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Abstract

We study the approximate solution of the special type nt™ order linear differential equation by applying initial and bound-
ary conditions using Taylor’s series formula. That is, we prove the sufficient condition for the Mittag-Leffler-Hyers-Ulam stability
and Mittag-Leffler-Hyers-Ulam-Rassias stability of the special type linear differential equation of higher order with initial and
boundary conditions using Taylor’s series formula.
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1. Introduction

The theory of stability is an important branch of the qualitative theory of differential equations. In
1940, Ulam [37] posed a problem concerning the stability of functional equation: ”"Give conditions in order
for a linear function near an approximately linear function to exist”. One year later, Hyers [15] provided an
answer to problem of Ulam for Cauchy additive functional equation based on Banach spaces. After that,
many mathematicians have contributed to the development of the Ulam’s problem to other functional
equations on various spaces in different directions [2, 5-9, 16, 27, 31, 34, 35].

Ulam’s recent problem has been generalization by substituting functional equations with differential

equations: The differential equation ¢ (h, ., C(n)) = 0 has the Hyers-Ulam stability (Shortly
denote: HU stability) if for a given € > 0 and a function ¢ such that

o (hed e d™) <,

then there exists a solution (, of the differential equation such that |((s) — Cq(s)| < K(e) and lirr}) K(e) =0.
€—
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Oblaza seems to be the first author who has investigated the HUS of linear differential equations (see
[28, 29]). Thereafter, Alsina and Ger published their paper [4], which handles the HU stability of the
linear differential equation {’(s) = P(s).

In recent years, many authors are studying the HUS of differential equations, and a number of math-
ematicians are paying attention to the new results of the HUS of differential equations, which were
extended to the first order, second order and higher orders in [1, 10, 13, 14, 17, 18, 20-23, 26, 30, 32, 33, 36].

Recently, Murali et al. [25] have investigated the HU stability of the linear differential equation of
higher order using Fourier transform method.

In 2014, Algifiary and Jung [3] proved the Hyers-Ulam stability of the following linear differential
equation y”(x) + B(x)y(x) = 0 with boundary conditions y(a) = 0 = y(b) or with initial conditions
y(a) =0 =y’(a).

In the next year, Huang et al. [12] are investigated the generalized superstability of differential equa-
tions of nth-order with initial conditions and investigate the generalized superstability of differential
equations of second order in the form of y”(x) + p(x)y’(x) + q(x)y(x) = 0 and the superstability of linear
differential equations with constant coefficients with initial conditions.

These days, the HU stability of differential equation is investigated and the investigation is ongoing.
Very recently, Murali et al. [19] studied the Hyers-Ulam stability for the third order linear ordinary
differential equation of the form

X" (1) + (p(t) — eae(t))x(t) = 0.

Motivated and linked by the above result, our main is to generalize the result reported in [3, 11, 12, 19]
(see also [24]). That is, we are going study the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-
Hyers-Ulam-Rassias stability of the special type n'" order linear differential equation of the form

™M (s) + (8(s) — uls))(s) =0, (1.1)
with boundary conditions
V) =<0) =0, (12)
and initial conditions
W=CW=W=-=""" =0, (1.3)

where ¢ € C™(I), {(s) € C(I), and p(s) is a bounded for all sufficiently large s in R, whereas I = [1,],
—00 < 1<) < oo using Taylor’s series.

2. Preliminaries

Definition 2.1. A Mittag-Leffler function of one parameter is defined as

Ev(s) = kZ_O m,

where s,v € C and Re(v) > 0.

Definition 2.2. We call the differential equation (1.1) has HU stability with boundary conditions (1.2),
if there exists a K > 0, such that the conditions are holds: For each ¢ > 0, ¢ € C™([1,)]) satisfies the
differential inequality

¢ () + (E(s) — uls)) &ls)| < e,

with ¢(1) = ¢(j) =0, then there exists some 1 € C™([1,)]) satisfies the differential equation
WM (s) + (€s) — u(s))(s) =0,

with P(1) = P(j)) = 0, such that |{(s) —P(s)| < Ke.
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Definition 2.3. We call the differential equation (1.1) is said to have HUS with initial conditions (1.3), if
there exists a K > 0, such that the following properties holds: For each € > 0, and ¢ € C™([1,)]) satisfies
the differential inequality

(™) + (s) —u(s)) Ls)| < e,

with initial conditions ¢(1) = /(1) = {’(1) = --- = ™ V(1) = 0, then there exists some { € C™([1,3])
satisfies

WM (s) + (8(s) — u(s)) W(s) =0,
with p(1) =P'(1) =P’ (1) = --- =P~V (1) = 0, such that |(s) —P(s)] < Ke.

If the preceding definitions is also correct when we putting € by ¢(s)e, where ¢ : I — [0,00) are
functions not depending on ((s) and P (s) explicitly, then we say that the corresponding differential
equation has the generalized HUS (or the HUR stability).

Definition 2.4. The linear differential equation (1.1) has Mittag-Leffler-Hyers-Ulam stability with bound-
ary conditions (1.2), if there exists a real number K > 0, such that the conditions are holds: For each € > 0,
C € C™([1,y]) satisfies the differential inequality

¢ (s) + (£(s) — uls)) ¢(s)| < €Ey(s),
with boundary condition (1.2), then there exists some \ € C™([1,)]) satisfies

Y (s) + (£(s) — p(s)) p(s) =0,
with (1.2), such that [((s) — P (s)| < KeEy(s).

Definition 2.5. The differential equation (1.1) has Mittag-Leffler-Hyers-Ulam stability with initial condi-
tions (1.3), if there is a positive real number K, such that the properties are exists: For each € > 0 and
¢ € C™([1,y]) satisfying the differential inequality

™ (s)+ (8(s) — u(s)) Cls)| < €eEyls),
with initial conditions (1.3), then there exists some { € C™([1,)]) satisfies

P (s) + (€(s) — p(s)) W(s) =0,
with (1.3) such that [((s) —(s)] < KeE,(s).

If the preceding definitions is also correct when we setting €E, (s) with ¢(s) €E,(s), where ¢ : [ —
[0, 00) are functions not depending on ((s) and (s) explicitly, then we say that the corresponding differ-
ential equation has the Mittag-Leffler-Hyers-Ulam-Rassias stability.

3. Mittag-Leffler-Hyers-Ulam stability

In the following theorems, we prove the Mittag-Leffler-Hyers-Ulam stability of the linear differential
equation (1.1) with (1.2) and (1.3).

n

(]n'_zl)n for s € v,)]. Then, the differential equation (1.1) has Mittag-Leffler-
Hyers-Ulam with boundary conditions (1.2).

Theorem 3.1. If max [€(s) — u(s)| <
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Proof. For each € > 0, there exists ¢ € C™([1,]), such that
(™ (s) + (€(s) — uls)) &ls)| < €Ey(s), (3.1)

where E,(s) is a Mittag-Leffler function and (1) = ¢(j) = 0. Let us define M = max{|((s)| : s € [1,3]}.
Since ((1) = ¢(j) =0, there exists sg € (1,7) such that |((so)| = M. By Taylor’s formula, we get

" (n)
) = Clso) + €/ so)s0 1) + S (sg 1 o+ S W g g, 62)
" (n) 5
) = elso) + €ls0)0 — s0) + e o) -4 D s 63)
We have ((1) =0, and so equation (3.2) becomes
" (n)
Clso) + Clso)lso 1) + e (sg 2P+ & W gy =0
Thus, we have |C(“) (V)| = (Sn! ]\1/;“. Similarly, from ¢(j) = 0 the relation (3.3) can be converted to
0—
" M5
Clso) + ¢'(s0)() — s0) + CZ(?O)(J —s0)?+ - ‘ n'( ) ()—s0)™ =0.
n!'M
So, we have ‘C(“) (6){ = ()73)“ On the other hand, for sy € (1, %], we obtain
— S0

n!'M S n'M _n!Z“M

> m . 3.4
(50— = L0t~ G—un G4
Now, if sg € [}2,)), then
M n! nM nl2"M
> - . 35
[so—p)" = Dt~ G—un 39)
Using (3.4) and (3.5), one can obtain max|{(s)| < (]2;3“ max |C(n) ( 3)‘ . Hence,
maxlc(s)] < U L max [ (6) 4 (1(5) — s)) €ls) — (2(8) —(s)) c(s)]}
n!
< (Jzzl)' {max ’C(n)(s) + (£(s) — u(s)) C(s)‘ +max |(£(s) — u(s))] maxlC(s)|}.
n!
Now, let us choose A = 0 2;13“ max |(£(s) — u(s))|. Then, we obtain that
max |((s)] < O—y" eEy(s) + A max|((s)] = max|{(s)| < ()_—l)n eEy(s)
S Tonp TV Sonni(1oa) vt
Choosing K = % So, we have max|((s)| < KeE,(s). Obviously, Po(s) = 0 is a solution of

with boundary conditions ¢(1) = ¢(j) = 0. Therefore, [((s) —o(s)| < KeE,(s). Thus the differential
equation (1.1) has Mittag-Leffler-Hyers-Ulam with boundary conditions (1.2). O
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Now, we prove the Mittag-Leffler-HU stability of a differential equation (1.1) with initial conditions
(1.3).

I
Theorem 3.2. If max|(£(s) — u(s))] < G 11 — for s € )l. Then, the differential equation (1.1) has Mittag-
Leffler-Hyers-Ulam stability with initial conditions (1.3).

Proof. For each € > 0, there exists ¢ € C™([1,]), such that
¢!™(s) + (€(s) — n(s)) ¢(s)| < eEy(s),

where E, (s) is a Mittag-Leffler function. By Taylor’s formula, we arrive at

" (n)

) = e+ Cls —)+ S s EE (56)

Usi . M) n
sing the condition (1.3), then (3.6) becomes ((s) = y (s —1)™ and thus
max |((s)] < maX‘C(“)(S)‘ b ;;)n,
SO, we obtain
maxc(s)] < U0 fimax| (s (e(s)—u(snC(s)—(e(s)—u(s))as))}

J‘l {max ™ (s) + (€(s) = w(s) <ls) | +max|(€(s) — u(s) max|c(s)]}

Now, let us choose 1 = 0 :1'1)“ max |(£(s) — i(s))|. Then

O—y"
n!

max [((s)] < eEy(s) +n max|((s)].
O—y"

n! (I1-n)
Po(s) = 0 is a solution to (™ (s) — (£(s) — u(s)) {(s) = 0 with the initial conditions

Hence, we have max|{(s)| < K €E,(s), where K = Hence, max|((s)| < KeE,(s). Obviously,

W= =1=-=c""Y =0

Thus, [C(s) —o(s)| < KeE,(s). Hence the differential equation (1.1) has Mittag-Leffler-Hyers-Ulam in the
presence of initial conditions (1.3). O

In the following corollaries, we prove the Hyers-Ulam stability of the linear differential equation (1.1)
with (1.2) and (1.3). If we replace €E, (s) by € in the inequality (3.1), we will have the HUS.

n!2n
Corollary 3.3. If max|{(s) — pu(s)| < W
stability with boundary conditions (1.2).

for s € v,)]. Then, the differential equation (1.1) has Hyers-Ulam

Proof. For every € > 0, there exists ¢ € C™[1,)], if
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where E,(s) is a Mittag-Leffler function and ((1) = ¢(j) = 0. Let us define M = max{|((s)| : s € [1,)]}
Since (1) = ¢()) =0, there exists sp € (1,7) such that [((sp)| = M. By Taylor’s formula, we have

C// s C(n)
) = Glso) +¢/(so)(s0—1) + e (sg 1 -+ S W gy, 67)
CH s C(n) 5
) = so) + 2/ (5000 —0) + =0 -+ S oy, 68)
I
where v € (a,sg) and & € (sp,b). Thus, we have |C(“)(y)’ = (snl\l/;n Now, let us take sy € (1, %], we
0—
get
n!'M nM 2"n'M
o—U" ~ O~ G-un 42
n!'M
So, we have [¢(™(8)| = R Now, let us take s € [32,)), then
0—
! ! 2™ n!
Mn >nM_ n! M (3.10)

(- = Go0m T -y
O—ym
2nn!

O—um"
2nn!

Using (3.9) and (3.10), one can reach max|[{(s)| < ax ]C(“) (s)‘ . Hence,

max|{(s)] < € + A max|((s)],

_\n
where A = O

max |(£(s) — p(s))|. We get

2nn!
O—y"
R —
max|¢(s)] < 57— 1 n©
_ n
where K = 211(:1'(;)_)\), therefore, we have max|((s)| < Ke. Clearly, {(s) = 0 is a solution of the linear
differential equation ¢ (s)—(€(s) — u(s)) ¢(s) = 0 with boundary conditions (1.2). Hence, [((s) — o (s)I<
Ke. Thus the linear differential equation (1.1) has HU stability with boundary conditions (1.2). O

I
Corollary 3.4. Let max|({(s) — p(s))| < _Ll)n for s € [1,9]. Then, the differential equation (1.1) has Hyers-

0
Ulam stability with of initial conditions (1.3).

Proof. For each € > 0, there exists ¢ € C™([1,]), such that

™ (s) + (£(s) — uls)) C(s)| < e.
By Taylor’s formula, we arrive at

C// (1)

o (s—u™. (3.11)

(s)=Cc)+(W)(s—1) + (s—1)24 -+

¢m(g)

Using the condition (1.3), then (3.11) becomes ((s) = -

(s —1)™ and thus

O—ym
n!

7

max |¢(s)| < max ‘C(“)(S)‘
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S0, we obtain

max 2(s)] < P Lmax € (5) 4 (8(5) — wls)) €65) — (865) — wls) (5]}
< DT L) (5) 4 ¢s) — wls)) ()] +maxc(els) — ls)] maxic(s)l}.
Now, let us choose 11 = (]:1'1)“ max |(£(s) — u(s))|. Then
maxlc(s)] < =P o maxle(s).
Hence, we have max|((s)| < Ke, where K = n(,](ll_):) Obviously, Po(s) = 0 is a solution of the linear

differential equation (M) (s) — (€(s) — u(s)) ¢(s) = 0 with the initial conditions (1.3). Thus,

IC(s) —Wo(s)] < Ke.

Hence, the differential equation (1.1) has Hyers-Ulam stability with (1.3). O

4. Mittag-Leffler-Hyers-Ulam-Rassias stability

In the following theorems, we will establish the Mittag-Leffler-Hyers-Ulam-Rassias of the linear dif-
ferential equation (1.1) with (1.2) and (1.3).
[ pn

Theorem 4.1. Suppose if max|{(s) — p(s)| <

for s € 1,1, then the linear differential equation of higher

O—yn

order (1.1) has Mittag-Leffler-Hyers-Ulam-Rassias stability with boundary conditions (1.2).

Proof. For all € > 0, thereisa ¢ € C™([1,9]) and ¢ : R — [0, 00) such that

™M (s) + (€s) — wls)) ¢ls)| < ed(s)Ey(s), (4.1)

where E,(s) is a Mittag-Leffler function with ((1) = ¢(j) = 0. Let us define M = max{|((s)| : s € 1,)]}.
Since (1) = ¢()) =0, there exists sp € (1,)) such that |((so)| = M. By Taylor’s formula, we get

¢"(s0) ™ (y)

¢(v) = (so) + ¢'(so)(so —1) + o (so—V)* 4+ ———(s0—V)", (4.2)
. mn.
" (n)
) = tlso) +2/ (5000 —0) + =o)L s @3)
We have ((1) =0, and so equation (4.2) becomes
" (n)
50)+ ¢ ls0) (50— 1)+ T (g a4 ooy S gy yyn g,

2! n!

|
Thus, we have | (y)| = (sn. ]\3 —. Similarly, from ((j) = 0 the relation (3.3) can be converted to
0—
CH s C(n] 5
o)+ 50)0—s0)+ oy s+ S gy =
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'M
So, we have ‘C(“) (6)‘ = (]nis)n On the other hand, for sg € (1, %], we obtain
— S0

n!'M n!M_Z“n!M

> . .
[so—vr ~ 00— G-un @4
Now, if sg € [%,]), then
I I noal
M n! S n!'M :2 n!'M 45)

(so—y)m 7 Lot -y’

O—ym
2nn!

Using (4.4) and (4.5), one can reach max|((s)| < max ‘C(“) (s)| . Hence,

maxlc(s)] < U L max e () + (1(5) — s)) ls) — (20s) —n(s)) ¢(s)|}
< D% Lmax [ () + (8(5) —ls) ()] + max(tts) — w(s))] maxe(s)l}
Now, let us choose A = “2;:!“ ax|(€(s) — u(s))|. Then, we obtain that
max|¢(s)] < U e (s)Eu )+ A max|Z(s)] = maxle(s)] < 5 eplsIEL(s)
Consider K = m So, we have max|((s)| < Ked(s)E,(s). Obviously, Pg(s) = 0 is a solution

of the differential equation ¢ (s) — (8(s) — u(s)) ¢(s) = 0 with boundary conditions ¢(1) = ¢(j) = 0.
Therefore,

C(s) —Wo(s)] < Ked(s)Ey(s).
Hence, the linear differential equation (1.1) has Mittag-Leffler-Hyers-Ulam-Rassias stability in the pres-

ence of boundary conditions (1.2). O

Now, we study the Mittag-Leffler-Hyers-Ulam-Rassias stability of a differential equation (1.1) with
initial conditions (1.3).

Theorem 4.2. If max|({(s) — u(s))| < Gon
Leffler-Hyers-Ulam-Rassias stability in the presence of initial conditions (1.3).

for s € [v,)]. Then the differential equation (1.1) has Mittag-

Proof. For each € > 0, there exists ¢ € C™([,)]) such that

¢ (s) + (E(s) — uls)) Cls)| < ed(s)Ey(s),
where E, (s) is a Mittag-Leffler function. By Taylor’s formula, we have

C// (l)

TR

is)=c)+ W (s—1)+

(s—1)™. (4.6)

(n)( )
n!

Using the condition (1.3), then (4.6) becomes ((s) = ¢ (s —1)™ and thus

O—um
n!

7

max [¢(s)] < max <™ (s)|
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S0, we obtain

]—l

max |{(s

max‘C (€(s)—u(5))C(S)—(E(S)—M(S))C(S))}

{
oo

max | ™) (s) + (£(s) — u(s)) <(s)| +max](€(s) — u(s))| max[¢(s)]}

_a\m
Now, let us choose 11 = 0 n'l) max |(£(s) — wu(s))|. Then
O—y"

n!

max [{(s)] < ed(s)Ey(s) +n max|((s)].
O—u"

n! (1-n)

differential equation ¢ (s) — (£(s) — u(s)) ¢(s) = 0 with the initial conditions

Hence, max|((s)] < K ed(s)E,(s), where K = Obviously, Po(s) = 0 is a solution of the

tW=lW=1W= ="V =0.

Thus, |¢(s) —o(s)| < Ked(s)Ey(s). Then the differential equation (1.1) has Mittag-Leffler-Hyers-Ulam-
Rassias stability in the presence of initial conditions (1.3). O

If we replace edp(s)E, (s) by ed(s) in the inequality (4.1), one can obtain the HURS. Now, we investigate
the Hyers-Ulam-Rassias stability of a differential equation (1.1) with boundary conditions (1.2).

n!on
Corollary 4.3. Let max[{(s) — pu(s)| < o for s € [v,9]. Then, the differential equation (1.1) has Hyers-
Ulam-Rassias stability with boundary conditions (1.2).

Proof. For every e > 0, there is { € C™(I) and a function ¢(s) : I — [0, co) satisfying

(™ (s) + (€(s) — n(s)) Ls)| < ed(s),

with boundary conditions (1) = ¢(j) = 0. By using the same technique as applied in Theorem 4.2, we can
easily reach at

eEy(s) +A max|{(s)|,

O—u" g—ym
2nn! 2nn! (1—=2A)
we have max |((s)| < Ked(s). Obviously, Po(s) = 0 is a solution of the linear differential equation

max |(£(s) — u(s))|. We get max|{(s)| < zn(i ed(s). taking K =

where A = o

with boundary conditions (1.2). Therefore, [((s) —o(s)| < Ked(s). Hence the linear differential equation
(1.1) has Ulam-Rassias stable with boundary conditions (1.2). O

Finally, we study the Hyers-Ulam-Rassias stability of a differential equation (1.1) with initial conditions
(1.3).

1
Corollary 4.4. If max|({(s) — p(s))| < Uili)n for s € [v,j]. Then, the differential equation (1.1) has Hyers-

Ulam-Rassias stability with of initial conditions (1.3).
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Proof. For every e > 0, there exists a function ¢ € C™([1,9]) and ¢ : I — [0, 00) such that

(™ (s) + (€(s) — u(s)) Ls)| < ed(s),

with ((1) = (1) = {"(1) = --- = (™" V(1) = 0. By using the same methodology as used in Theorem 4.2,
we can easily reach the rest of the proof. So, we have
O—uy"
max|¢(s)] < () Eu(s)e +n max|(s)].
_am
Hence, we have max|{(s)| < K ed(s)Ey(s), where K = n('J(ll—)n) Clearly, Po(s) = 0 is a solution of

with (1.3). Thus, [((s) —Wo(s)| < Ked(s). Hence, the differential equation (1.1) is Hyers-Ulam-Rassias
stable with initial conditions (1.3). O]

5. Conclusion

In [3, 11, 12], they proved the Hyers-Ulam stability and Superstability of the second order differential
equations using initial or boundary conditions. In this paper, we generalized the above studied results
and established the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability
of the special type general linear differential equation of higher order with initial and boundary conditions
using Taylor’s series formula.
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