ F1(x) for all x ∈ A. Then the map F : X→ 2Y defined by

F(x) =

{
F1(x), x /∈ A,
F2(x), x ∈ A,

is upper semicontinuous.

Theorem 1.4. Let X and Y be topological spaces. If F,G : X→ 2Y have compact values and are upper semicontin-
uous then F∩G is also upper semicontinuous.

We recall that a point x ∈ X is a maximal element of a set valued map F from a topological space X to
another topological space Y if F(x) = ∅.

2. Maximal element type results

In this section we begin by presenting collectively fixed point results in a variety of settings. Our goal
later is to consider collectively coincidence results.

Theorem 2.1. Let {Xi}Ni=1 be a family of compact sets each in a Hausdorff topological vector space Ei. For each
i ∈ {1, . . . ,N} suppose Fi : X ≡

∏N
i=1 Xi → Xi is upper semicontinuous with nonempty convex compact values

(i.e., Fi ∈ Kak(X,Xi)). Also assume X is a Schauder admissible subset of the Hausdorff topological vector space
E ≡
∏N
i=1 Ei. Then there exists an x ∈ X with xi ∈ Fi(x) for i ∈ {1, . . . ,N} (here xi is the projection of x on Xi).

Proof. Let F(x) =
∏N
i=1 Fi(x) for x ∈ X and note F ∈ Kak(X,X) (see [2]). Now Theorem 1.1 guarantees the

result.

Remark 2.2.

(i). Note we could replace {Xi}
N
i=1 with {Xi}i∈I (where I is an index set) in Theorem 1.1.

(ii). In Theorem 1.1 we could replace Fi ∈ Kak(X,Xi) with Fi ∈ Ad(X,Xi) (recall a finite product of
admissible maps is admissible). This remark could also be applied to other results in this paper.

Theorem 2.3. Let {Xi}Ni=1 be a family of sets each in a Hausdorff topological vector space Ei. For each i ∈ {1, . . . ,N}

let Ki be a nonempty compact subset of Xi and suppose Fi : X ≡
∏N
i=1 Xi → Ki is upper semicontinuous with

nonempty convex compact values (i.e., Fi ∈ Kak(X,Ki)). Also assume K ≡
∏N
i=1 Ki is a Schauder admissible

subset of the Hausdorff topological vector space E ≡
∏N
i=1 Ei. Then there exists an x ∈ K with xi ∈ Fi(x) for

i ∈ {1, . . . ,N}.

Proof. Let F(x) =
∏N
i=1 Fi(x) for x ∈ K and note F ∈ Kak(K,K). Now apply Theorem 1.1.

Theorem 2.4. Let {Xi}
N
i=1 be a family of sets each in a Hausdorff topological vector space Ei. For each i ∈

{1, . . . ,N} let Ki be a nonempty subset of Xi and suppose Fi : X ≡
∏N
i=1 Xi → Ki. Let F : X → K be given

by F(x) =
∏N
i=1 Fi(x) with K ≡

∏N
i=1 Ki and assume co(K) ⊆ X is compact and F : X → co(K) is upper

semicontinuous with nonempty convex compact values (i.e., F ∈ Kak(X, co(K))). Also suppose co(K) is a Schauder
admissible subset of the Hausdorff topological vector space E ≡

∏N
i=1 Ei. Then there exists an x ∈ co(K) with

xi ∈ Fi(x) for i ∈ {1, . . . ,N}.

Proof. Note F ∈ Kak(co(K), co(K)) and apply Theorem 1.1.

The conclusion in the above results is the existence of a x ∈ X with xi ∈ Fi(x) for i ∈ {1, . . . ,N}. One
can adjust so that the conclusion is the existence of a x ∈ X and a i ∈ {1, . . . ,N} with xi ∈ Fi(x). To see this
we will consider Theorem 2.1 in this setting.
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Theorem 2.5. Let {Xi}
N
i=1 be a family of convex compact sets each in a Hausdorff topological vector space Ei.

For each i ∈ {1, . . . ,N} suppose Fi : X ≡
∏N
i=1 Xi → Xi is upper semicontinuous with convex compact values.

Assume X is a Schauder admissible subset of the Hausdorff topological vector space E ≡
∏N
i=1 Ei. Also suppose

for each x ∈ X there exists an i ∈ {1, . . . ,N} with Fi(x) 6= ∅. Finally assume for each i ∈ {1, . . . ,N} that
Ui = {x ∈ X : Fi(x) 6= ∅} is open in X. Then there exists an x ∈ X and a i0 ∈ {1, . . . ,N} with xi0 ∈ Fi0(x).

Proof. Fix i ∈ {1, . . . ,N}. Define a map Gi : X→ Xi by

Gi(x)) =

{
Fi(x), x ∈ Ui,
Xi, x ∈ X\Ui.

Note Gi has nonempty convex compact values and Gi : X → Xi is upper semicontinuous from Theorem
1.3 (i.e., Gi ∈ Kak(X,Xi)). Let G : X→ X be given by

G(x) =

N∏
j=1

Gj(x) for x ∈ X.

Note G ∈ Kak(X,X). Now Theorem 1.1 guarantees a y ∈ X with y ∈ G(y)) =
∏N
j=1Gj(y), i.e., yi ∈ Gi(y)

for i ∈ {1, . . . ,N}. Now by assumption there exists an i0 ∈ {1, . . . ,N} with Fi0(y) 6= ∅. Thus yi0 ∈ Gi0(y) =
Fi0(y).

Collectively fixed point theory can be rewritten as a maximal element type result. To illustrate this we
will consider Theorems 2.1 and 2.5.

Theorem 2.6. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff topological vector space Ei. For
each i ∈ {1, . . . ,N} suppose Fi : X ≡

∏N
i=1 Xi → Xi is upper semicontinuous with convex compact values. Also

assume X is a Schauder admissible subset of the Hausdorff topological vector space E ≡
∏N
i=1 Ei. Now suppose for

each x ∈ X there exists a j ∈ {1, . . . ,N} with xj /∈ Fj(x). Then there exists an x ∈ X and a i0 ∈ {1, . . . ,N} with
Fi0(x) = ∅.

Proof. Suppose the conclusion is false. Then for each x ∈ X we have Fi(x) 6= ∅ for all i ∈ {1, . . . ,N}.
Thus Fi ∈ Kak(X,Xi) for all i ∈ {1, . . . ,N}. Now Theorem 2.1 guarantees a x ∈ X with xi ∈ Fi(x) for
i ∈ {1, . . . ,N}, a contradiction.

Theorem 2.7. Let {Xi}Ni=1 be a family of convex compact sets each in a Hausdorff topological vector space Ei. For
each i ∈ {1, . . . ,N} suppose Fi : X ≡

∏N
i=1 Xi → Xi is upper semicontinuous with convex compact values. Assume

X is a Schauder admissible subset of the Hausdorff topological vector space E ≡
∏N
i=1 Ei. Also suppose for all

i ∈ {1, . . . ,N} that xi /∈ Fi(x) for each x ∈ X. Finally suppose for each i ∈ {1, . . . ,N} that Ui = {x ∈ X : Fi(x) 6= ∅}
is open in X. Then there exists an x ∈ X with Fi(x) = ∅ for all i ∈ {1, . . . ,N}.

Proof. Suppose the conclusion is false. Then for each x ∈ X there exists an i ∈ {1, . . . ,N} with Fi(x) 6= ∅.
Now Theorem 2.5 guarantees an x ∈ X and a i ∈ {1, . . . ,N} with xi ∈ Fi(x), a contradiction.

We next discuss majorized type maps motivated from the literature (see [10, 12]). Let Z and W be sets
in a Hausdorff topological vector space with Z paracompact and W convex and compact.

Remark 2.8. In the setting we presented above recall (i). compact sets are paracompact; and (ii). if Ω is a
compact subset of a topological vector space then co(Ω) is paracompact (see [4]).

Suppose H : Z → W and for each x ∈ Z assume there exists a map Ax : Z → W and an open set Ux
containing x with H(z) ⊆ Ax(z) for every z ∈ Ux, Ax : Ux → W is upper semicontinuous with convex
compact values. We claim there exists a (compact) map Ψ : Z → W with H(z) ⊆ Ψ(z) for z ∈ Z and
Ψ : Z → W is upper semicontinuous with convex compact values. To see this note {Ux}x∈Z is an open
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covering of Z and since Z is paracompact there exists [5, 6] a locally finite open covering {Vx}x∈Z of Z
with x ∈ Vx and Vx ⊆ Ux for x ∈ Z, and for each x ∈ Z let

Qx(z) =

{
Ax(z), z ∈ Vx,
W, z ∈ Z\Vx.

Now Theorem 1.3 guarantees that Qx : Z → W is upper semicontinuous with convex compact values.
Next note H(z) ⊆ Qx(z) for every z ∈ Z since if z ∈ Vx, then since Vx ⊆ Ux and H(w) ⊆ Ax(w) for
w ∈ Ux we have H(z) ⊆ Qx(z) whereas if z ∈ Z\Vx, then it is immediate since Qx(z) = W. Now define
Ψ : Z→W by

Ψ(z) =
⋂
x∈Z

Qx(z) for z ∈ Z.

Note Ψ : Z → W has convex compact values with H(w) ⊆ Ψ(w) for w ∈ Z since H(z) ⊆ Qx(z) for every
z ∈ Z (for each x ∈ X). It remains to show Ψ : Z → W is upper semicontinuous. Let u ∈ Z. There exists
an open neighbourhood Nu of u such that {x ∈ Z : Nu ∩ Vx 6= ∅} = {x1, . . . , xnu} (a finite set). Note if
x /∈ {x1, . . . , xnu}, then ∅ = Vx ∩Nu so Qx(z) =W for z ∈ Nu and so we have

Ψ(z) =
⋂
x∈Z

Qx(z) =

nu⋂
j=1

Qxj(z) for z ∈ Nu.

Now for j ∈ {1, . . . ,nu} note Qxj : Z → W is upper semicontinuous (so Q?
xj

: Nu → W, the restriction of
Qxj to Nu, is upper semicontinuous) so Theorem 1.4 guarantees that Ψ : Nu → W is upper semicontinu-
ous (at u). Since Nu is open we have that Ψ : Z→W is upper semicontinuous (at u).

We will combine the above discussion with Theorems 2.6 and 2.7 to illustrate the method involved.

Theorem 2.9. Let {Xi}
N
i=1 be a family of convex compact sets each in a Hausdorff topological vector space Ei.

For each i ∈ {1, . . . ,N} suppose Hi : X ≡
∏N
i=1 Xi → Xi and for each x ∈ X assume there exists a map

Ai,x : X → Xi and an open set Ui,x containing x with Hi(z) ⊆ Ai,x(z) for every z ∈ Ui,x, Ai,x : Ui,x → Xi is
upper semicontinuous with convex compact values, and also assume for each w ∈ X there exists a j0 ∈ {1, . . . ,N}

(which does not depend on x) with wj0 /∈ Aj0,x(w). Suppose X is a Schauder admissible subset of the Hausdorff
topological vector space E ≡

∏N
i=1 Ei. Then there exists an x ∈ X and a i0 ∈ {1, . . . ,N} with Hi0(x) = ∅.

Proof. Let i ∈ {1, . . . ,N}. From the discussion after Theorem 2.7 (with Z = X, W = Xi, H = Hi and
Ax = Ai,x) there exists a map Ψi : X → Xi with Hi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X → Xi is upper
semicontinuous with convex compact values: here {Ui,x}x∈X is an open covering of X so there exists a
locally finite open covering {Vi,x}x∈X of X with x ∈ Vi,x and Vi,x ⊆ Ui,x for x ∈ X, and for each x ∈ X,

Qi,x(z) =

{
Ai,x(z), z ∈ Vi,x,
Xi, z ∈ X\Vi,x,

and Ψi : X→ Xi is
Ψi(z) =

⋂
x∈X

Qi,x(z) for z ∈ X.

We now claim for each w ∈ X there exists a k ∈ {1, . . . ,N} with wk /∈ Ψk(w). To see this fix w ∈ X.
From our assumption for each x ∈ X there exists a j0 ∈ {1, . . . ,N} (which does not depend on x) with
wj0 /∈ Aj0,x(w). Now since {Vj0,x}x∈X is a covering of X there exists an xj0 ∈ X with w ∈ Vj0,xj0 so

Ψj0(w) =
⋂
x∈X

Qj0,x(w) ⊆ Qj0,xj0 (w) = Aj0,xj0 (w),

and as a result wj0 /∈ Ψj0(w). Thus our claim is true. Now apply Theorem 2.6 (with Fi = Ψi) so there exists
an x ∈ X and a i0 ∈ {1, . . . ,N} with Ψi0(x) = ∅. Now since Hi(z) ⊆ Ψi(z) for z ∈ X, then Hi0(x) = ∅.
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Theorem 2.10. Let {Xi}
N
i=1 be a family of convex compact sets each in a Hausdorff topological vector space Ei.

For each i ∈ {1, . . . ,N} suppose Hi : X ≡
∏N
i=1 Xi → Xi and for each x ∈ X assume there exists a map

Ai,x : X → Xi and an open set Ui,x containing x with Hi(z) ⊆ Ai,x(z) for every z ∈ Ui,x, Ai,x : Ui,x → Xi
is upper semicontinuous with convex compact values, and also assume wi /∈ Ai,x(w) for each w ∈ X. Suppose
X is a Schauder admissible subset of the Hausdorff topological vector space E ≡

∏N
i=1 Ei. Finally assume for each

i ∈ {1, . . . ,N} that Ui = {x ∈ X : Hi(x) 6= ∅} is open in X. Then there exists an x ∈ X with Hi(x) = ∅ for all
i ∈ {1, . . . ,N}.

Proof. Let i ∈ {1, . . . ,N} and let Vi,x, Qi,x and Ψi be as in Theorem 2.9. We now claim that wi /∈ Ψi(w)
for each w ∈ X. To see this fix w ∈ X. Then there exists an x? ∈ X with w ∈ Vi,x? (recall {Vi,x}x∈X is a
covering of X) so

Ψi(w) =
⋂
x∈X

Qi,x(w) ⊆ Qi,x?(w) = Ai,x?(w),

and thus since wi /∈ Ai,x?(w) we have wi /∈ Ψi(w), and our claim is true.
Define a map Gi : X→ Xi by

Gi(x) =

{
Ψi(x), x ∈ Ui = {x ∈ X : Hi(x) 6= ∅},
Xi, x ∈ X\Ui.

Note Gi has nonempty convex compact values (to see the nonemptyness let x ∈ X and note if x ∈ X\Ui
then it is immediate whereas if x ∈ Ui, then Hi(x) 6= ∅ implies Ψi(x) 6= ∅ since Hi(z) ⊆ Ψi(z) for z ∈ X)
and Gi : X → Xi is upper semicontinuous from Theorem 1.3 (i.e., Gi ∈ Kak(X,Xi)). Let G : X → X be
given by

G(x) =

N∏
j=1

Gj(x) for x ∈ X.

Note G ∈ Kak(X,X). Now Theorem 1.1 guarantees a y ∈ X with y ∈ G(y)) =
∏N
j=1Gj(y), i.e., yi ∈ Gi(y)

for i ∈ {1, . . . ,N}. If there exists an i0 ∈ {1, . . . ,N} with Hi0(y) 6= ∅ then y ∈ Ui0 so yi0 ∈ Gi0(y) = Ψi0(y), a
contradiction. Thus Hi(y) = ∅ for all i ∈ {1, . . . ,N}.

Now we present collectively coincidence results in a variety of settings.

Theorem 2.11. Let {Xi}
N
i=1, {Yi}

N0
i=1 be families of convex sets each in a Hausdorff topological vector space Ei

and {Yi}
N0
i=1 is also a family of compact sets. For each i ∈ {1, . . . ,N0} suppose Fi : X ≡

∏N
i=1 Xi → Yi and

Fi ∈ Kak(X, Yi). For each j ∈ {1, . . . ,N} suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and Gj ∈ DKT(Y,Xj). Then there

exists an x ∈ X and a y ∈ Y with yj ∈ Fj(x) for j ∈ {1, . . . ,N0} and xi ∈ Gi(y) for i ∈ {1, . . . ,N}.

Proof. Now Y is compact, Gi ∈ DKT(Y,Xj) so for each i ∈ {1, . . . ,N} from [3, 4] there exists a continuous
(single valued) selection qi : Y → Xi of Gi with qi(y) ∈ Gi(y) for y ∈ Y and there exists a finite set Ri of Xi
with qi(Y) ⊆ co(Ri) ≡ Qi. Let Q =

∏N
i=1 Qi (⊆ X) and note Q is compact. Let F?i denote the restriction

of Fi to Q and let F?(x) =
∏N0
i=1 F

?
i (x) for x ∈ Q. Note F? ∈ Kak(Q, Y) (so in particular F? ∈ Ad(Q, Y)). Let

q(y) =
∏N
i=1 qi(y) for y ∈ Y and note q : Y → Q is continuous (note qi : Y → Qi). Then q F? ∈ Ad(Q,Q)

(recall Ad maps are closed under compositions) and note Q is a compact convex in a finite dimensional
subspace of E =

∏N
i=1 Ei, so Theorem 1.1 guarantees a x ∈ Q with x ∈ q(F?(x)). Now let y ∈ F?(x) with

x = q(y). Note y ∈ F(x) so yj ∈ Fj(x) for all j ∈ {1, . . . ,N0}. Also xi = qi(x) ∈ Gi(y) for i ∈ {1, . . . ,N}.

Remark 2.12.

(i). In Theorem 2.11 we could replace Gj ∈ DKT(Y,Xj) with Gj ∈ HLPY(Y,Xj).

(ii). In Theorem 2.11 we could replace {Xi}
N
i=1, {Yi}

N0
i=1 with {Xi}i∈I, {Yi}i∈J (where I and J are index sets);

here to apply Theorem 1.1 we need to assume X is q-Schauder admissible.
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(iii). The assumption {Yi}
N0
i=1 are convex sets is not needed in the statement of Theorem 2.11.

(iv). In the proof of Theorem 2.11 note F?q ∈ Ad(Y, Y) so one could apply Theorem 1.1 if Y is a Schauder
admissible subset of

∏N0
i=1 Ei. This remark could also be applied to other results in this section.

Theorem 2.13. Let {Xi}Ni=1, {Yi}
N0
i=1 be families of convex sets each in a Hausdorff topological vector space. For each

i ∈ {1, . . . ,N0} suppose Fi : X ≡
∏N
i=1 Xi → Yi and Fi ∈ Kak(X, Yi) and in addition assume there is a compact set

Ki with Fi(X) ⊆ Ki ⊆ Yi. For each j ∈ {1, . . . ,N} suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and Gj ∈ DKT(Y,Xj). Then

there exists an x ∈ X and a y ∈ Y with yj ∈ Fj(x) for j ∈ {1, . . . ,N0} and xi ∈ Gi(y) for i ∈ {1, . . . ,N}.

Proof. Let qi, Ri, Qi, Q, F?i and F? be as in Theorem 2.11. Note F? ∈ Kak(Q, Y) (so in particular F? ∈
Ad(Q, Y)). Now F?i (Q) ⊆ Fi(X) ⊆ Ki for each i ∈ {1, . . . ,N0} so F?(Q) ⊆ K ≡

∏N0
i=1 Ki. Let q(y) =∏N

i=1 qi(y) for y ∈ Y and note q F? ∈ Ad(Q,Q) is a compact map. Also Theorem 1.1 guarantees a x ∈ Q
with x ∈ q (F?(x)) and now the result follows from the argument in Theorem 2.11.

Theorem 2.14. Let {Xi}
N
i=1, {Yi}

N0
i=1 be families of convex sets each in a Hausdorff topological vector space and

{Yi}
N0
i=1 is also a family of compact sets. For each i ∈ {1, . . . ,N0} suppose Fi : X ≡

∏N
i=1 Xi → Yi is upper

semicontinuous with convex compact values. For each j ∈ {1, . . . ,N} suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and

Gj ∈ DKT(Y,Xj). Also assume for each x ∈ X there exists an i ∈ {1, . . . ,N0} with Fi(x) 6= ∅. Finally suppose
for each i ∈ {1, . . . ,N0} that Ui = {x ∈ X : Fi(x) 6= ∅} is open in X. Then there exists an x ∈ X, a y ∈ Y and a
j0 ∈ {1, . . . ,N0} with yj0 ∈ Fj0(x) and xi ∈ Gi(y) for i ∈ {1, . . . ,N}.

Proof. Let qi, Ri, Qi and Q be as in Theorem 2.11. Let i ∈ {1, . . . ,N0} and define a mapping Φi : X → Yi
by

Φi(x)) =

{
Fi(x), x ∈ Ui,
Yi, x ∈ X\Ui.

Note Φi has nonempty convex compact values and Φi : X → Yi is upper semicontinuous from Theorem
1.3 (i.e., Φi ∈ Kak(X, Yi)). Let Φ : X→ Y be given by

Φ(x) =

N0∏
j=1

Φj(x) for x ∈ X.

Note Φ ∈ Kak(X, Y). Let Φ? denote the restriction of Φ to Q and note Φ? ∈ Kak(Q, Y). Let q(y) =∏N
i=1 qi(y) for y ∈ Y and note qΦ? ∈ Ad(Q,Q). Theorem 1.1 guarantees a x ∈ Q with x ∈ q (Φ?(x)).

Now let y ∈ Φ?(x) with x = q(y). Note y ∈ Φ(x) and xi = qi(y) ∈ Gi(y) for i ∈ {1, . . . ,N}. Now from our
assumption there exists an i0 ∈ {1, . . . ,N0} with Fi0(x) 6= ∅, i.e., x ∈ Ui0 and so i0 ∈ Φi0(x) = Fi0(x).

Now we will rewrite Theorems 2.13 and 2.14 as maximal element type results.

Theorem 2.15. Let {Xi}
N
i=1, {Yi}

N0
i=1 be families of convex sets each in a Hausdorff topological vector space and

{Yi}
N0
i=1 is also a family of compact sets. For each i ∈ {1, . . . ,N0} suppose Fi : X ≡

∏N
i=1 Xi → Yi is upper

semicontinuous with convex compact values. For each j ∈ {1, . . . ,N} suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and

Gj ∈ DKT(Y,Xj). Now suppose either for each (x,y) ∈ X× Y there exists a j ∈ {1, . . . ,N0} with yj /∈ Fj(x)
or for each (x,y) ∈ X× Y there exists an i ∈ {1, . . . ,N} with xi /∈ Gi(y). Then there exists an x ∈ X and a
i0 ∈ {1, . . . ,N0} with Fi0(x) = ∅.

Proof. Suppose the conclusion is false. Then for each x ∈ X we have Fi(x) 6= ∅ for all i ∈ {1, . . . ,N0}. Thus
Fi ∈ Kak(X, Yi) for all i ∈ {1, . . . ,N0}. Now Theorem 2.11 guarantees a x ∈ X, a y ∈ Y with yj ∈ Fj(x) for
j ∈ {1, . . . ,N0} and xi ∈ Gi(y) for i ∈ {1, . . . ,N}, a contradiction.
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Theorem 2.16. Let {Xi}
N
i=1, {Yi}

N0
i=1 be families of convex sets each in a Hausdorff topological vector space and

{Yi}
N0
i=1 is also a family of compact sets. For each i ∈ {1, . . . ,N0} suppose Fi : X ≡

∏N
i=1 Xi → Yi is upper

semicontinuous with convex compact values. For each j ∈ {1, . . . ,N} suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and

Gj ∈ DKT(Y,Xj). Also assume for each i ∈ {1, . . . ,N0} that Ui = {x ∈ X : Fi(x) 6= ∅} is open in X. Now suppose
either for each (x,y) ∈ X× Y we have yj /∈ Fj(x) for all j ∈ {1, . . . ,N0} or for each (x,y) ∈ X× Y there exists an
i ∈ {1, . . . ,N} with xi /∈ Gi(y). Then there exists an x ∈ X with Fi(x) = ∅ for all i ∈ {1, . . . ,N0}.

Proof. Suppose the conclusion is false. Then for each x ∈ X there exists an i ∈ {1, . . . ,N0} with Fi(x) 6= ∅.
Now Theorem 2.14 guarantees a x ∈ X, a y ∈ Y and a j0 ∈ {1, . . . ,N0} with yj0 ∈ Fj0(x) and xi ∈ Gi(y) for
i ∈ {1, . . . ,N}, a contradiction.

We will now use the discussion after Theorem 2.7 to obtain our final results.

Theorem 2.17. Let {Xi}Ni=1, {Yi}
N0
i=1 be families of convex sets each in a Hausdorff topological vector space, {Yi}

N0
i=1

is also a family of compact sets, and X ≡
∏N
i=1 Xi is paracompact. For each i ∈ {1, . . . ,N0} suppose Hi : X → Yi

and for each x ∈ X assume there exists a mapAi,x : X→ Yi and an open setUi,x containing x withHi(z) ⊆ Ai,x(z)
for every z ∈ Ui,x, Ai,x : Ui,x → Yi is upper semicontinuous with convex compact values. For each j ∈ {1, . . . ,N}

suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and Gj ∈ DKT(Y,Xj). Also assume either for each x ∈ X and for each

(w,y) ∈ X× Y there exists a j0 ∈ {1, . . . ,N0} (which does not depend on X) with yj0 /∈ Aj0,x(w) or for each
(x,y) ∈ X× Y there exists an i ∈ {1, . . . ,N} with xi /∈ Gi(y). Then there exists an x ∈ X and a i0 ∈ {1, . . . ,N0}

with Hi0(x) = ∅.

Proof. Let i ∈ {1, . . . ,N0}. From the discussion after Theorem 2.7 (with Z = X, W = Yi, H = Hi and
Ax = Ai,x) there exists a map Ψi : X → Yi with Hi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X → Yi is upper
semicontinuous with convex compact values: here {Ui,x}x∈X is an open covering of X so there exists a
locally finite open covering {Vi,x}x∈X of X (recall X is paracompact) with x ∈ Vi,x and Vi,x ⊆ Ui,x for
x ∈ X, and for each x ∈ X,

Qi,x(z) =

{
Ai,x(z), z ∈ Vi,x,
Yi, z ∈ X\Vi,x,

and Ψi : X→ Yi is
Ψi(z) =

⋂
x∈X

Qi,x(z) for z ∈ X.

We now claim for each x ∈ X and for each (w,y) ∈ X× Y there exists a j0 ∈ {1, . . . ,N0} with yj0 /∈ Ψj0(w)
if in the statement of Theorem 2.17 we have for each x ∈ X and for each (w,y) ∈ X× Y there exists a
j0 ∈ {1, . . . ,N0} (which does not depend on X) with yj0 /∈ Aj0,x(w). To see this fix (w,y) ∈ X× Y. Now
for each x ∈ X there exists a j0 ∈ {1, . . . ,N} (which does not depend on x) with yj0 /∈ Aj0,x(w). Now since
{Vj0,x}x∈X is a covering of X there exists an xj0 ∈ X with w ∈ Vj0,xj0 so

Ψj0(w) =
⋂
x∈X

Qj0,x(w) ⊆ Qj0,xj0 (w) = Aj0,xj0 (w),

and as a result yj0 /∈ Ψj0(w). Thus our claim is true. Now apply Theorem 2.15 (with Fi = Ψi) so there exists
an x ∈ X and a i0 ∈ {1, . . . ,N0} with Ψi0(x) = ∅. Now since Hi(z) ⊆ Ψi(z) for z ∈ X, then Hi0(x) = ∅.

Theorem 2.18. Let {Xi}Ni=1, {Yi}
N0
i=1 be families of convex sets each in a Hausdorff topological vector space, {Yi}

N0
i=1

is also a family of compact sets, and X ≡
∏N
i=1 Xi is paracompact. For each i ∈ {1, . . . ,N0} suppose Hi : X → Yi

and for each x ∈ X assume there exists a map Ai,x : X → Yi and an open set Ui,x containing x with Hi(z) ⊆
Ai,x(z) for every z ∈ Ui,x, Ai,x : Ui,x → Yi is upper semicontinuous with convex compact values. For each
j ∈ {1, . . . ,N} suppose Gj : Y ≡

∏N0
i=1 Yi → Xj and Gj ∈ DKT(Y,Xj). Also assume for each i ∈ {1, . . . ,N0} that

Ui = {x ∈ X : Fi(x) 6= ∅} is open in X. Finally suppose either for each x ∈ X and for each (w,y) ∈ X× Y we have
yj /∈ Aj,x(w) for all j ∈ {1, . . . ,N0} or for each (x,y) ∈ X× Y there exists an i ∈ {1, . . . ,N} with xi /∈ Gi(y). Then
there exists an x ∈ X with Hi(x) = ∅ for all i ∈ {1, . . . ,N0}.
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Proof. Let i ∈ {1, . . . ,N0} and let Vi,x, Qi,x and Ψi be as in Theorem 2.17. We now claim for each (w,y) ∈
X× Y we have yj /∈ Ψj(w) for j ∈ {1, . . . ,N0} if in the statement of Theorem 2.18 we have for each x ∈ X
and for each (w,y) ∈ X× Y we have yj /∈ Aj,x(w) for all j ∈ {1, . . . ,N0}. To see this fix (w,y) ∈ X× Y and
fix i ∈ {1, . . . ,N0}. Now for each x ∈ X we have yj /∈ Aj,x(w). Since {Vi,x}x∈X is a covering of X there exists
an x? ∈ X with w ∈ Vi,x? so

Ψi(w) =
⋂
x∈X

Qi,x(w) ⊆ Qi,x?(w) = Ai,x?(w),

and thus since yi /∈ Ai,x?(w) we have yi /∈ Ψi(w), and our claim is true.
Let i ∈ {1, . . . ,N0} and define a map Φi : X→ Yi by

Φi(x) =

{
Ψi(x), x ∈ Ui = {x ∈ X : Hi(x) 6= ∅},
Yi, x ∈ X\Ui.

Note Φi has nonempty convex compact values and Φi : X → Yi is upper semicontinuous from Theorem
1.3 (i.e., Φi ∈ Kak(X, Yi)). Let Φ : X→ Y be given by

Φ(x) =

N∏
j=1

Φj(x) for x ∈ X.

Note Φ ∈ Kak(X, Y). Let qi, Ri, Qi and Q be as in Theorem 2.11 and let Φ? denote the restriction of Φ
to Q and note Φ? ∈ Kak(Q, Y). Now let q(y) =

∏N
i=1 qi(y) for y ∈ Y and note q : Y → Q is continuous

so qΦ? ∈ Ad(Q,Q). Theorem 1.1 guarantees a x ∈ Q with x ∈ q (Φ?(x)). Let y ∈ Φ?(x) with x = q(y),
i.e., y ∈ Φ(x) with xi = qi(y) for i ∈ {1, . . . ,N0}. For i ∈ {1, . . . ,N0} we have xi = qi(y) ∈ Gi(y) which is
a contradiction if we assume in the statement of Theorem 2.18 that for each (x,y) ∈ X× Y there exists an
i ∈ {1, . . . ,N} with xi /∈ Gi(y). Suppose there exists an i0 ∈ {1, . . . ,N0} with Hi0(x) 6= ∅. Then x ∈ Ui0 so
we have yi0 ∈ Φi0(x) = Ψi0(x), which is a contradiction if we assume in the statement of Theorem 2.18
that for each z ∈ X and for each (w,y) ∈ X× Y we have yj /∈ Aj,z(w) for all j ∈ {1, . . . ,N0}. As a result
Hi(x) = ∅ for all i ∈ {1, . . . ,N0}.
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