
J. Math. Computer Sci., 28 (2023), 158–170

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

(3, 4)-fuzzy sets and their topological spaces

Khudeeda Kh. Murada, Hariwan Z. Ibrahimb,∗

aDepartment of Mathematics, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq.
bDepartment of Mathematics, Faculty of Education, University of Zakho, Zakho, Kurdistan Region, Iraq.

Abstract
The aim of this paper is to introduce the concept of (3, 4)-fuzzy sets. We compare (3, 4)-fuzzy sets with intuitionistic fuzzy

sets, Pythagorean fuzzy sets, and Fermatean fuzzy sets. We focus on the complement of (3, 4)-fuzzy sets. We construct some
of the fundamental set of operations of the (3, 4)-fuzzy sets. Due to their larger range of describing membership grades, (3, 4)-
fuzzy sets can deal with more uncertain situations than other types of fuzzy sets. For ranking (3, 4)-fuzzy sets, we define a score
function and an accuracy function. In addition, we introduce the concept of (3, 4)-fuzzy topological space. Ultimately, we define
(3, 4)-fuzzy continuity of a map defined between (3, 4)-fuzzy topological spaces and we characterize this concept.
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1. Introduction

The concept of fuzzy sets was introduced by Zadeh [9]. After that several researchers developed the
idea of fuzzy set theory. The concept of intuitionistic fuzzy sets was published by Atanassov [1], this idea
was useful in real-life situations such as medical diagnosis and considered one of the extensions of fuzzy
sets with enable for the presentation of a bigger body of nonstandard membership grades than fuzzy
membership grades. The Pythagorean fuzzy set was offered by Yager [7] as a new fuzzy set. Senapati
et al. [8] introduced Fermatean fuzzy sets and constructed some fundamental operations over Fermatean
fuzzy sets. Recently, (3, 2)-fuzzy sets were released by Ibrahim et al. [5].

The concept of fuzzy topological space was published by Chang [2]. He defined some basic concepts of
topology like the open set, closed set, continuity, and compactness via fuzzy topological spaces. Moreover,
the concept of intuitionistic fuzzy topological spaces was introduced by Coker [3]. He also defined some
fundamental notions of classical topology such as continuity and compactness. Besides, Pythagorean
fuzzy topological spaces were presented by Olgun et al. [6], and Fermatean fuzzy topological spaces were
defined by Ibrahim [4].

In this paper, we define a (3, 4)-fuzzy set, which is a new type of fuzzy set extension and introduce
their relationship with other kinds of fuzzy sets. We describe some of the basic set operations on (3, 4)-
fuzzy sets. Furthermore, we investigate the notion of topology for (3, 4)-fuzzy sets. Finally, we study
(3, 4)-fuzzy continuous maps in details.
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2. Preliminaries

Definition 2.1 ([1]). The intuitionistic fuzzy sets (IFSs) are defined on a non-empty set X as objects having
the form I = {〈x, λI(x),ωI(x)〉 : x ∈ X}, where λI(x) : X → [0, 1] and ωI(x) : X → [0, 1] denote the degree
of membership and the degree of non-membership of each element x ∈ X to the set I, respectively, and
0 6 λI(x) +ωI(x) 6 1, for all x ∈ X.

Definition 2.2 ([7]). The Pythagorean fuzzy sets (PFSs) are defined on a non-empty set X as objects having
the form P = {〈x, λP(x),ωP(x)〉 : x ∈ X}, where λP(x) : X→ [0, 1] and ωP(x) : X→ [0, 1] denote the degree
of membership and the degree of non-membership of each element x ∈ X to the set P, respectively, and
0 6 (λP(x))

2 + (ωP(x))
2 6 1, for all x ∈ X.

Definition 2.3 ([8]). Let X be a universe of discourse. A Fermatean fuzzy set (FFS) F in X is an object having
the form F = {〈x, λF(x),ωF(x)〉 : x ∈ X}, where λF(x) : X → [0, 1] and ωF(x) : X → [0, 1], including the
condition 0 6 (λF(x))

3 + (ωF(x))
3 6 1, for all x ∈ X. The numbers λF(x) and ωF(x) denote, respectively,

the degree of membership and the degree of non-membership of the element x in the set F.
For any FFS F and x ∈ X, πF(x) = 3

√
1 − (λF(x))3 + (ωF(x))3 is identified as the degree of indeterminacy

of x to F.

Definition 2.4 ([5]). Let X be a universe of discourse. A (3, 2)-Fuzzy set ((3, 2)-FS) D in X is an object
having the form D = {〈x, λD(x),ωD(x)〉 : x ∈ X}, where λD(x) : X → [0, 1] and ωD(x) : X → [0, 1], in-
cluding the condition 0 6 (λD(x))3 + (ωD(x))2 6 1, for all x ∈ X. The numbers λD(x) and ωD(x) denote,
respectively, the degree of membership and the degree of non-membership of the element x in the set D.
For any (3, 2)-FS D and x ∈ X, πD(x) = 5

√
1 − (λD(x))3 + (ωD(x))2 is identified as the degree of indeter-

minacy of x to D.

3. (3, 4)-fuzzy Sets

In this section, we initiate the notion of (3, 4)-fuzzy sets and study their relationship with other kinds
of fuzzy sets. Then, we furnish some operations to (3, 4)-fuzzy sets.

Definition 3.1. Let E be a discourse universe. Then, the (3, 4)-fuzzy set (briefly, (3, 4)-FS) S in E is an
object having the form:

S = {〈e, λS(e),ωS(e)〉 : e ∈ E},

where λS(e) : E→ [0, 1] and ωS(e) : E→ [0, 1], with condition

0 6 (λS(e))
3 + (ωS(e))

4 6 1,

for all e ∈ E, the functions λS(e) and ωS(e) denote the degree of membership and the degree of non-
membership, respectively, of the element e ∈ E in the set S. For any (3, 4)-FS and e ∈ E,

πS(e) =
7
√

1 − [(λS(e))3 + (ωS(e))4]

is identified as the degree of indeterminacy of e in the set S and πS(e) ∈ [0, 1]. In what follows, (λS(e))3 +
(ωS(e))

4 + (πS(e))
7 = 1. Otherwise, πS(e) = 0 whenever (λS(e))

3 + (ωS(e))
4 = 1. For simplicity, we shall

mention the symbol S = (λS,ωS) for the (3, 4)-FS S = {〈e, λS(e),ωS(e)〉 : e ∈ E}.

To understand the importance of (3, 4)-FS to extend the grades of membership and non-membership
degrees, assume that λS(e) = 0.9 and ωS(e) = 0.7 for X = {x}. We can get 0.9 + 0.7 = 1.6 > 1, (0.9)2 +
(0.7)2 = 1.3 > 1, (0.9)3 + (0.7)2 = 1.219 > 1 and (0.9)3 + (0.7)3 = 1.072 > 1 which does not obey the
condition of IFS, PFS, (3, 2)-FS and FFS. However, we can get (0.9)3 + (0.7)4 = 0.9691 < 1, which means
we can apply the (3, 4)-FS to control it. That is S = {〈e, 0.9, 0.7〉 : e ∈ E} is a (3, 4)-FS.
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Theorem 3.2. The set of (3, 4)-fuzzy membership grades are larger than the set of intuitionistic membership grades,
Pythagorean membership grades, and Fermatean membership grades.

Proof. It is well known that for any two numbers e1, e2 ∈ [0, 1], we have

e3
1 6 e2

1 6 e1 and e4
2 6 e3

2 6 e2
2 6 e2.

Then, we have
e1 + e2 6 1 ⇒ e2

1 + e
2
2 6 1 ⇒ e3

1 + e
3
2 6 1 ⇒ e3

1 + e
4
2 6 1.

Hence, the space of (3, 4)-fuzzy membership grades is larger than the space of intuitionistic membership
grades, Pythagorean membership grades, and Fermatean membership grades.

This development can be significantly noticed in Figure 1.

Figure 1: Comparison of grade space of IFSs, PFSs, FFSs, (3, 2)-FSs, and (3, 4)-FSs.

Remark 3.3. From Figure 1, we notice that the set of (3, 4)-fuzzy membership grades is larger than the set
of (3, 2)-fuzzy membership grades.

Lemma 3.4. Let E = {ei} be a universal set, for i = 1, . . . ,n and S be a (3, 4)-FS. If πS(e) = 0, then

1. |λS(ei)| =
3
√
|(ωS(ei)2 − 1)(ωS(ei)2 + 1)|;

2. |ωS(ei)| =
4
√

|(λS(ei) − 1)(λS(ei)2 + λS(ei) + 1)|.

Proof. Assume that S is a (3, 4)-FS and πS(ei) = 0 for ei ∈ E, then

1.

(λS(ei))
3 + (ωS(ei))

4 = 1 ⇒ −(λS(ei))
3 = (ωS(ei))

4 − 1

⇒ −(λS(e))
3 = (ωS(ei)

2 − 1)(ωS(ei)
2 + 1)

⇒ |− (λS(ei))
3| = |(ωS(ei)

2 − 1)(ωS(ei)
2 + 1)|

⇒ |(λS(ei))|
3 = |(ωS(ei)

2 − 1)(ωS(ei)
2 + 1)|

⇒ |λS(ei)| =
3
√

|(ωS(ei)2 − 1)(ωS(ei)2 + 1)|.
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2.

(λS(ei))
3 + (ωS(ei))

4 = 1 ⇒ −(ωS(ei))
4 = (λS(ei))

3 − 1

⇒ −(ωS(ei))
4 = (λS(ei) − 1)(λS(ei)2 + λS(ei) + 1)

⇒ |− (ωS(ei))
4| = |(λS(ei) − 1)(λS(ei)2 + λS(ei) + 1)|

⇒ w|(ωS(ei))|
4 = |(λS(ei) − 1)(λS(ei)2 + λS(ei) + 1)|

⇒ |ωS(ei)| =
4
√

|(λS(ei) − 1)(λS(ei)2 + λS(ei) + 1)|.

Example 3.5. Assume that S is a (3, 4)-FS and e ∈ E such that πS(e) = 0 and ωS(e) = 0.7, then

|λS(e)| =
3
√

|(ωS(e)2 − 1)(ωS(e)2 + 1)|, |λS(e)| =
3
√
|(0.72 − 1)(0.72 + 1)|, |λS(e)| =

3
√

0.7599.

Definition 3.6. Let S = (λS,ωS), S1 = (λS1 ,ωS1), and S2 = (λS2 ,ωS2) be three (3, 4)-FSs, then their
operations are defined as follows:

1. S1 ∩ S2 = (min{λS1 , λS2}, max{ωS1 ,ωS2});
2. S1 ∪ S2 = (max{λS1 , λS2}, min{ωS1 ,ωS2});

3. Sc = (ω
4
3
S, λ

3
4
S).

We will use supremum “sup” (resp. infimum “inf”) instead of maximum “max” (resp. minimum
“min”) if the union and the intersection are infinite.

Example 3.7. Let S1 = (0.3, 0.6), and S2 = (0.7, 0.9) be two (3, 4)-FSs, then

1. S1 ∩ S2 = (min{λS1 , λS2}, max{ωS1 ,ωS2}) = (min{0.3, 0.7}, max{0.6, 0.9}) = (0.3, 0.9);
2. S1 ∪ S2 = (max{λS1 , λS2}, min{ωS1 ,ωS2}) = (max{0.3, 0.7}, min{0.6, 0.9}) = (0.7, 0.6);
3. Sc1 = (ωS1 , λS1) = ((0.6)

4
3 , (0.3)

3
4 ).

Definition 3.8. Let S = (λS,ωS), S1 = (λS1 ,ωS1), and S2 = (λS2 ,ωS2) be three (3, 4)-FSs and n > 0, then
their operations are defined as follows:

1. S1 ⊕ S2 =
(

3
√
λ3
S1

+ λ3
S2

− λ3
S1
λ3
S2

,ωS1ωS2

)
;

2. S1 ⊗ S2 =
(
λS1λS2 , 4

√
ω4

S1
+ω4

S2
−ω4

S1
ω4

S2

)
;

3. nS =
(

3
√

1 − (1 − λ3
S)

n,ωn
S

)
;

4. Sn =
(
λnS , 4

√
1 − (1 −ω4

S)
n
)

.

Theorem 3.9. Let S = (λS,ωS), S1 = (λS1 ,ωS1), and S2 = (λS2 ,ωS2) be three (3, 4)-FSs and n,n1,n2 > 0, then

1. S1 ⊕ S2 = S2 ⊕ S1;
2. S1 ⊗ S2 = S2 ⊗ S1;
3. n(S1 ⊕ S2) = nS2 ⊕nS1;
4. (n1 +n2)S = n1S⊕n2S;
5. (S1 ⊗ S2)

n = Sn1 ⊗ Sn2 ;
6. Sn1 ⊗ Sn2 = Sn1+n2 .

Proof. Assume that S, S1 and S2 are three (3, 4)-FSs and n,n1,n2 > 0, then

1.
S1 ⊕ S2 =

(
3
√
λ3
S1

+ λ3
S2

− λ3
S1
λ3
S2

,ωS1ωS2

)
=
(

3
√
λ3
S2

+ λ3
S1

− λ3
S2
λ3
S1

,ωS2ωS1

)
= S2 ⊕ S1;
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2.
S1 ⊗ S2 =

(
λS1λS2 , 4

√
ω4

S1
+ω4

S2
−ω4

S1
ω4

S2

)
=
(
λS2λS1 , 4

√
ω4

S2
+ω4

S1
−ω4

S2
ω4

S1

)
= S2 ⊗ S1;

3.

n(S1 ⊕ S2) = n
(

3
√
λ3
S1

+ λ3
S2

− λ3
S1
λ3
S2

,ωS1ωS2

)
=
(

3
√

1 − (1 − (λ3
S1

+ λ3
S2

− λ3
S1
λ3
S2
))n, (ωS1ωS2)

n
)

=
(

3
√

1 − (1 − λ3
S1
)n(1 − λ3

S2
)n, (ωS1)

n(ωS2)
n
)

,

and

nS1 ⊕nS2 =
(

3
√

1 − (1 − λ3
S1
)n, (ωS1)

n
)
⊕
(

3
√

1 − (1 − λ3
S2
)n, (ωS2)

n
)

=
(

3
√

1 − (1 − λ3
S1
)n(1 − λ3

S2
)n, (ωS1)

n(ωS2)
n
)
= n(S1 ⊕ S2);

4.

(n1 +n2)S =

(
3
√

1 − (1 − λ3
S)

n1+n2 , (ωS)
n1+n2

)
=

(
3
√

1 − (1 − λ3
S)

n1(1 − λ3
S)

n2 , (ωS)
n1+n2

)
=

(
3
√

1 − (1 − λ3
S)

n1 ,ωn1
S

)
⊕
(

3
√

1 − (1 − λ3
S)

n2 ,ωn2
S

)
= n1S⊕n2S;

5.

(S1 ⊗ S2)
n =

(
λS1λS2 , 4

√
ω4

S1
+ω4

S2
−ω4

S1
ω4

S2

)n
=
(
(λS1λS2)

n, 4
√

1 − (1 −ω4
S1

−ω4
S2

+ω4
S1
ω4

S2
)n
)

=
(
λnS1
λnS2

, 4
√

1 − (1 −ω4
S1
)n(1 −ω4

S2
)n
)

=
(
λnS1

, 4
√

1 − (1 −ω4
S1
)n
)
⊗
(
λnS2

, 4
√

1 − (1 −ω4
S2
)n
)

= Sn1 ⊗ Sn2 ;

6.

Sn1 ⊗ Sn2 =

(
λn1
S , 4
√

1 − (1 −ω4
S)

n1

)
⊗
(
λn2
S , 4
√

1 − (1 −ω4
S)

n2

)
=

(
λn1+n2
S , 4

√
1 − (1 −ω4

S)
n1+n2

)
= S(n1+n2).

Theorem 3.10. Let S1 = (λS1 ,ωS1) and S2 = (λS2 ,ωS2) be two (3, 4)-FSs, then the following properties are valid:

1. S1 ∩ S2 = S2 ∩ S1;
2. S1 ∪ S2 = S2 ∪ S1;
3. (S1 ∩ S2)∪ S2 = S2;
4. (S1 ∪ S2)∩ S2 = S2.

Proof. Assume that S1 and S2 are two (3, 4)-FSs. Then,

1.
S1 ∩ S2 = (min{λS1 , λS2}, max{ωS1 ,ωS2}) = (min{λS2 , λS1}, max{ωS2 ,ωS1}) = S2 ∩ S1.
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2. The proof is similar to (1).
3.

(S1 ∩ S2)∪ S2 = (min{λS1 , λS2}, max{ωS1 ,ωS2})∩ (λS2 ,ωS2)

= (max{min{λS1 , λS2}, λS2}, min{max{ωS1 ,ωS2},ωS2}) = (λS2 ,ωS2) = S2.

4. The proof is similar to (3).

Theorem 3.11. Let S1 = (λS1 ,ωS1), S2 = (λS2 ,ωS2) and S3 = (λS3 ,ωS3) be three (3, 4)-FSs and n > 0, then the
following properties are valid:

1. S1 ∩ (S2 ∩ S3) = (S1 ∩ S2)∩ S3;
2. S1 ∪ (S2 ∪ S3) = (S1 ∪ S2)∪ S3;
3. n(S1 ∪ S2) = nS1 ∪nS2;
4. (S1 ∪ S2)

n = Sn1 ∪ Sn2 .

Proof. Assume that S1,S2 and S3 are three (3, 4)-FSs and n > 0. Then,

1.

S1 ∩ (S2 ∩ S3) = (λS1 ,ωS1)∩ (min{λS2 , λS3}, max{ωS2 ,ωS3})

= (min{λS1 , min{λS2 , λS3}}, max{ωS1 , max{ωS2 ,ωS3}})

= (min{min{λS1 , λS2}, λS3}, max{max{ωS1 ,ωS2},ωS3})

= (min{λS1 , λS2}, max{ωS1 ,ωS2})∩ (λS3 ,ωS3) = (S1 ∩ S2)∩ S3.

2. The proof is similar to (1).
3.

n(S1 ∪ S2) = n(max{λS1 , λS2}, min{ωS1 ,ωS2}) = ( 3
√

1 − (1 − (max{λ3
S1

, λ3
S2
})n, min{ωn

S1
,ωn

S2
}).

And,

nS1 ∪nS2 = ( 3
√

1 − (1 − λ3
S1
)n,ωn

S1
)∪ ( 3

√
1 − (1 − λ3

S2
)n,ωn

S2
)

= (max{ 3
√

1 − (1 − λ3
S1
)n, 3
√

1 − (1 − λ3
S2
)n}, min{ωn

S1
,ωn

S1
})

= ( 3
√

1 − (1 − max{λ3
S1

, λ3
S2
})n, min{ωn

S1
,ωn

S2
}) = n(S1 ∪ S2).

4. The proof is similar to (3).

Theorem 3.12. Let S1 = (λS1 ,ωS1) and S2 = (λS2 ,ωS2) be two (3, 4)-FSs, then

1. (S1 ∩ S2)
c = Sc1 ∪ Sc2 ;

2. (S1 ∪ S2)
c = Sc1 ∩ Sc2 ;

3. (Sc1 )
c = S1.

Proof. Let S1 and S2 be two (3, 4)-FSs. Then,

1.

(S1 ∩ S2)
c = (min{λS1 , λS2}, max{ωS1 ,ωS2})

c

= (max{ωS1 ,ωS2}
4
3 , min{λS1 , λS2}

3
4 )

= (max{ωS1

4
3 ,ωS2

4
3 }, min{λS1

3
4 , λS2

3
4 }) = (ω

4
3
S1

, λ
3
4
S1
)∪ (ω

4
3
S2

, λ
3
4
S2
) = Sc1 ∪ Sc2 .
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2. The proof is similar to (1).

3. (Sc1 )
c = (ω

4
3
S1

, λ
3
4
S1
)c = ([λ

3
4
S1
]

4
3 , [ω

4
3
S1
]

3
4 ) = S1.

Definition 3.13. Let S1 = (λS1 ,ωS1) and S2 = (λS2 ,ωS2) be two (3, 4)-FSs, then

1. S1 = S2 if and only if λS1 = λS2 and ωS1 = ωS2 ;
2. S1 > S2 if and only if λS1 > λS2 and ωS1 6 ωS2 ;
3. S1 ⊃ S2 if S1 > S2.

Example 3.14.

1. If S1 = (0.9, 0.7) and S2 = (0.9, 0.7) for E = e, then S1 = S2;
2. If S1 = (0.9, 0.4) and S2 = (0.6, 0.7) for E = e, then S1 > S2 and S1 ⊃ S2.

Definition 3.15. Let S = (λS,ωS) be a (3, 4)-fuzzy set, then the score function of S can be defined as:

s(S) = λ3
S −ω4

S.

Proposition 3.16. For any (3, 4)-fuzzy set S = (λS,ωS), the score function s(S) ∈ [−1, 1].

Proof. We know that for (3, 4)-FS, λ3
S +ω4

S 6 1. Then λ3
S −ω4

S 6 λ3
S 6 1 and λ3

S −ω4
S > −ω4

S > −1.
Therefore, −1 6 λ3

S −ω4
S 6 1, namely s(S) ∈ [−1, 1]. In particular if S = (0, 1), then s(S) = −1, and if

S = (1, 0), then s(S) = 1.

Definition 3.17. Let S = (λS,ωS) be a (3, 4)-fuzzy set, then the accuracy function of S can be defined as

a(S) = λ3
S +ω4

S.

Remark 3.18. For any (3, 4)-fuzzy set S = (λS,ωS), the suggested accuracy function a(S) ∈ [0, 1].

Definition 3.19. For any (3, 4)-FSs Si = (λSi
,ωSi

) the comparison technique is supposed as,

1. if s(S1) < s(S2), then S1 < S2;
2. if s(S1) > s(S2), then S1 > S2;
3. if s(S1) = s(S2), then

(a) a(S1) < a(S2), then S1 < S2;
(b) a(S1) > a(S2), then S1 > S2;
(c) a(S1) = a(S2), then S1 = S2.

4. Topology on (3, 4)-fuzzy sets

In this section, we formulate the concept of (3, 4)-fuzzy topology on the family of (3, 4)-fuzzy sets and
scrutinize main properties.

Definition 4.1. Suppose that τ is a class of (3, 4)-fuzzy subsets of a non-empty set E. If

1. 1E, 0E ∈ τ, where 1E = (1, 0) and 0E = (0, 1);
2. S1 ∩ S2 ∈ τ, for any S1,S2 ∈ E;
3. ∪i∈ISi ∈ τ, for any {Si}i∈I ∈ E,

then, τ is called a (3, 4)-fuzzy topology on E and (E, τ) is a (3, 4)-fuzzy topological space. Each member of
τ is called an open (3, 4)-fuzzy subset. The complement of an open (3, 4)-fuzzy subset is called a closed
(3, 4)-fuzzy subset.
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Remark 4.2. The class {1E, 0E} is called indiscrete (3, 4)-fuzzy topological space and the topology that
contains all subsets is called discrete (3, 4)-fuzzy topological space. In addition, a (3, 4)-fuzzy topology τ1
on a set is called coarser than a (3, 4)-fuzzy topology τ2 on the same set if τ1 ⊂ τ2.

Example 4.3. Suppose that τ = {1E, 0E,S1,S2,S3,S4,S5} is a class of (3, 4)-fuzzy subsets of E = {e1, e2},
where

S1 = {〈e1, 0.9, 0.62〉 , 〈e2, 0.91, 0.61〉} , S2 = {〈e1, 0.93, 0.53〉 , 〈e2, 0.92, 0.62〉} ,
S3 = {〈e1, 0.89, 0.63〉 , 〈e2, 0.90, 0.63〉} , S4 = {〈e1, 0.93, 0.53〉 , 〈e2, 0.92, 0.61〉} ,
S5 = {〈e1, 0.9, 0.62〉 , 〈e2, 0.91, 0.62〉} .

Thus, (E, τ) is a (3, 4)-fuzzy topological space.

Remark 4.4. We showed that every fuzzy set S is a (3, 4)-fuzzy set having the form S = {〈e, λS(e), 1 − λS(e)〉 :
e ∈ E}. Then, every fuzzy topological space (E, τ1) in the sense of Chang is obviously a (3, 4)-fuzzy
topological space in the form τ = {S : λS ∈ τ1} whenever we identify a fuzzy set in E whose membership
function is λS with its counterpart S = {〈e, λS(e), 1 − λS(e)〉 : e ∈ E}. In the same way, one can note
that every intuitionistic fuzzy topology, Pythagorean fuzzy topology and Fermatean fuzzy topology are a
(3, 4)-fuzzy topology. The following examples illustrate this note.

Example 4.5. Suppose that τ = {1E, 0E,S1,S2} is a class of fuzzy subsets of E = {e}, where

1E = {〈e, λ1E(e) = 1, 1 − λ1E(e) = ω1E(e) = 0〉},
0E = {〈e, λ0E(e) = 0, 1 − λ0E(e) = ω0E(e) = 1〉},
S1 = {〈e, λS1(e) = 0.6, 1 − λS1(e) = ωS1(e) = 0.4〉},
S2 = {〈e, λS2(e) = 0.1, 1 − λS2(e) = ωS2(e) = 0.9〉}.

Then, τ is a fuzzy topology on E, and thus it is (3, 4)-fuzzy topology.

Example 4.6. Suppose that τ = {1E, 0E,S1,S2} is a class of fuzzy subsets of E = {e1, e2}, where S1 =
{〈e1, 0.9, 0.53〉 , 〈e2, 0.91, 0.62〉} and S2 = {〈e1, 0.93, 0.53〉 , 〈e2, 0.92, 0.62〉}. Then, τ is (3, 4)-fuzzy topology but
τ is not intuitionistic fuzzy topology, Pythagorean fuzzy topology and Fermatean fuzzy topology.

Definition 4.7. Suppose that (E, τ) is a (3, 4)-fuzzy topological space and S is a (3, 4)-FS in E. Then, the
(3, 4)-fuzzy interior and the (3, 4)-fuzzy closure of S are, respectively, defined as:

1. int(S)= ∪{B : B is an open (3, 4)-FS in E and B ⊂ S};
2. cl(S)= ∩{A : A is a closed (3, 4)-FS in E and S ⊂ A}.

Remark 4.8. Let (E, τ) be a (3, 4)-fuzzy topological space and S be any (3, 4)-FS in E. Then,

1. int(S) is an open (3, 4)-FS;
2. cl(S) is a closed (3, 4)-FS;
3. int(1E) = cl(1E) = 1E and int(0E) = cl(0E) = 0E.

Example 4.9. Consider the (3, 4)-fuzzy topological space in Example 4.3 if

S= {〈e1, 0.65, 0.91〉 , 〈e2, 0.73, 0.71〉},

then int(S) = 0E and cl(S) = 1E.

Theorem 4.10. Let (E, τ) be a (3, 4)-fuzzy topological space. If S1 and S2 are two (3, 4)-FSs in E, then the following
axioms hold:

1. int(S1) ⊂ S1 and S1 ⊂ cl(S1);
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2. if S1 ⊂ S2, then int(S1) ⊂ int(S2) and cl(S1) ⊂ cl(S2);
3. S1 is open if and only if S1 ⊂ int(S1);
4. S1 is closed if and only if cl(S1) ⊂ S1.

Proof. Obvious.

Corollary 4.11. Let (E, τ) be a (3, 4)-fuzzy topological space. If S1 and S2 are two (3, 4)-FSs in E, then

1. int(S1)∪ int(S2) ⊂ int(S1 ∪ S2);
2. cl(S1 ∩ S2) ⊂ cl(S1)∩ (S2);
3. int(S1 ∩ S2) = int(S1)∩ int(S2);
4. cl(S1)∪ cl(S2) = cl(S1 ∪ S2).

Proof. (1) and (2) are obvious by Theorem 4.10.

(3) Since int(S1 ∩ S2) ⊂ int(S1) and int(S1 ∩ S2) ⊂ int(S2) we get int(S1 ∩ S2) ⊂ int(S1) ∩ int(S2). On the
contrary, from the fact int(S1) ⊂ S1 and int(S2) ⊂ S2 we get int(S1) ∩ int(S2) ⊂ S1 ∩ S2 and since int(S1) ∩
int(S2) is open, then we have int(S1)∩ int(S2) ⊂ int(S1 ∩ S2) and hence int(S1 ∩ S2) = int(S1)∩ int(S2).

(4) The proof is similar to (3).

Theorem 4.12. Let (E, τ) be a (3, 4)-fuzzy topological space and S be any (3, 4)-FS in E. Then, the following
axioms hold:

1. cl(Sc) = int(S)c;
2. int(Sc) = cl(S)c;
3. cl(Sc)c = int(S);
4. int(Sc)c = cl(S).

Proof. We will prove (1) and the others can be proved similarly. Let S = {〈e, λS(e),ωS(e)〉 : e ∈ E} and
assume that the class of open (3, 4)-fuzzy sets contained in S is indexed by class Ai = {〈e, λAi

(e),ωAi
(e)〉 :

i ∈ I}. Then, int(S) = {〈
∨
λAi

(e),
∧
ωAi

(e)〉}. Thus, int(S)c = {
〈∧

[ωAi
(e)]

4
3 ,
∨
[λAi

(e)]
3
4

〉
}. Now,

Sc = {
〈
[ωS(e)]

4
3 , [λS(e)]

3
4

〉
} such that λAi

6 λS and ωAi
> ωS for each i ∈ I. This implies that

{
〈
[ωAi

(e)]
4
3 , [λAi

(e)]
3
4

〉
i ∈ I} is the class of closed (3, 4)-fuzzy sets containing Sc. That is, cl(Sc) =

{
〈∧

[ωAi
(e)]

4
3 ,
∨
[λAi

(e)]
3
4

〉
}. Hence, cl(Sc) = int(S)c.

5. (3, 4)-fuzzy continuous maps

In this section, we define (3, 4)-fuzzy continuous maps and give some characterizations.

Definition 5.1. Let f : E → T be a map with S and D are (3, 4)-fuzzy subsets of E and T , respectively.
The functions of membership and non-membership of the image of S, denoted by f[S], are respectively,
defined by

λf[S](t) =

{sup
z∈f−1(t)

λS(z), f−1(t) 6= φ,

0, otherwise,
ωf[S](t) =

{
inf
z∈f−1(t)

ωS(z), f−1(t) 6= φ,

1, otherwise.

The functions of membership and non-membership of the inverse image of D, denoted by f−1[D], are
respectively, defined by λf−1[D](z) = λD(f(z)) and ωf−1[D](z) = ωD(f(z)).
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Remark 5.2. To prove f[S] and f−1[D] are (3, 4)-fuzzy subsets, consider (rA(z))7 = (λS(z))
3 + (ωS(z))

4 and
t ∈ T , then we obtain,

(λf[S](t))
3 + (ωf[S](t))

4 = (
sup
z∈f−1(t)

λS(z))
3 + (inf

z∈f−1(t)ωS(z))
4

=
sup
z∈f−1(t)

(λS(z))
3 +inf

z∈f−1(t) (ωS(z))
4

=
sup
z∈f−1(t)

((rS(z))
7 − (ωS(z))

4) +inf
z∈f−1(t) (ωS(z))

4

6
sup
z∈f−1(t)

(1 − (ωS(z))
4) +inf

z∈f−1(t) (ωS(z))
4 = 1,

whenever f−1(t) 6= φ. But, if f−1(t) = φ, then we have (λS(z))
3 + (ωS(z))

4 = 1. The proof is obvious for
f−1[D].

Example 5.3. Let E = {e1, e2}, T = {t1, t2} and f : E→ T be defined as follows:

f(e) =

{
t2, e = e1,
t1, e = e2.

Let S = {〈e1, 0.6, 0.88〉 , 〈e2, 0.8, 0.6〉}, then f[S] = {〈t1, 0.8, 0.6〉 , 〈t2, 0.6, 0.88〉}.

Theorem 5.4. Let f : E → T be a map with S and D are (3, 4)-fuzzy subsets of E and T , respectively. Then, we
have

1. f−1[Dc] = (f−1[D])c;
2. f[S]c ⊂ f[Sc];
3. if D1 ⊂ D2, then f−1[D1] ⊂ f−1[D2], where D1 and D2 are (3, 4)-fuzzy subsets of T ;
4. if S1 ⊂ S2, then f[S1] ⊂ f[S2], where S1 and S2 are (3, 4)-fuzzy subsets of E;
5. f[f−1[D]] ⊂ D;
6. S ⊂ f−1[f[S]].

Proof.

1. Let e ∈ E and D be a (3, 4)-fuzzy subsets of T . Then, λf−1[Dc](e) = λDc(f(e)) = (ωD(f(e)))
3
4 =

(ωf−1(D)(e))
3
4 = λf−1[D]c(e). Similarly, one can have ωf−1[Dc](e) = ωf−1[D]c(e). Thus, f−1[Dc] = (f−1[D])c.

2. For any t ∈ T such that f−1(t) 6= φ and for any (3, 4)-fuzzy subsets S of E, we can write

(rf[S](t))
7 = (λf[S](t))

3 + (ωf[S](t))
4

=
sup
z∈f−1(t)

λS(z)
3 + inf

z∈f−1(t)ωS(z)
4

=
sup
z∈f−1(t)

(rS(z))
7 − (ωS(z))

4 + inf
z∈f−1(t)ωS(z)

4

6
sup
z∈f−1(t)

(rS(z))
7 − inf

z∈f−1(t)(ωS(z))
4 + inf

z∈f−1(t)ωS(z)
4 =

sup
z∈f−1(t)

(rS(z))
7.

Now,

λf[Sc](t) = supz∈f−1(t)λSc(z)

= supz∈f−1(t)
3
√

(ωS(z))4

= supz∈f−1(t)
3
√
rS(z)7 − (λS(z))3

> 3
√

supz∈f−1(t)rS(z)
7 − supz∈f−1(t)(λS(z))

3

> 3
√
rf[S](t) − (λf[S](t))3 = 3

√
(ωf[S](t))4 = λf[S]c(t).

The proof is obvious when f−1(t) = φ. Following a similar technique, we get
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ωf[Sc](t) 6 ωf[S]c(t),

which means that

f[S]c ⊂ f[Sc].

3. Suppose that D1 ⊂ D2. Then, for each e ∈ E,

λf−1[D1]
(e) = λD1(f(e)) 6 λD2(f(e)) = λf−1[D2]

(e).

Also, ωf−1[D1]
(e) > ωf−1[D2]

(e). Thus, we get the desired result.

4. Suppose that S1 ⊂ S2 and t ∈ T . The proof is easy when f(t) = φ, assume that f(t) 6= φ. Then,

λf[S1](t) = supz∈f−1(t)λS1(z) 6 supz∈f−1(t)λS2(z) = λf[S2](t).

Similarly, we have ωf[S1](t) > ωf[S2](t). Thus, we get the desired result.

5. For any t ∈ T such that f(t) 6= φ, we find that

λf[f−1[D]](t) =
sup
z∈f−1(t)

λf−1[D](z) =
sup
z∈f−1(t)

λD(f(z)) 6 λD(t).

On the other side, we have λf[f−1[D]](t) = 0 6 λD(t), when f(t) = φ. Similarly, we have ωf[f−1[D]](t) >
ωD(t).

6. For any e ∈ E, we have

λf−1[f[S]](e) = λf[S](f(e)) =
sup
e∈f−1(t)

λS(e) > λS(e).

Similarly, we have ωf−1[f[S]](e) 6 ωS(e).

The proof for the following result is straight, so it is omitted.

Theorem 5.5. Let f : E→ T be a map. Then,

1. f[∪i∈ISi] = ∪i∈If[Si], for any (3, 4)-fuzzy subsets Si of E;
2. f−1[∪i∈IDi] = ∪i∈If−1[Di], for any (3, 4)-fuzzy subsets Di of T ;
3. f[S1 ∩ S2] ⊂ f[S1]∩ f[S2], for any two (3, 4)-fuzzy subsets S1 and S2 of E;
4. f−1[∩i∈IDi] = ∩i∈If−1[Di], for any (3, 4)-fuzzy subsets Di of T .

Definition 5.6. Assume that S and U are two (3, 4)-fuzzy subsets in a (3, 4)-fuzzy topological space. Then,
U is said to be a neighborhood of S, if there exists an open (3, 4)-fuzzy subsets G such that S ⊂ G ⊂ U.

Theorem 5.7. A (3, 4)-fuzzy subset S is open if and only if it contains a neighborhood of each its subset.

Proof. Let S be an open (3, 4)-fuzzy set and A be a (3, 4)-fuzzy set such that A ⊂ S. Since A ⊂ S ⊂ S and
S is an open (3, 4)-fuzzy set, then S is a neighborhood of A.

Conversely, let S be a neighborhood of its each subset. For arbitrary A ⊂ S there exists an open (3, 4)-
fuzzy set OA such that A ⊂ OA ⊂ S. Thus, we have S ⊂

⋃
A⊂SOA and since for all A ⊂ S and OA ⊂ S,

we get
⋃

A⊂SOA ⊂ S. Consequently, we obtain S =
⋃

A⊂SOA which implies S is an open (3, 4)-fuzzy
set.

Definition 5.8. Let (E, τ1) and (T , τ2) be two (3, 4)-fuzzy topological spaces and f : E→ T be a map. Then,
f is said to be (3, 4)-fuzzy continuous if for any (3, 4)-fuzzy subset S of E and for any neighborhood V of
f[S] there exists a neighborhood U of S such that f[U] ⊂ V .

Theorem 5.9. Let f : E→ T be a map. Then, the following statements are equivalent:

1. f is (3, 4)-fuzzy continuous;
2. for each (3, 4)-fuzzy subset S of E and each neighborhood V of f[S] there is a neighborhood U of S such that

for each D ⊂ U, we have f[D] ⊂ V ;
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3. for each (3, 4)-fuzzy subset S of E and each neighborhood V of f[S], there is a neighborhood U of S such that
U ⊂ f−1[V];

4. for each (3, 4)-fuzzy subset S of E and each neighborhood V of f[S], f−1[V] is a neighborhood of S.

Proof.

(1)⇒ (2) Let f be (3, 4)-fuzzy continuous and S be a (3, 4)-fuzzy subset of E. Consider V as a neigh-
borhood of f[S]. Then, there is a neighborhood U of S such that f[U] ⊂ V . Since D ⊂ U, we have
f[D] ⊂ f[U] ⊂ V .

(2)⇒ (3) Let S be a (3, 4)-fuzzy subset of E and V be a neighborhood of f[S]. From (2), there is a
neighborhood U of S such that for each D ⊂ U, we have f[D] ⊂ V . Therefore, D ⊂ f−1[f[D]] ⊂ f−1[V].
Since D is an arbitrary subset of U, we obtain U ⊂ f−1[V].

(3)⇒ (4) Let S be a (3, 4)-fuzzy subset of E and V be a neighborhood of f[S]. From (3), there is a
neighborhood U of S such that U ⊂ f−1[V]. Since U is a neighborhood of S there is an open (3, 4)-fuzzy
subset G of E such that S ⊂ G ⊂ U, and so S ⊂ G ⊂ f−1[V]. Therefore, f−1[V] is a neighborhood of S.

(4)⇒ (1) Let S be a (3, 4)-fuzzy subset of E and V be a neighborhood of f[S]. Then f−1[V] is a neigh-
borhood S. Thus, there is an open (3, 4)-fuzzy subset G of E such that S ⊂ G ⊂ f−1[V] which means
f[G] ⊂ f[f−1[V]] ⊂ V . Moreover, G is an open (3, 4)-fuzzy subset, thus it is a neighborhood of S. Hence, f
is (3, 4)-fuzzy continuous.

Theorem 5.10. Let (E, τ1) and (T , τ2) be two (3, 4)-fuzzy topological spaces. A map f : E → T is (3, 4)-fuzzy
continuous if and only if f−1[D] is an open (3, 4)-fuzzy subset of E for each open (3, 4)-fuzzy subset D of T .

Proof. Suppose that f is (3, 4)-fuzzy continuous. Let D be any open (3, 4)-fuzzy subset of T and let
S ⊂ f−1[D]. Then, we have f[S] ⊂ D. By Theorem 5.7, there is a neighborhood V of f[S] satisfying V ⊂ D.
Since f is (3, 4)-fuzzy continuous, then by Theorem 5.9 we obtain that f−1[V] is a neighborhood of S.
Therefore f−1[V] ⊂ f−1[D], and so f−1[D] is a neighborhood of S. As S is an arbitrary subset of f−1[D],
then f−1[D] is an open (3, 4)-fuzzy subset E.

Conversely, let S be a (3, 4)-fuzzy subset of E and V be a neighborhood of f[S]. Then, τ2 contains a (3,
4)-fuzzy subset G of T such that f[S] ⊂ G ⊂ V and so S ⊂ f−1[f[S]] ⊂ f−1[G] ⊂ f−1[V]. Hence, f−1[V] is a
neighborhood of S. This proves that f is (3, 4)-fuzzy continuous.

The following two examples are constructed such that the first example shows a (3, 4)-fuzzy continu-
ous map, while the second shows a fuzzy map that is not (3, 4)-fuzzy continuous.

Example 5.11. Consider E = {e1, e2} with the (3, 4)-fuzzy topology τ1 = {1E, 0E,S} and T = {t1, t2} with the
(3, 4)-fuzzy topology τ2 = {1T , 0T ,D}, where

S = {〈e1, 0.6, 0.88〉 , 〈e2, 0.8, 0.6〉} and D = {〈t1, 0.8, 0.6〉 , 〈t2, 0.6, 0.88〉}.

Let f : E→ T defined as follows:

f(e) =

{
t2, e = e1,
t1, e = e2.

Since 1T , 0T and D are open (3, 4)-fuzzy subsets of T , then

f−1[1T ] = {〈e1, 1, 0〉 , 〈e2, 1, 0〉}, f−1[0T ] = {〈e1, 0, 1〉 , 〈e2, 0, 1〉}, f−1[D] = {〈e1, 0.6, 0.88〉 , 〈e2, 0.8, 0.6〉},

are open (3, 4)-fuzzy subsets of E. Hence, f is (3, 4)-fuzzy continuous.

Example 5.12. Consider E = {e1, e2} with the (3, 4)-fuzzy topology τ1 = {1E, 0E} and T = {t1, t2} with the
(3, 4)-fuzzy topology τ2 = {1T , 0T ,D}, where

D = {〈t1, 0.92, 0.52〉 , 〈t2, 0.62, 0.80〉}.
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Let f : E→ T defined as follows:

f(e) =

{
t1, e = e1,
t2, e = e2.

Since D is an open (3, 4)-fuzzy subset of T , but f−1[D] = {〈e1, 0.92, 0.52〉 , 〈e2, 0.62, 0.80〉} is not an open (3,
4)-fuzzy subsets of E. Hence, f is not (3, 4)-fuzzy continuous.

6. Conclusions

In this paper, we constructed a new extension of intuitionistic fuzzy set called (3, 4)-fuzzy sets and
compared with other classes of fuzzy sets such as intuitionistic fuzzy sets, Pythagorean fuzzy sets and
Fermatean fuzzy sets. Further, some well-known operators have been proved over (3, 4)-fuzzy sets. The
score function and accuracy function have been defined on (3, 4)-fuzzy sets. Moreover, the concept (3,
4)-fuzzy topology is given. Some fundamental concepts of classical topology are defined like open sets,
closed sets, interior and closure. Finally, (3, 4)-fuzzy maps and (3, 4)-fuzzy continuity are presented.

In future works, we will try to present the notions of compactness and connectedness in (3,4)-fuzzy
topology.
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