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Abstract
We study the approximate solution of the special type nth order linear differential equation by applying initial and bound-

ary conditions using Taylor’s series formula. That is, we prove the sufficient condition for the Mittag-Leffler-Hyers-Ulam stability
and Mittag-Leffler-Hyers-Ulam-Rassias stability of the special type linear differential equation of higher order with initial and
boundary conditions using Taylor’s series formula.

Keywords: Mittag-Leffler-Hyers-Ulam stability, Mittage-Leffler-Hyers-Ulam-Rassias stability, linear differential equations,
initial and boundary conditions, Taylor’s series formula.

2020 MSC: 34K20, 26D10, 44A10, 39B82, 34A40, 39A30.

©2022 All rights reserved.

1. Introduction

The theory of stability is an important branch of the qualitative theory of differential equations. In
1940, Ulam [37] posed a problem concerning the stability of functional equation: ”Give conditions in order
for a linear function near an approximately linear function to exist”. One year later, Hyers [15] provided an
answer to problem of Ulam for Cauchy additive functional equation based on Banach spaces. After that,
many mathematicians have contributed to the development of the Ulam’s problem to other functional
equations on various spaces in different directions [2, 5–9, 16, 27, 31, 34, 35].

Ulam’s recent problem has been generalization by substituting functional equations with differential
equations: The differential equation φ

(
h, ζ, ζ

′
, ζ
′′
, · · · , ζ(n)

)
= 0 has the Hyers-Ulam stability (Shortly

denote: HU stability) if for a given ε > 0 and a function ζ such that∣∣∣φ(
h, ζ, ζ

′
, ζ
′′
, · · · , ζ(n)

)∣∣∣ 6 ε,

then there exists a solution ζa of the differential equation such that |ζ(s) − ζa(s)| 6 K(ε) and lim
ε→0

K(ε) = 0.
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Oblaza seems to be the first author who has investigated the HUS of linear differential equations (see
[28, 29]). Thereafter, Alsina and Ger published their paper [4], which handles the HU stability of the
linear differential equation ψ ′(s) = ψ(s).

In recent years, many authors are studying the HUS of differential equations, and a number of math-
ematicians are paying attention to the new results of the HUS of differential equations, which were
extended to the first order, second order and higher orders in [1, 10, 13, 14, 17, 18, 20–23, 26, 30, 32, 33, 36].

Recently, Murali et al. [25] have investigated the HU stability of the linear differential equation of
higher order using Fourier transform method.

In 2014, Alqifiary and Jung [3] proved the Hyers-Ulam stability of the following linear differential
equation y ′′(x) + β(x)y(x) = 0 with boundary conditions y(a) = 0 = y(b) or with initial conditions
y(a) = 0 = y ′(a).

In the next year, Huang et al. [12] are investigated the generalized superstability of differential equa-
tions of nth-order with initial conditions and investigate the generalized superstability of differential
equations of second order in the form of y ′′(x) + p(x)y ′(x) + q(x)y(x) = 0 and the superstability of linear
differential equations with constant coefficients with initial conditions.

These days, the HU stability of differential equation is investigated and the investigation is ongoing.
Very recently, Murali et al. [19] studied the Hyers-Ulam stability for the third order linear ordinary
differential equation of the form

x ′′′(t) + (p(t) −α(t))x(t) = 0.

Motivated and linked by the above result, our main is to generalize the result reported in [3, 11, 12, 19]
(see also [24]). That is, we are going study the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-
Hyers-Ulam-Rassias stability of the special type nth order linear differential equation of the form

ζ(n)(s) + (`(s) − µ(s))ζ(s) = 0, (1.1)

with boundary conditions

ζ(ı) = ζ() = 0, (1.2)

and initial conditions

ζ(ı) = ζ′(ı) = ζ′′(ı) = · · · = ζ(n−1)(ı) = 0, (1.3)

where ζ ∈ Cn(I), `(s) ∈ C(I), and µ(s) is a bounded for all sufficiently large s in R, whereas I = [ı, ],
−∞ < ı <  <∞ using Taylor’s series.

2. Preliminaries

Definition 2.1. A Mittag-Leffler function of one parameter is defined as

Ev(s) =

∞∑
k=0

sk

Γ(vk+ 1)
,

where s, v ∈ C and Re(v) > 0.

Definition 2.2. We call the differential equation (1.1) has HU stability with boundary conditions (1.2),
if there exists a K > 0, such that the conditions are holds: For each ε > 0, ζ ∈ Cn([ı, ]) satisfies the
differential inequality ∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)

∣∣∣ 6 ε,

with ζ(ı) = ζ() = 0, then there exists some ψ ∈ Cn([ı, ]) satisfies the differential equation

ψ(n)(s) + (`(s) − µ(s))ψ(s) = 0,

with ψ(ı) = ψ() = 0, such that |ζ(s) −ψ(s)| 6 Kε.
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Definition 2.3. We call the differential equation (1.1) is said to have HUS with initial conditions (1.3), if
there exists a K > 0, such that the following properties holds: For each ε > 0, and ζ ∈ Cn([ı, ]) satisfies
the differential inequality ∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)

∣∣∣ 6 ε,

with initial conditions ζ(ı) = ζ′(ı) = ζ′′(ı) = · · · = ζ(n−1)(ı) = 0, then there exists some ψ ∈ Cn([ı, ])
satisfies

ψ(n)(s) + (`(s) − µ(s))ψ(s) = 0,

with ψ(ı) = ψ′(ı) = ψ′′(ı) = · · · = ψ(n−1)(ı) = 0, such that |ζ(s) −ψ(s)| 6 Kε.

If the preceding definitions is also correct when we putting ε by φ(s)ε, where φ : I → [0,∞) are
functions not depending on ζ(s) and ψ(s) explicitly, then we say that the corresponding differential
equation has the generalized HUS (or the HUR stability).

Definition 2.4. The linear differential equation (1.1) has Mittag-Leffler-Hyers-Ulam stability with bound-
ary conditions (1.2), if there exists a real number K > 0, such that the conditions are holds: For each ε > 0,
ζ ∈ Cn([ı, ]) satisfies the differential inequality∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)

∣∣∣ 6 εEv(s),
with boundary condition (1.2), then there exists some ψ ∈ Cn([ı, ]) satisfies

ψ(n)(s) + (`(s) − µ(s))ψ(s) = 0,

with (1.2), such that |ζ(s) −ψ(s)| 6 KεEv(s).

Definition 2.5. The differential equation (1.1) has Mittag-Leffler-Hyers-Ulam stability with initial condi-
tions (1.3), if there is a positive real number K, such that the properties are exists: For each ε > 0 and
ζ ∈ Cn([ı, ]) satisfying the differential inequality∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)

∣∣∣ 6 εEv(s),

with initial conditions (1.3), then there exists some ψ ∈ Cn([ı, ]) satisfies

ψ(n)(s) + (`(s) − µ(s))ψ(s) = 0,

with (1.3) such that |ζ(s) −ψ(s)| 6 KεEv(s).

If the preceding definitions is also correct when we setting εEv(s) with φ(s) εEv(s), where φ : I →
[0,∞) are functions not depending on ζ(s) and ψ(s) explicitly, then we say that the corresponding differ-
ential equation has the Mittag-Leffler-Hyers-Ulam-Rassias stability.

3. Mittag-Leffler-Hyers-Ulam stability

In the following theorems, we prove the Mittag-Leffler-Hyers-Ulam stability of the linear differential
equation (1.1) with (1.2) and (1.3).

Theorem 3.1. If max |`(s) − µ(s)| <
n! 2n

(− ı)n
for s ∈ [ı, ]. Then, the differential equation (1.1) has Mittag-Leffler-

Hyers-Ulam with boundary conditions (1.2).
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Proof. For each ε > 0, there exists ζ ∈ Cn([ı, ]), such that∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 εEv(s), (3.1)

where Ev(s) is a Mittag-Leffler function and ζ(ı) = ζ() = 0. Let us define M = max {|ζ(s)| : s ∈ [ı, ]}.
Since ζ(ı) = ζ() = 0, there exists s0 ∈ (ı, ) such that |ζ(s0)| =M. By Taylor’s formula, we get

ζ(ı) = ζ(s0) + ζ
′(s0)(s0 − ı) +

ζ ′′(s0)

2!
(s0 − ı)

2 + · · ·+ ζ
(n)(γ)

n!
(s0 − ı)

n, (3.2)

ζ() = ζ(s0) + ζ
′(s0)(− s0) +

ζ ′′(s0)

2!
(− s0)

2 + · · ·+ ζ
(n)(δ)

n!
(− s0)

n. (3.3)

We have ζ(ı) = 0, and so equation (3.2) becomes

ζ(s0) + ζ
′(s0)(s0 − ı) +

ζ′′(s0)

2!
(s0 − ı)

2 + · · ·+ ζ
(n)(γ)

n!
(s0 − ı)

n = 0.

Thus, we have
∣∣ζ(n)(γ)∣∣ = n! M

(s0 − ı)n
. Similarly, from ζ() = 0 the relation (3.3) can be converted to

ζ(s0) + ζ
′(s0)(− s0) +

ζ′′(s0)

2!
(− s0)

2 + · · ·+ ζ
(n)(δ)

n!
(− s0)

n = 0.

So, we have
∣∣ζ(n)(δ)∣∣ = n! M

(− s0)n
. On the other hand, for s0 ∈ (ı, ı+2 ], we obtain

n! M
(s0 − ı)n

>
n! M
(−ı)n

2n
=
n! 2n M
(− ı)n

. (3.4)

Now, if s0 ∈ [ ı+2 , ), then
M n!

(s0 − )n
>
n! M
(−ı)n

2n
=
n! 2n M
(− ı)n

. (3.5)

Using (3.4) and (3.5), one can obtain max |ζ(s)| 6
(− ı)n

2nn!
max

∣∣ζ(n)(s)∣∣ . Hence,

max |ζ(s)| 6
(− ı)n

2nn!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s) − (`(s) − µ(s)) ζ(s)
∣∣∣}

6
(− ı)n

2nn!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣+ max |(`(s) − µ(s))| max |ζ(s)|

}
.

Now, let us choose λ =
(− ı)n

2nn!
max |(`(s) − µ(s))| . Then, we obtain that

max |ζ(s)| 6
(− ı)n

2nn!
εEv(s) + λ max |ζ(s)| ⇒ max |ζ(s)| 6

(− ı)n

2n n! (1 − λ)
εEv(s).

Choosing K =
(− ı)n

2n n! (1 − λ)
. So, we have max |ζ(s)| 6 KεEv(s). Obviously, ψ0(s) ≡ 0 is a solution of

ζ(n)(s) − (`(s) − µ(s)) ζ(s) = 0,

with boundary conditions ζ(ı) = ζ() = 0. Therefore, |ζ(s) −ψ0(s)| 6 KεEv(s). Thus the differential
equation (1.1) has Mittag-Leffler-Hyers-Ulam with boundary conditions (1.2).
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Now, we prove the Mittag-Leffler-HU stability of a differential equation (1.1) with initial conditions
(1.3).

Theorem 3.2. If max |(`(s) − µ(s))| <
n!

(− ı)n
for s ∈ [ı, ]. Then, the differential equation (1.1) has Mittag-

Leffler-Hyers-Ulam stability with initial conditions (1.3).

Proof. For each ε > 0, there exists ζ ∈ Cn([ı, ]), such that∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 εEv(s),

where Ev(s) is a Mittag-Leffler function. By Taylor’s formula, we arrive at

ζ(s) = ζ(ı) + ζ′(ı)(s− ı) +
ζ′′(ı)

2!
(s− ı)2 + · · ·+ ζ

(n)(ξ)

n!
(s− ı)n. (3.6)

Using the condition (1.3), then (3.6) becomes ζ(s) =
ζ(n)(ξ)

n!
(s− ı)n and thus

max |ζ(s)| 6 max
∣∣∣ζ(n)(s)∣∣∣ (− ı)n

n!
,

so, we obtain

max |ζ(s)| 6
(− ı)n

n!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s) − (`(s) − µ(s)) ζ(s)
∣∣∣}

6
(− ı)n

n!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣+ max |(`(s) − µ(s))| max |ζ(s)|

}
.

Now, let us choose η =
(− ı)n

n!
max |(`(s) − µ(s))| . Then

max |ζ(s)| 6
(− ı)n

n!
εEv(s) + η max |ζ(s)| .

Hence, we have max |ζ(s)| 6 K εEv(s), where K =
(− ı)n

n! (1 − η)
. Hence, max |ζ(s)| 6 KεEv(s). Obviously,

ψ0(s) ≡ 0 is a solution to ζ(n)(s) − (`(s) − µ(s)) ζ(s) = 0 with the initial conditions

ζ(ı) = ζ′(ı) = ζ′′(ı) = · · · = ζ(n−1)(ı) = 0.

Thus, |ζ(s) −ψ0(s)| 6 KεEv(s). Hence the differential equation (1.1) has Mittag-Leffler-Hyers-Ulam in the
presence of initial conditions (1.3).

In the following corollaries, we prove the Hyers-Ulam stability of the linear differential equation (1.1)
with (1.2) and (1.3). If we replace εEv(s) by ε in the inequality (3.1), we will have the HUS.

Corollary 3.3. If max |`(s) − µ(s)| <
n! 2n

(− ı)n
for s ∈ [ı, ]. Then, the differential equation (1.1) has Hyers-Ulam

stability with boundary conditions (1.2).

Proof. For every ε > 0, there exists ζ ∈ Cn[ı, ], if∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 ε,
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where Ev(s) is a Mittag-Leffler function and ζ(ı) = ζ() = 0. Let us define M = max {|ζ(s)| : s ∈ [ı, ]}.
Since ζ(ı) = ζ() = 0, there exists s0 ∈ (ı, ) such that |ζ(s0)| =M. By Taylor’s formula, we have

ζ(ı) = ζ(s0) + ζ
′(s0)(s0 − ı) +

ζ ′′(s0)

2!
(s0 − ı)

2 + · · ·+ ζ
(n)(γ)

n!
(s0 − ı)

n, (3.7)

ζ() = ζ(s0) + ζ
′(s0)(− s0) +

ζ ′′(s0)

2!
(− s0)

2 + · · ·+ ζ
(n)(δ)

n!
(− s0)

n, (3.8)

where γ ∈ (a, s0) and δ ∈ (s0,b). Thus, we have
∣∣ζ(n)(γ)∣∣ = n! M

(s0 − ı)n
. Now, let us take s0 ∈ (ı, ı+2 ], we

get
n! M

(s0 − ı)n
>
n! M
(−ı)n

2n
=

2n n! M
(− ı)n

. (3.9)

So, we have
∣∣ζ(n)(δ)∣∣ = n! M

(s0 − )n
. Now, let us take s0 ∈ [ ı+2 , ), then

M n!
(s0 − )n

>
n! M
(−ı)n

2n
=

2n n! M
(− ı)n

. (3.10)

Using (3.9) and (3.10), one can reach max |ζ(s)| 6
(− ı)n

2nn!
max

∣∣ζ(n)(s)∣∣ . Hence,

max |ζ(s)| 6
(− ı)n

2nn!
ε+ λ max |ζ(s)| ,

where λ =
(− ı)n

2nn!
max |(`(s) − µ(s))| . We get

max |ζ(s)| 6
(− ı)n

2n n! (1 − λ)
ε,

where K =
(− ı)n

2n n! (1 − λ)
, therefore, we have max |ζ(s)| 6 Kε. Clearly, ψ0(s) ≡ 0 is a solution of the linear

differential equation ζ(n)(s)− (`(s) − µ(s)) ζ(s) = 0 with boundary conditions (1.2). Hence, |ζ(s) −ψ0(s)|6
Kε. Thus the linear differential equation (1.1) has HU stability with boundary conditions (1.2).

Corollary 3.4. Let max |(`(s) − µ(s))| <
n!

(− ı)n
for s ∈ [ı, ]. Then, the differential equation (1.1) has Hyers-

Ulam stability with of initial conditions (1.3).

Proof. For each ε > 0, there exists ζ ∈ Cn([ı, ]), such that∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 ε.

By Taylor’s formula, we arrive at

ζ(s) = ζ(ı) + ζ′(ı)(s− ı) +
ζ′′(ı)

2!
(s− ı)2 + · · ·+ ζ

(n)(ξ)

n!
(s− ı)n. (3.11)

Using the condition (1.3), then (3.11) becomes ζ(s) =
ζ(n)(ξ)

n!
(s− ı)n and thus

max |ζ(s)| 6 max
∣∣∣ζ(n)(s)∣∣∣ (− ı)n

n!
,
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so, we obtain

max |ζ(s)| 6
(− ı)n

n!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s) − (`(s) − µ(s)) ζ(s)
∣∣∣}

6
(− ı)n

n!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣+ max |(`(s) − µ(s))| max |ζ(s)|

}
.

Now, let us choose η =
(− ı)n

n!
max |(`(s) − µ(s))| . Then

max |ζ(s)| 6
(− ı)n

n!
ε+ η max |ζ(s)| .

Hence, we have max |ζ(s)| 6 Kε, where K =
(− ı)n

n! (1 − η)
. Obviously, ψ0(s) ≡ 0 is a solution of the linear

differential equation ζ(n)(s) − (`(s) − µ(s)) ζ(s) = 0 with the initial conditions (1.3). Thus,

|ζ(s) −ψ0(s)| 6 Kε.

Hence, the differential equation (1.1) has Hyers-Ulam stability with (1.3).

4. Mittag-Leffler-Hyers-Ulam-Rassias stability

In the following theorems, we will establish the Mittag-Leffler-Hyers-Ulam-Rassias of the linear dif-
ferential equation (1.1) with (1.2) and (1.3).

Theorem 4.1. Suppose if max |`(s) − µ(s)| <
n! 2n

(− ı)n
for s ∈ [ı, ], then the linear differential equation of higher

order (1.1) has Mittag-Leffler-Hyers-Ulam-Rassias stability with boundary conditions (1.2).

Proof. For all ε > 0, there is a ζ ∈ Cn([ı, ]) and φ : R→ [0,∞) such that∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 εφ(s)Ev(s), (4.1)

where Ev(s) is a Mittag-Leffler function with ζ(ı) = ζ() = 0. Let us define M = max {|ζ(s)| : s ∈ [ı, ]}.
Since ζ(ı) = ζ() = 0, there exists s0 ∈ (ı, ) such that |ζ(s0)| =M. By Taylor’s formula, we get

ζ(ı) = ζ(s0) + ζ
′(s0)(s0 − ı) +

ζ ′′(s0)

2!
(s0 − ı)

2 + · · ·+ ζ
(n)(γ)

n!
(s0 − ı)

n, (4.2)

ζ() = ζ(s0) + ζ
′(s0)(− s0) +

ζ ′′(s0)

2!
(− s0)

2 + · · ·+ ζ
(n)(δ)

n!
(− s0)

n. (4.3)

We have ζ(ı) = 0, and so equation (4.2) becomes

ζ(s0) + ζ
′(s0)(s0 − ı) +

ζ′′(s0)

2!
(s0 − ı)

2 + · · ·+ ζ
(n)(γ)

n!
(s0 − ı)

n = 0.

Thus, we have
∣∣ζ(n)(γ)∣∣ = n! M

(s0 − ı)n
. Similarly, from ζ() = 0 the relation (3.3) can be converted to

ζ(s0) + ζ
′(s0)(− s0) +

ζ′′(s0)

2!
(− s0)

2 + · · ·+ ζ
(n)(δ)

n!
(− s0)

n = 0.
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So, we have
∣∣ζ(n)(δ)∣∣ = n! M

(− s0)n
. On the other hand, for s0 ∈ (ı, ı+2 ], we obtain

n! M
(s0 − ı)n

>
n! M
(−ı)n

2n
=

2n n! M
(− ı)n

. (4.4)

Now, if s0 ∈ [ ı+2 , ), then
M n!

(s0 − )n
>
n! M
(−ı)n

2n
=

2n n! M
(− ı)n

. (4.5)

Using (4.4) and (4.5), one can reach max |ζ(s)| 6
(− ı)n

2nn!
max

∣∣ζ(n)(s)∣∣ . Hence,

max |ζ(s)| 6
(− ı)n

2nn!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s) − (`(s) − µ(s)) ζ(s)
∣∣∣}

6
(− ı)n

2nn!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣+ max |(`(s) − µ(s))| max |ζ(s)|

}
.

Now, let us choose λ =
(− ı)n

2nn!
max |(`(s) − µ(s))| . Then, we obtain that

max |ζ(s)| 6
(− ı)n

2nn!
εφ(s)Ev(s) + λ max |ζ(s)| ⇒ max |ζ(s)| 6

(− ı)n

2n n! (1 − λ)
εφ(s)Ev(s).

Consider K =
(− ı)n

2n n! (1 − λ)
. So, we have max |ζ(s)| 6 Kεφ(s)Ev(s). Obviously, ψ0(s) ≡ 0 is a solution

of the differential equation ζ(n)(s) − (`(s) − µ(s)) ζ(s) = 0 with boundary conditions ζ(ı) = ζ() = 0.
Therefore,

|ζ(s) −ψ0(s)| 6 Kεφ(s)Ev(s).

Hence, the linear differential equation (1.1) has Mittag-Leffler-Hyers-Ulam-Rassias stability in the pres-
ence of boundary conditions (1.2).

Now, we study the Mittag-Leffler-Hyers-Ulam-Rassias stability of a differential equation (1.1) with
initial conditions (1.3).

Theorem 4.2. If max |(`(s) − µ(s))| <
n!

(− ı)n
for s ∈ [ı, ]. Then the differential equation (1.1) has Mittag-

Leffler-Hyers-Ulam-Rassias stability in the presence of initial conditions (1.3).

Proof. For each ε > 0, there exists ζ ∈ Cn([ı, ]) such that∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 εφ(s)Ev(s),

where Ev(s) is a Mittag-Leffler function. By Taylor’s formula, we have

ζ(s) = ζ(ı) + ζ′(ı)(s− ı) +
ζ′′(ı)

2!
(s− ı)2 + · · ·+ ζ

(n)(ξ)

n!
(s− ı)n. (4.6)

Using the condition (1.3), then (4.6) becomes ζ(s) =
ζ(n)(ξ)

n!
(s− ı)n and thus

max |ξ(s)| 6 max
∣∣∣ζ(n)(s)∣∣∣ (− ı)n

n!
,
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so, we obtain

max |ζ(s)| 6
(− ı)n

n!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s) − (`(s) − µ(s)) ζ(s)
∣∣∣}

6
(− ı)n

n!

{
max

∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣+ max |(`(s) − µ(s))| max |ζ(s)|

}
.

Now, let us choose η =
(− ı)n

n!
max |(`(s) − µ(s))| . Then

max |ζ(s)| 6
(− ı)n

n!
εφ(s)Ev(s) + η max |ζ(s)| .

Hence, max |ζ(s)| 6 K εφ(s)Ev(s), where K =
(− ı)n

n! (1 − η)
. Obviously, ψ0(s) ≡ 0 is a solution of the

differential equation ζ(n)(s) − (`(s) − µ(s)) ζ(s) = 0 with the initial conditions

ζ(ı) = ζ′(ı) = ζ′′(ı) = · · · = ζ(n−1)(ı) = 0.

Thus, |ζ(s) −ψ0(s)| 6 Kεφ(s)Ev(s). Then the differential equation (1.1) has Mittag-Leffler-Hyers-Ulam-
Rassias stability in the presence of initial conditions (1.3).

If we replace εφ(s)Ev(s) by εφ(s) in the inequality (4.1), one can obtain the HURS. Now, we investigate
the Hyers-Ulam-Rassias stability of a differential equation (1.1) with boundary conditions (1.2).

Corollary 4.3. Let max |`(s) − µ(s)| <
n! 2n

(− ı)n
for s ∈ [ı, ]. Then, the differential equation (1.1) has Hyers-

Ulam-Rassias stability with boundary conditions (1.2).

Proof. For every ε > 0, there is ζ ∈ Cn(I) and a function φ(s) : I→ [0,∞) satisfying∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 εφ(s),

with boundary conditions ζ(ı) = ζ() = 0. By using the same technique as applied in Theorem 4.2, we can
easily reach at

max |ζ(s)| 6
(− ı)n

2nn!
εEv(s) + λ max |ζ(s)| ,

where λ =
(− ı)n

2nn!
max |(`(s) − µ(s))| . We get max |ζ(s)| 6 (−ı)n

2n n! (1−λ) εφ(s). taking K =
(− ı)n

2n n! (1 − λ)
,

we have max |ζ(s)| 6 Kεφ(s). Obviously, ψ0(s) ≡ 0 is a solution of the linear differential equation

ζ(n)(s) − (`(s) − µ(s)) ζ(s) = 0,

with boundary conditions (1.2). Therefore, |ζ(s) −ψ0(s)| 6 Kεφ(s). Hence the linear differential equation
(1.1) has Ulam-Rassias stable with boundary conditions (1.2).

Finally, we study the Hyers-Ulam-Rassias stability of a differential equation (1.1) with initial conditions
(1.3).

Corollary 4.4. If max |(`(s) − µ(s))| <
n!

(− ı)n
for s ∈ [ı, ]. Then, the differential equation (1.1) has Hyers-

Ulam-Rassias stability with of initial conditions (1.3).
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Proof. For every ε > 0, there exists a function ζ ∈ Cn([ı, ]) and φ : I→ [0,∞) such that∣∣∣ζ(n)(s) + (`(s) − µ(s)) ζ(s)
∣∣∣ 6 εφ(s),

with ζ(ı) = ζ′(ı) = ζ′′(ı) = · · · = ζ(n−1)(ı) = 0. By using the same methodology as used in Theorem 4.2,
we can easily reach the rest of the proof. So, we have

max |ζ(s)| 6
(− ı)n

n!
φ(s)Ev(s)ε+ η max |ζ(s)| .

Hence, we have max |ζ(s)| 6 K εφ(s)Ev(s), where K =
(− ı)n

n! (1 − η)
. Clearly, ψ0(s) ≡ 0 is a solution of

ζ(n)(s) − (`(s) − µ(s)) ζ(s) = 0,

with (1.3). Thus, |ζ(s) −ψ0(s)| 6 Kεφ(s). Hence, the differential equation (1.1) is Hyers-Ulam-Rassias
stable with initial conditions (1.3).

5. Conclusion

In [3, 11, 12], they proved the Hyers-Ulam stability and Superstability of the second order differential
equations using initial or boundary conditions. In this paper, we generalized the above studied results
and established the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability
of the special type general linear differential equation of higher order with initial and boundary conditions
using Taylor’s series formula.
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