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Abstract

By using maximum principle approach, the existence, uniqueness and stability of a coupled frac-
tional partial differential equations is studied. A new fractional characteristic finite difference scheme
is given for solving the coupled system. This method is based on shifted Grünwald approximation
and Diethelm’s algorithm. We obtain the optimal convergence rate for this scheme and drive the
stability estimates. The results are justified by implementing an example of the fractional order
time and space dependent in concept of the complex Lévy motion. Also, the numerical results are
examined for disinfection and sterilization of tetanus. c©2016 All rights reserved.
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1. Introduction

Recently, fractional calculus is a powerful tool to investigate the dynamics of complex systems in
different sciences such as fluid mechanics, economic and biology ( for example, see [4, 11, 13, 14, 15,
19, 21, 22] and therein references). Many of biology researchers have used to model real process by
fractional calculus. For instance, it is developed a fractional-order mathematical model for a human
root dentin [18]. Also, in biology, it is proved that the membranes of cells of biological organism
have fractional-order electrical conductance [5]. In [7], it is shown that fractional derivatives embody
essential features of cell rheological behavior. In addition in [1], it is presented that modeling the
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behavior of brainstem vestibule oculomotor neurons by fractional ordinary differential equation has
more advantages rather than integer-order differential equation.

The coupled fractional dynamics system (CFDS) is a governing equation of Lévy motion that it
describes several interesting biological phenomena. For example, some modern of epidemics or Avian
influenza can spread around the world in a few weeks and seem to follow a non-Gaussian, scale-free
dynamics [1]. In hydrology system, such equations have been shown to govern pulse propagation
along orthogonal polarization axes in Lévy motion and in wavelength-division-multiplexed systems
[2, 23]. The concept of the fractional equations can define as a model of beam propagation or water
wave interactions. Fractional solitary waves in these equations are often called vector solutions in the
literature as they generally contain two components. In all the above physical situations, collision
of vector solutions is an important issue. These fractional equations have been studied intensively
in recent years. Moreover, it has been shown that passing-through collision and vector solutions
can also bounce off each other or trap each other. The stationary forms of these equations are
investigated by a number of authors and a physical problem was introduce by Benson in [2]. As for
the numerical methods for this type of problems, the finite difference method has been considered
by several authors in various settings, see e.g.[23].

In this paper, as a result of a special characteristic scheme, artificial diffusion is added only in
the fractional characteristic direction so that internal layers are not smeared out when the added
diffusion removes oscillations near boundary layers. Stability of the scheme of characteristics has
played a very important role in fractional partial differential equation. These methods were first
introduced by Russell in [10, 20]; Douglas [8] and Su in [23]. The fractional fluid problems are
further studied and mathematically developed, e.g. the fractional partial differential equations and
the convection-diffusion problems in [23].

We consider the following form of the coupled fractional system of Lévy motion equations (CF-
SLM) for (x, t) ∈ ΩT = Ω× [0, T ],



ω11(x, t)∂
β11ψ1

∂tβ11
+ ν11(x, t)∂

β11ψ1

∂xβ11
− ε11

(
D+,11(t) ∂

α11ψ1

∂+xα11
+D−,11(t) ∂

α11ψ1

∂−xα11

)
+ω12(x, t)∂

β12ψ2

∂tβ12
+ ν12(x, t)∂

β12ψ2

∂xβ12
− ε12

(
D+,12(t) ∂

α12ψ2

∂+xα12
+D−,12(t) ∂

α12ψ2

∂−xα12

)
= S1(x, t),

ω21(x, t)∂
β21ψ1

∂tβ21
+ ν21(x, t)∂

β21ψ1

∂xβ21
− ε21

(
D+,21(t) ∂

α21ψ1

∂+xα21
+D−,21(t) ∂

α21ψ1

∂−xα21

)
+ω22(x, t)∂

β22ψ2

∂tβ22
+ ν22(x, t)∂

β22ψ2

∂xβ22
− ε22

(
D+,22(t) ∂

α22ψ2

∂+xα22
+D−,22(t) ∂

α22ψ2

∂−xα22

)
= S2(x, t),

ψ1(x, 0) = ψ̃1(x), ψ2(x, 0) = ψ̃2(x), x ∈ Ω,

ψ1(x, t) = ψ2(x, t) = 0, t ∈ (0, T ], & x ∈ ∂Ω,

(1.1)

where ψ1 and ψ2 are the wave amplitudes in two polarizations, Ω = [xL, xR] ⊂ R is a bounded
domain with boundary ∂Ω and 0 < εi,j � 1, i, j = 1, 2 are small damping factors which control
the diffusion. The advection dominance of system (1.1) are shown by 0 ≤ βi,j < 1, 1 < αi,j ≤
2, i, j = 1, 2 whose are the orders of fractional diffusion and finally {ωi,j(x, t), νi,j(x, t)}2

i,j=1 are
drifts of the process for representing the convection velocity. The equation (1.1) is associated with
the following notations:

D+,i,j(t) =
(1 + γ)Di,j(t)

2
, D−,i,j(t) =

(1− γ)Di,j(t)

2
, i, j = 1, 2. (1.2)
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Where 0 < Dmin ≤ D−,i,j(t), D+,i,j(t) ≤ Dmax <∞ are the time-dependent coefficients of dispersion
such that −1 ≤ γ ≤ 1 shows the relative weight of forward versus backward transition probability;
{Si(x, t)}2

i=1 are the source and sink terms; also the left-side (+) and the the right-side (−) Riemann-
Liouville fractional derivatives of different orders of a function φ(x) for x ∈ [xL, xR] are defined as
follows:

∂σφ

∂+xσ
=

1

Γ(ρ− σ)

dρ

dxρ

∫ x

xL

φ(ξ)

(x− ξ)σ−ρ+1
dξ, ρ− 1 < σ < ρ, (1.3)

∂σφ

∂−xσ
=

1

Γ(ρ− σ)

(−d)ρ

dxρ

∫ xR

x

φ(ξ)

(−x+ ξ)σ−ρ+1
dξ, ρ− 1 < σ < ρ, (1.4)

where ρ ∈ {1, 2} and Γ(.) is the Gamma function. Also, the modified Riemann-Liouville derivative
is defined as

∂σφ

∂xσ
=

1

Γ(1− σ)

d

dx

∫ x

xL

(x− ξ)−σ(φ(ξ)− φ(xL))dξ, 0 ≤ σ < 1, (1.5)

Moreover, we state (1.3), (1.4) and (1.5) for time in (1.1). The authors of [3] provided an
important justification for the above model equations for simulating the epidemiology of tetanus in
Italy from 1955 to 1982.

For simplifying the system (1.1) is written in the following matrix form
Fβα,ε(ψ(x, t)) = S(x, t), in (x, t) ∈ ΩT ,
ψ(x, 0) = ψ0(x), x ∈ Ω,
ψ(x, t) = 0, t ∈ [0, T ], x ∈ ∂Ω,

(1.6)

where

Fβα,ε(.) =
(
Fβi,jαi,j ,εi,j

(.)
)2

i,j=1
, (1.7)

Fβi,jαi,j ,εi,j
(.) = ωi,j(x, t)

∂βi,j(.)

∂tβi,j
+ νi,j(x, t)

∂βi,j(.)

∂xβi,j
− εi,j

(
D+,i,j(t)

∂αi,j(.)

∂+xαi,j
+D−,i,j(t)

∂αi,j(.)

∂−xαi,j

)
,

S(x, t) =
(
S1(x, t), S2(x, t)

)T
, ψ(x, t) =

(
ψ1(x, t), ψ2(x, t)

)T
and ψ0(x) =

(
ψ̃1(x), ψ̃2(x)

)T
.

Formulas of finite differences have been the most dominating methods in the numerical study of
different equations, see, e.g. [11] and the references therein. In the most recent studies, the focus
has been moved towards some aspects of finite characteristics approach. But, connective terms of
the type included in (1.1) are not considered elsewhere. Also, in this paper, we observe the new
fractional characteristic finite difference based on stability estimates and convergence analysis for
the approximation solution of (1.6) which have not been studied elsewhere.

The contents of the article are as follows. We use maximum principle theorem for such equations in
the second Section. In Section 3, we use the fractional characteristic finite difference scheme(FCFD)
based on the shifted Grünwald formula and Diethelm’s algorithm. Section 4 is devoted to study of
the stability estimates and the proof of convergence rates. In the Section 5, we present our results
by performing the algorithm on some examples for different αi,j, βi,j.

2. Existence, uniqueness and stability

The Hölder space C0,γ(Ξ) is defined to be the subspace of C(Ξ) functions that are Hölder con-
tinuous with the exponent γ. For 0 < η < γ ≤ 1, we have the obvious relations

C0,1(Ξ) ⊂ C0,γ(Ξ) ⊂ C0,η(Ξ) ⊂ C(Ξ).
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With the norm

‖v‖C0,γ(Ξ) = ‖v‖C(Ξ) + sup{|v(x)− v(y)|
‖x− y‖γ

| x, y ∈ Ξ, x 6= y},

the space C0,γ(Ξ) becomes a Banach space. We now consider the following generalization of the
mixed initial-boundary value problem of (1.1): Li

β
α,ε(ψ1, ψ2) = Si(x, t), in (x, t) ∈ ΩT , i = 1, 2

ψ(x, 0) = ψ0(x), x ∈ Ω,
ψ(x, t) = 0, t ∈ [0, T ], x ∈ ∂Ω,

(2.1)

where

Liβα,ε(ψ1, ψ2) =
2∑
j=1

ωi,j(x, t)
∂βi,jψj
∂tβi,j

−
2∑
j=1

εi,j

(
D+,i,j(t)

∂αi,jψj
∂+xαi,j

+D−,i,j(t)
∂αi,jψj
∂−xαi,j

)

+
2∑
j=1

νi,j(x, t)
∂βi,jψj
∂xβi,j

.

Theorem 2.1. Let ψ1, ψ2 be smooth and assume that Liβα,ε(ψ1, ψ2) ≤ 0 in ΩT , 0 < βi,j < 1 and
β = min βi,j. Then

(i) ψ1 and ψ2 attain theirs maximum on the parabolic boundary Γp i.e., the boundary of ΩT minus
the interior of the top part of this boundary, Ω× {t = T},

(ii) the solution of (2.1) satisfies

‖ψ‖C0,β(ΩT ) ≤ max{‖ψ̃1‖C0,β(Ω), ‖ψ̃2‖C0,β(Ω)} (2.2)

+T‖S‖C0,β(ΩT ),

and finally

(iii) the problem (2.1) has at most one solution which is bounded.

Proof.

(i) If this were not true, then the maximum would be attained either at an interior point of
Ω× (0, T ) or at a point of Ω× {0, T}, i.e. at a point (x, t) ∈ Ω× [0, T ], and we would have

ψi(x, t) = max
Ω×[0,T ]

ψi = M > m = max
∂{Ω×{0,T}}

ψi, i = 1, 2.

By our assumptions we have

Liβα,ε(ψ1, ψ2) ≤ 0 Ω× (0, T ).

On the other hand, at the point (x, t), where ψi takes its maximum, we have

−Liβα,ε(ψ1, ψ2) ≥ 0,

and
∂ψi(x, t)

∂t
= 0 if t < T or

∂ψi(x, t)

∂t
≥ 0 if t = T , so that in both cases

Liβα,ε(ψ1, ψ2) ≥ 0.

This is a contraction and thus shows our claim .
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(ii) In fact as we shall see, the solution of this problem may be expressed as

w(t) = w0(t)w1(t)Eα(t)[φ(x)] +

∫ t

0

Eα(t− s)[f̃(s)]ds, (2.3)

where we write w(t) for w(., t) and similarly for f̃(s) and Eα(t)[ ] = (4πt)−1/2
∫ 1

0
e−|x−y|

2/4t

|x−y|α [ ]dy
is a linear operator. This formula represents the solution of the inhomogeneous equations and
is referred as Duhael’s principle [23]. Clearly, since Eα(t) is bounded in L2−norm, the right
hand side of (2.3) is well defined. It is clear that ‖Eα(t)[g]‖Cα ≤ ‖g‖Cα for t > 0. Then we
obtain (2.2). By (2.2) we obtain the stability estimate.

(iii) If there were two solutions of (2.3), then their difference would be a solution with initial data
zero. It suffices therefore to show that the only bounded solution w of homogeneous (2.3) (that

is f̃ = 0 ) is w = 0, or that and if (x0, t0) is an arbitrary point in [0, 1] × [0, T ], and ε > 0

is arbitrary, then |w(x0, t0)| ≤ ε. We introduce the auxiliary function w̃(x, t) = |x|2+2
|x0|2+2

. Let

now H±(x, t) = −εw̃(x, t) ± w(x, t). We conclude H±t − =α(H±) = 0 in [0, 1] × [0, T ]. Since
w is bounded we have w(x, t) ≤ M on [0, 1] × [0, T ] for some M . Defining R2 = max(|x0(1 −
x0)|,M(|x0(1 − x0)| + 2t0)/ε), we have H±(x, t) ≤ −ε R2

|x0(1−x0)|+2t0
+ M ≤ 0, if |x| = R, and

H±(x, 0) = −ε|x0(1−x0)|
|x0(1−x0)|+2t0

≤ 0, for x ∈ [0, 1]. Hence we may apply (i) and conclude H±(x, t) ≤ 0,

for (x, t) ∈ [0, 1] × [0, T ]. In particular, at (x0, t0) we have ±w(x0, t0) = H±(x0, t0) + ε ≤ ε,
which completes the proof.

3. Discretization by new fractional characteristic finite difference scheme

The implementation of characteristic finite difference scheme is given by many authors (see e.g.
[24]) and Diethelm’s algorithm is given by [6] . We combine two numerical schemes Shifted Grunwald
and Diethelm’s algorithm to solve the quite complex coupled FDE. Let

dψi = ωi,j(x, t)
∂βi,j(ψi)

∂tβi,j
+ νi,j(x, t)

∂βi,j(ψi)

∂xβi,j
i, j = 1, 2 (3.1)

and we assume that the characteristic directions associated with fractional operators

ωi,j(x, t)
∂βi,j (ψi)

∂tβi,j
+ νi,j(x, t)

∂βi,j (ψi)

∂xβi,j
be denoted by τi,j = τi,j(x) where

∂βi,j [ ]

∂τ
βi,j
i,j

=
ωi,j(x, t)

χi,j(x, t)

∂βi,j [ ]

∂tβi,j
+
νi,j(x, t)

χi,j(x, t)

∂βi,j [ ]

∂xβi,j
i, j = 1, 2 (3.2)

and
χi,j(x, t) =

(
(ωi,j(x, t))

2 + (νi,j(x, t))
2
)1/2

. (3.3)

Then, the matrix form of equation (1.6) can be written in the following form

Fβi,jαi,j ,εi,j
ψi =

=r︷ ︸︸ ︷
χi,j(x, t)

∂βi,jψi
∂τβi,j

− εi,j
(
D+,i,j(t)

∂αi,jψi
∂+xαi,j

+D−,i,j(t)
∂αi,jψi
∂−xαi,j

)
︸ ︷︷ ︸

=s

i, j = 1, 2. (3.4)



D. Rostamy, E. Mottaghi, J. Math. Computer Sci. 16 (2016), 193–204 198

Thus, we compute two terms of (3.4) i.e. r by Diethelm’s algorithm and s by the approximate
characteristics. In each of the procedure to be treated below we shall consider a time step tn = n∆t
for a positive integer n, ∆t = T

N
, N ∈ Z+ and for any x ∈ [xL, xR] we define a fractional backward

characteristic tracking by:

rβi,j(t;x; tn+1) = x+

(
− νi,j(x, t

n+1)

ωi,j(x, tn+1)

) 1
βi,j

(tn+1 − t), (3.5)

xβi,j = rβi,j(tn;x; tn+1) = x+

(
− νi,j(x, t

n+1)

ωi,j(x, tn+1)

) 1
βi,j

∆t. (3.6)

Also, we shall consider a space step xm = m∆x for a positive integer m, ∆x = xR−xL
M

, and M ∈ Z+.
Therefore, we write:

r = ωi,j(x, t)
∂βi,jψi
∂tβi,j

+ νi,j(x, t)
∂βi,jψi
∂xβi,j

= ωi,j(x, t)
t−nβi,j

Γ(−βi,j)

∫ 1

0

=g1(x,η)︷ ︸︸ ︷
ψi(x, t

n − tnη)

ηβi,j+1
dη

+ νi,j(x, t)
x−mβi,j

Γ(−βi,j)

∫ 1

0

=g2(η,t)︷ ︸︸ ︷
ψi(x

m − xmη, t)
ηβi,j+1

dη.

Hence, according to Diethelm’s algorithm [6], we have:

r = ωi,j(x, t)
(tn)−βi,j

Γ(−βi,j)
(Qn(g1) +Rn(g1)) + νi,j(x, t)

(xm)−βi,j

Γ(−βi,j)
(Qm(g2) +Rm(g2)) , (3.7)

where

Qn(g1) =
n∑
k=0

λi,jk,ng1(x,
k

n
) ≈

∫ 1

0

g1(x,w)w−βi,j−1dw, Rn(g1) = O((∆t)2−βi,j),

Qm(g2) =
m∑
k=0

λi,jk,mg2(
k

m
, t) ≈

∫ 1

0

g2(w, t)w−βi,j−1dw, Rm(g2) = O((∆x)2−βi,j),

and in the following explicit expressions for the weights λi,jk,q, q = n or q = m are given ( cf. [8]):

λi,jk,q =
1

βi,j(1− βi,j)q−βi,j


−1 for k = 0
2k1−βi,j − (k − 1)1−βi,j − (k + 1)1−βi,j for k = 1, 2, ..., q − 1
(−1 + βi,j)k

−βi,j − (k − 1)1−βi,j + k1−βi,j for k = q.
(3.8)

For computing s, we use the shifted Grünwald approximations in discrete forms at each nodes
x introduced in [4, 9]:
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∂αi,jψi(x,t)
∂+x

αi,j = 1
(∆x)αi,j

∑bl1c+1
k=0 g

(αi,j)
k ψi(x− (k − 1)∆x, t) + a1

∂αi,j+1ψi(x,t)

∂+x
αi,j+1 ∆x+O((∆x)2),

∂αi,jψi(x,t)
∂−x

αi,j = 1
(∆x)αi,j

∑bl2c+1
k=0 g

(αi,j)
k ψi(x+ (k − 1)∆x, t) + b1

∂αi,j+1ψi(x,t)

∂+x
αi,j+1 h+O((∆x)2),

(3.9)

where l1 = x−xL
∆x

and l2 = xR−x
∆x

, with bl1c and bl2c being the floor of l1 and l2, respectively. Also, a1

and b1 are constant and independent of h, ψi, x or t. Moreover, the coefficients g
(αi,j)
k are evaluated

recursively. 
g

(αi,j)
0 = 1,

g
(αi,j)
k =

(
1− α+1

k

)
g

(αi,j)
k−1 for k ≥ 1.

(3.10)

Therefore, the following lemma plays an important role in this method.

Lemma 3.1. By the above discretization and the fractional characteristic finite difference method
for (1.7) we have the following system:

An+1Ψn+1 =
n∑
k=1

BkΨk + Sn+1, (3.11)

where An+1 =

[
An+1

11 An+1
12

An+1
21 An+1

22

]
, Ψn+1 =

[
Ψn+1

1

Ψn+1
2

]
, Bk =

[
Bk

11 Bk
12

Bk
21 Bk

22

]
and Sn+1 =

[
Sn+1

1

Sn+1
2

]
.

Remark 3.2. We stress on the fact that the above notations are introduced in the proof.

Proof. By (3.4) - (3.9) and the fully discretization form of (1.6), we conclude that

Fβi,jαi,j ,εi,j
ψi(x, t) |(xl,tn+1)

= r + s ' F̃βi,jαi,j ,εi,jψi

= ωi,j(x
l, tn+1)

(tn)−βi,j

Γ(−βi,j)

n∑
k=0

λi,jk,n

(
k

n

)−βi,j−1 ψi(x
l, tn − tn( k

n
)) + ψi(xβi,j , t

n − tn( k
n
))

2

+ νi,j(x
l, tn+1)

(xm)−βi,j

Γ(−βi,j)

m∑
k=0

λi,jk,m

(
k

m

)−βi,j−1

ψi(x
l − xl( k

m
), tn+1)

−
εi,jD

n+1
+,i,j

(∆x)αi,j

l+1∑
k=0

g
(αi,j)
k ψi(x

l−k+1, tn+1)

−
εi,jD

n+1
−,i,j

(∆x)αi,j

M−l+1∑
k=0

g
(αi,j)
k ψi(x

l+k−1, tn+1),

(3.12)

where Dn+1
−,i,j = D−,i,j(t

n+1) for i, j ∈ {1, 2}, l = 1, 2, ...,M − 1, n = 0, 1, ..., N − 1, ψ1(xl, 0) = ψ10(xl),

ψ2(xl, 0) = ψ20(xl), ψ10(x), ψ20(x) and Sn+1,l
j = Sj(x

l, tn+1) are given functions.

Let fki,j = λi,jk,n
(
k
n

)−βi,j−1
, δl,n+1

i,j = ωi,j(x
l, tn+1) (tn)−βi,j

2Γ(−βi,j) , γ
l,n+1
i,j = νi,j(x

l, tn+1) (xm)−βi,j

Γ(−βi,j) , ξn+1
i,j =

εi,jD
n+1
−,i,j

(∆x)αi,j
and ηn+1

i,j =
εi,jD

n+1
+,i,j

(∆x)αi,j
. Thus, we have the following system:
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δl,n+1
1,j

∑n
k=0 f

k
1,jψ1(xl, tn − tn( k

n
)) + δl,n+1

1,j

∑n
k=0 f

k
1,jψ1(xβ1,j , t

n − tn( k
n
))

+γl,n+1
1,j

∑m
k=0 f

k
1,jψ1(xl − xl( k

m
), tn+1)− ηn+1

1,j

∑l+1
k=0 g

(α1,j)
k ψi(x

l−k+1, tn+1)

−ξn+1
1,j

∑M−l+1
k=0 g

(α1,j)
k ψ1(xl+k−1, tn+1)

+δ2,n+1
2,j

∑n
k=0 f

k
2,jψ2(xl, tn − tn( k

n
)) + δ2,n+1

2,j

∑n
k=0 f

k
2,jψ2(xβ2,j , t

n − tn( k
n
))

+γ2,n+1
2,j

∑m
k=0 f

k
2,jψ2(xl − xl( k

m
), tn+1)− ηn+1

2,j

∑l+1
k=0 g

(α2,j)
k ψ2(xl−k+1, tn+1)

−ξn+1
2,j

∑M−l+1
k=0 g

(α2,j)
k ψ2(xl+k−1, tn+1) = Sn+1,l

j ,

j = 1, 2.

(3.13)

We let the node functions Ψ(xl, tn) = Ψn
l = (Ψn

1,l,Ψ
n
2,l) be the numerical approximation to the true

solution ψ(xl, tn) = ψnl = (ψn1,l, ψ
n
2,l) and Ψ(xβi,j , t

n) = Ψ
n

= (Ψ
n

1 ,Ψ
n

2 ) is evaluated by the Courant
number(see for more details [20]). As a result, we obtain the above iterative formula i.e. (3.11) by:

an+1
l,k,i,j =



1 + (δl,n+1
i,j γl,n+1

i,j )fki,j − (ξn+1
i,j + ηn+1

i,j )εi,jg
(αi,j)
1 , l = k,

(δl,n+1
i,j γl,n+1

i,j )fki,j − (ξn+1
i,j g

(αi,j)
2 + ηn+1

i,j g
(αi,j)
0 )εi,j, l = k − 1,

(δl,n+1
i,j γl,n+1

i,j )fki,j − (ξn+1
i,j g

(αi,j)
0 + ηn+1

i,j g
(αi,j)
2 )εi,j, l = k + 1,

(δl,n+1
i,j γl,n+1

i,j )fki,j − ξn+1
i,j εi,jg

(αi,j)
k−l+1, l < k − 1,

(δl,n+1
i,j γl,n+1

i,j )fki,j − ηn+1
i,j εi,jg

(αi,j)
l−k+1, l > k − 1,

(3.14)

where An+1
i,j =

(
an+1
l,k,i,j

)
, i, j = 1, 2. Also, we obtain Bk

i,j =
(
bkl,k,i,j

)
such that

bkl,k,i,j =


1− Crn,∗,i,jl , l = k − [Crn,∗,i,jl ],

Crn,∗,i,jl , l = k − [Crn,∗,i,jl ]− 1,
0 otherwise,

(3.15)

where Crn,i,jl =
(
− vi,j(x

l,tn)

wi,j(xl,tn)

) 1
βi,j ∆t

∆x
is the Courant number [20, 23] and Crn,∗,i,jl is the fractional part

of the Courant number.

4. Stability and the convergence analysis

In the section, we analyze the stability and the convergence behavior of the characteristic finite
difference method.

Theorem 4.1. The characteristic finite difference scheme (3.11) is unconditionally stable in the L∞

norm for 1 < αi,j ≤ 2 and 0 < βi,j ≤ 1. In particular matrices An+1 and Bk define in (3.14) and
(3.15) below satisfy

‖(An+1)−1Bn‖∞ ≤ 1, ‖(An+1
i,j )−1‖∞ ≤ 1 i, j = 1, 2. (4.1)

Proof. According to (3.15), 0 < βi,j ≤ 1 and the results of the Courant number in [20, 23], we
conclude that ‖Bk

i,j‖∞ ≤ 1, i, j = 1, 2 . Also, if we use (3.14) and 1 < αi,j ≤ 2 than An+1
i,j is



D. Rostamy, E. Mottaghi, J. Math. Computer Sci. 16 (2016), 193–204 201

diagonally dominant by rows and det(An+1
i,j ) 6= 0, therefore we have ‖(An+1

i,j )−1‖∞ ≤ 1. Finally, we
referred to literature in linear algebra and matrix theory, e.g. G. Golub, [12] and this conclude the
proof.

Theorem 4.2. Assume that the true solution of problem (1.1) and the numerical solution of the
fractional characteristic finite difference scheme of problem (3.11) denote by ψ(x, t), Ψh(x, t) respec-
tively. Then, the following order of error estimate holds for ∆t = ∆x = h, and for the residual
R[ψ(x, t)] = Fβα,ε(ψ(x, t))− S(x, t) we have:

eh := ‖R[Ψ(x, t)]‖2 = O(h2−β), β = max
i,j=1,2

βi,j.

Proof. We consider (3.11) and by using (3.7) and (3.9), we obtain the global truncation error see
Lemma 2.1 [8] and Diethelm’s algorithm [6]. Hence, for finding the global truncation error, we apply
Theorem 4.1 and norm equivalences in Rn ( e.g. G. Golub, [12]) .

5. Experimental results and some real world applications

We recall that in 1827, Robert Brown looked through a microscope at particles trapped in cavities
inside pollen grains in water, he noted that the particles moved through the water but was not able
to determine the mechanisms that caused this motion. Atoms and molecules had long been theorized
as the constituents of matter, and many decades later, Albert Einstein published a paper in 1905
that explained in precise detail how the motion that Brown had observed was a result of the pollen
being moved by individual water molecules. This explanation of Brownian motion served as definitive
confirmation that atoms and molecules actually exist, and was further verified experimentally by Jean
Perrin in 1908. The mathematical model of Brownian motion has numerous real-world applications.
For instance, disinfection areas and sterilization in health care facilities are often cited [16, 17].

In this section, we examine the results by an example of fractional model of disinfection and
sterilization of tetanus. By Euclidean distance map, we portrait an three dimension of area into
the [xL, xR]. Also, we assumed that ψ1, ψ2, S1 and S2 denote the the density (number of particles
per unit volume) of infective and susceptible, recovered and vaccinated individuals in the population
for an area with environmental conditions, respectively. Finally, we report the best results for this
example. Furthermore, Carducci et al. [3] show that they consider an application on tetanus, and
this example is not a purely mathematical test case without any practical use.

We observe that if we choose ωi,j(x, t) = −νi,j(x, t) = sin2(x + t), S1(x, t) = e−(x+t) − e−(1+t),
S2(x, t) = et − e−(x2−t−1), εi,jD+,i,j = εi,jD−,i,j = 10−3, αi,j = 1.8 and βi,j = 0.2, i, j = 1, 2. Then the
following couple system arises in dynamics [16, 17]. Therefore, the system (1.1) for n = m, xL = 0
and xR = T = 1 can be written in a matrix form as

Fβα,ε(ψ(x, t)) = S(x, t), in (x, t) ∈ ΩT ,
ψ(x, 0) = x, x ∈ [0, 1],
ψ(0, t) = 0, t ∈ [0, 1],
ψ(1, t) = 0, t ∈ [0, 1].

(5.1)

Moreover, we carry out the above algorithm, by an AMD Opteron computer where 15 Gigabytes RAM
memory with 2.2 GHz CPU has been used for these experiments. Let Ψ(x, t) be an approximated
solution for this algorithm then the error quantity is eh = ‖R[Ψ(x, t)]‖2. The pointwise error quantity
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and the discrete norm of error for this approximation method with reference solution is given in Figure
1 and the order of convergence rates are investigated in Figures of 3–5. Also, we show the global
assembled matrix in Figure 2. We know that the similar band matrix occurs in many areas of linear
algebra. Because of the simple description of the matrix operation and eigenvalues/eigenvectors given,
we confirm the stability and convergence analysis for this method. From a computational point of
view, working with band matrices is always preferential to working with similarly dimensioned square
matrices. A band matrix can be likened in complexity to a rectangular matrix whose row dimension
is equal to the bandwidth of the band matrix. Thus the work involved in performing operations such
as multiplication falls significantly, often leading to huge savings in terms of calculation time and
complexity. Finally, by using Figures, we conclude that eh = ‖R[Ψ(x, t)]‖2 = O(h2−β).

Figure 1: Plot of error function eh = ‖R[Ψ(x, t)]‖2 for n = 25.

Figure 2: Graph of matrix Ani,j. Figure 3: Plot of convergence rate for eh.
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Figure 4: Plot of convergence rate for eh

h
. Figure 5: Plot of convergence rate for eh

h2
.

6. Conclusion

To this end, we have constructed a fractional characteristic finite difference based on the shifted
Grünwald and Diethelm formulas in space and time for solving the fractional coupled system of
equations. Stability and convergence analysis are very powerful mathematical tools in this problem
by this method. We investigated them by some theorems and numerical experimental results.
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