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Abstract
In this paper, we propose an algorithm for solving optimal control problems in a class of continuously differentiable control

functions with bounded derivatives. Based on derivative variations [R. Enkhbat, B. Barsbold, J. Mongolian Math. Soc., 17
(2013), 27–39], we derive new optimality conditions for the original problem. An algorithm has been constructed based on the
optimality conditions. The convergence of the proposed algorithm has been proved. The algorithm was tested on some well
known numerical examples.
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1. Introduction

Optimal control problems subject to ordinary and partial differential equations (ODEs/ PDEs) arise in
a wide range of applications, e.g., epidemiology, robotics, astronautics, active queue management, wire-
less networks, aeronautics and chemical engineering ([13, 17]). Optimal control problems are often solved
numerically due to the complexity of most applications. Solving optimal control problems numerically
date back the 1950s with the work of Bellman. Since that date to present, the complexity of solving op-
timal control problems has increased. Several previous works on optimal control have been published,
provides a very comprehensive overview of history of the optimal control and numerical techniques for
solving them. In order to solve the OCPs numerically, two basic approaches are found: direct methods
and indirect methods. In the first method ([1, 2, 2, 9, 16]), the state and/or the control of the OCPs are
discretized then converted into a discrete nonlinear optimization problems (NOP). The producing NOP
can be solved numerically by well-know NOP solver such as JMODELICA [11], and SNOPT ([10]). A class
of direct approaches is quite vast and involves different techniques. Particularly, there are two of the more
common classes within direct approaches. Control parametrization, where the control is approximated
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and the dynamic systems are solved by numerical integration using control estimate. This class is called
shooting method as well. The other class, the state and the control are discretized hence the dynamic
systems are converted into algebraic constraints. Recently, considerable attention has been focused on the
second class which is called pseudo spectral or orthogonal collocation methods as well. In the orthogonal
collocation method, a finite basis of global interpolating polynomials is applied to estimate the control
and state at a set of discretization points. In the other approach, a calculus of variations ([5]) are ap-
plied to derive the first order optimality conditions of the original OCPs based on Maximum Pontryagin
Principle. This approach leads to a multiple point boundary value problem that is solved to compute
the extremal optimal trajectories. Most common methods in this approach are are multiple shooting and
collocation. In this paper, inspired by interior ([6]), we propose another approach to solving the OCPs in
class of continuously differentiable control functions based on so-called derivative variations. Derivative
variations allow us to formulate necessary conditions for the original problem. An algorithm constructed
based on optimality conditions is shown to be convergent. We present some examples to illustrate the
proposed algorithm.

2. Problem formulation and variations

Consider the following system of ordinary differential equation (ODE) on a fixed interval [t0, tf],

ẋ = f(x(t),u(t), t), ϕ(x(t0)) = x(t0) − x0 = 0, x0 ∈ Rn, (2.1)

where t ∈ [t0, tf], x(t) = (x1(t), x2(t), . . . , xn(t))T is the state vector, u(t) = (u1(t),u2(t), . . . ,ur(t))T is the
control variable vector and is selected from the class of admissible controls U ∈ Rr. The above equation
(2.1) is called the equation of motion. Along with this process, we have a cost functional of the form:

J(u) = φ(x(tf) +

∫tf
t0

L(x(t),u(t), t))dt← min . (2.2)

Here, the functional L : Rn × Rr × R1 → R is continuous in all arguments and continuously differentiable
in x and u. The function f : Rn × Rr × R1 → Rn is a vector function which is continuous in its arguments
(x,u, t) together with its partial derivative with respect to x and assumes to satisfy Lipshitz’s condition in
x with the same constant L, ∀u ∈ Rr, t ∈ [t0, tf],

‖ f(x+∆εx,u, t) − f(x,u, t) ‖6 L ‖ x ‖ (2.3)

with initial condition x(t0) = x0. Assume that u(t) ∈ C1
r[t0, tf],u(t) 6≡ cons , ‖ u̇(t) ‖6M 6 ∞, t ∈ [t0, tf].

By defining the set S as:

S = {δ ∈ C1([t0, tf]) | ‖ δ(t) ‖6 K, δ(t0) = δ(tf) = 0},

the increment of the ODE (2.1) can be written as:

∆εẋ = ∆εf(x(t),u(t), t)), ∆εϕ(x(t0)) = 0,

where,
∆εf(x(t),u(t), t) = f(x̃(t), ũ(t), t) − f(x(t),u(t), t).

The partial increment for function f with respect to the control can be written as:

∆ũεf(x(t),u(t), t) = f(x(t), ũ, t) − f(x(t),u(t), t).

Hence, the increment of objective functional can be represented as:

∆εJ(u) = ∆εφ(x(tf)) +

∫tf
t0

∆εL(x(t),u(t), t)dt

+

∫tf
t0

〈 x̄,∆εẋ(t) −∆εf(x(t),u(t), t)〉dt+ 〈 µ,∆εϕ(x(t0))〉.
(2.4)
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Let,
H(x(t),u(t), x̄, t) = 〈 x̄(t), f(x(t),u(t), t) − L(x(t),u(t), t)〉 (2.5)

is the Hamiltonian function, 〈 ., .〉 stands for inner product in the finite dimensional Euclidean space Rn

and x̄(t) ∈ Rn is the so-called adjoint function that defines the ’co-state’ of the dynamic system and
satisfies the terminal value linear ODE system given by

˙̄x(t) = −
∂H(x,u, x̄, t)

∂x
, x̄(tf) =

∂φ(x(tf))

∂x
(2.6)

using Taylor expansion, the partial increment for the boundary conditions can be written as:

∆εφ(x(tf)) = 〈
∂φ

∂x(tf)
,∆εx(tf) +Oφ(‖ ∆εx(tf)) ‖〉, (2.7)

∆εϕ(x(t0)) = 〈
∂ϕ

∂x(t0)
,∆εx(t0) +Oϕ(‖ ∆εx(t0)) ‖〉. (2.8)

By using an integrating by parts, we can write:∫tf
t0

〈 x̄(t),∆εẋ(t)〉dt = 〈 x̄(tf),∆εẋ(tf)〉− 〈 x̄(t0),∆εẋ(t0)〉−
∫tf
t0

〈 ˙̄x(t),∆εx(t)〉dt. (2.9)

Taking into account (2.5)-(2.9), Equation (2.4) becomes:

∆εJ(u) = ∆εφ(x(tf)) −

∫tf
t0

∆x̃ũH(x(t),u(t), x̄, t)dt+
∫tf
t0

〈 x̄,∆εẋ(t)〉dt+ 〈 µ,∆εϕ(x(t0))〉

=

∫tf
t0

〈 x̄,∆εẋ(t)〉dt−
∫tf
t0

∆x̃ũH(x(t),u(t), x̄, t)dt+ 〈 ∂φ

∂x(tf)
,∆εx(tf)

+Oφ(‖ ∆εx(tf)) ‖〉+ 〈
∂ϕ

∂x(t0)
,∆εx(t0) +Oϕ(‖ ∆εx(t0)) ‖〉+ 〈 µ,∆εϕ(x(t0))〉

= −

∫tf
t0

〈 ˙̄x,∆εx(t)〉dt−
∫tf
t0

∆x̃ũH(x(t),u(t), x̄, t)dt+ 〈 ∂φ

∂x(tf)
+ x̄(tf),∆εx(tf)〉

+ 〈 −x̄(t0) + (
∂ϕ

∂x(tf)
)Tµ,∆εx(t0)〉+Oφ(‖ ∆εx(tf) ‖) + 〈 µ,Oϕ(‖ ∆εx(t0) ‖)〉,

since,

∆x̃ũH(x(t),u(t), x̄, t) = H(x̃, ũ, x̄, t) −H(x,u, x̄, t) = ∆x̃εH(x, ũ, x̄, t) −∆ũεH(x,u, x̄, t)

and

∆x̃εH(x, ũ, x̄, t) = 〈 ∂H(x, ũ, x̄, t)
∂x

,∆εx(t)〉+OH(‖ ∆εx(t) ‖),

∂H(x, ũ, x̄, t)
∂x

= ∆ũε
∂H(x,u, x̄, t)

∂x
+
∂H(x,u, x̄, t)

∂x
.

This leads to

∆εJ(u) = −

∫tf
t0

〈 ˙̄x,∆εx(t)〉dt−
∫tf
t0

〈 ∂H(x, ũ, x̄, t)
∂x

,∆εx(t)〉dt−
∫tf
t0

OH(‖ ∆εx(t) ‖)dt

−

∫tf
t0

∆ũεH(x,u, x̄, t)dt+Oφ(‖ ∆εx(tf) ‖) + 〈 µ,Oϕ(‖ ∆εx(t0) ‖)〉

= −

∫tf
t0

〈 ˙̄x,∆εx(t)〉dt−
∫tf
t0

〈 ∆ũε
∂H(x,u, x̄, t)

∂x
+
∂H(x,u, x̄, t)

∂x
,∆εx(t)〉dt
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−

∫tf
t0

OH(‖ ∆εx(t) ‖)dt−
∫tf
t0

∆ũεH(x,u, x̄, t)dt+Oφ(‖ ∆εx(tf) ‖) + 〈 µ,Oϕ(‖ ∆εx(t0) ‖)〉

= −

∫tf
t0

∆ũεH(x,u, x̄, t)dt−
∫tf
t0

〈 ∆ũε
∂H(x,u, x̄, t)

∂x
,∆εx(t)〉dt

−

∫tf
t0

OH(‖ ∆εx(t) ‖)dt+Oφ(‖ ∆εx(tf) ‖) +Oϕ(〈 µ, ‖ ∆εx(t0) ‖〉)

= −

∫tf
t0

∆ũεH(x,u, x̄, t)dt+ ηũε ,

where,

ηũε = −

∫tf
t0

OH(‖ ∆εx(t) ‖)dt+Oφ(‖ ∆εx(tf) ‖) +Oϕ(〈 µ, ‖ ∆εx(t0) ‖〉)

−

∫tf
t0

〈 ∆ũε
∂H(x,u, x̄, t)

∂x
,∆εx(t)〉dt.

3. Derivative variations

By introducing the derivative variations of u(t) ∈ C1
r as:

ūε = u(t) + εδu̇(t), (3.1)

for all δ ∈ S, ε ∈ R and t ∈ [t0, tf], we define a weak optimal control.

Definition 3.1. An admissible control u∗ is said to be a weak optimal control to problem (2.1)-(2.2) if there
exist a positive number β such that

J(u∗) 6 J(u)

holds for all u ∈ C1
r([t0, tf]) satisfying

‖ u− u∗ ‖C16 β.

Let a process (x∗,u∗, x̄∗) be a weak optimal process. Let ∆εu(t) be an increment of u with respect to
time t

∆εu(t) = ūε(t) − u(t) = εu̇(t)δ(t). (3.2)

On the other hand, since H(.) is differentiable with respect to u then there is an estimate by Vasilieva
([3, 8, 14, 18–21]) for ∆εx(t) as

‖ ∆xε(t) ‖6 K
∫tf
t0

‖ ∆εu(t) ‖ dt. (3.3)

Using (3.2) and (3.3), we get:

‖ ∆εx(t) ‖6 K
∫tf
t0

εu̇(t)δ(t)dt 6 K
∫tf
t0

|ε||u̇(t)||δ(t)|dt 6 K|ε|MK1(tf − t). (3.4)

Thus we have

Oφ(‖ ∆εx(tf) ‖) ∼ O(ε) and
∫tf
t0

OH(‖ ∆εx(tf) ‖)dt ∼ O(ε). (3.5)

We can write the following

∆ūεH(x,u, x̄, t) = 〈∂H(x,u, x̄, t)
∂u

,∆εu(t)〉+OH(‖ ∆εu(t) ‖).
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Taking into account the Lipshitz condition (2.3) and (3.5) and substituting (3.1) in (3.3)-(3.5), we obtain

ηūε ∼ O(ε).

Thus ∆εJ(u) reduces to:

∆εJ(u) = −ε

∫tf
t0

〈∂H(x,u, x̄, t)
∂u

, u̇〉δ(t)dt+O(ε), (3.6)

lim
ε→0

O(ε)

ε
= 0.

In a class of continuously differentiable functions with bound derivatives based on derivative variation,
the necessary conditions for problem (2.1)-(2.2) are ready to be described in the following theorem.

Theorem 3.2. Assume that u∗ is optimal of the problem (2.1)-(2.2) and that x∗ and x̄∗ are the corresponding
feasible trajectories and the adjoint systems (2.6), respectively. Further, suppose that (x∗,u∗, x̄∗) is a weak optimal
to problem (2.1)-(2.2), (2.6). Then the following conditions

〈∂(x
∗,u∗, x̄∗, t)
∂u

, u̇∗(t)〉 = 0,

are satisfied, ∀t ∈ [t0, tf].

Proof. Let {x∗,u∗, x̄∗} be a weak optimal process, then the formula (3.6) at the optimal control has the
form:

∆εJ(u
∗) = J(uε(t)) − J(u

∗) = −ε

∫tf
t0

〈∂H(x
∗,u∗, x̄∗, t)
∂u

, u̇∗〉δ(t)dt+O(ε), (3.7)

where δ(t) ∈ S and O(ε)
ε →ε→0→ 0, t ∈ [t0, tf]. Moreover, ‖ O(ε) ‖6 Q ‖ ε2 ‖, Q = const > 0. Denote by

γ the main term in (3.7). That is

γ = 〈∂H(x
∗,u∗, x̄∗, t)
∂u

, u̇∗〉δ(t)dt.

Then we have
∆εJ(u

∗) = −εγ+O(ε),

where limε→0
O(ε)
ε = 0. To show γ = 0, assume the contrary, that is γ 6= 0. Now we can write ∆εJ(u) as

∆εJ(u
∗) = −ε(γ+

O(ε)

ε
).

For sufficiently small ε, the sign of ∆εJ(u∗) is determined by the sign of εγ. By taking ε as ε = +ε ′sign(γ)
for small ε ′ > 0, we have ∆εJ(u∗) = J(uε(t)) − J(u

∗) < 0 which contradicts the definition of the weak
control. Consequently, γ = 0 or equivalently∫tf

t0

〈∂H(x
∗,u∗, x̄∗, t)
∂u

, u̇∗〉δ(t)dt = 0,

for all δ(t) ∈ S. The above equality can be written as ([22]):

〈∂H(x
∗,u∗, x̄∗, t)
∂u

, u̇∗〉δ(t)dt = 0,

which completes the proof.
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3.1. Derivative variation based algorithm
For the purpose of constructing an algorithm for solving problem (2.1)-(2.2), we additionally assume

that u(t) ∈ C∞
r ([t0, tf]) and rewrite the increment formula ∆εJ(u) as:

J(uε) − J(u) = −εγ(u) +O(ε),

where γ(u) =
∫tf
t0
〈∂H(x,u,x̄,t)

∂u , u̇〉δ(t)dt. Introduce the function A(u, t) at (u, t) as:

A(u, t) = 〈∂H(x,u, x̄, t)
∂u

, u̇〉. (3.8)

Denote by C the maximum value of A(t,u) on [t0, tf], i.e.,

C = max
t∈[t0,tf]

‖ A(u, t) ‖ .

Since parameter ε and δ(t) are arbitrarily, we can specify these parameters as follows:

• ε ∈ (0, ε0), ε0 > 0 is a given small number;

•
δ(t) =

(t− t0)(tf − t0)

(tf − t0)
A(u, t),∀u ∈ Rr. (3.9)

It is clear that ‖ δ(t) ‖6 tf − t0. Then the increment formula is:

J(uε) − J(u) = −ε

∫tf
t0

(t− t0)(tf − t0)

(tf − t0)
A2(u, t)dt+O(ε), ε ∈ (0, ε0).

From here, we conclude that there exists ε∗ such that:

J(uε) 6 J(u), ∀ε ∈ (0, ε∗).

Clearly, if u∗ is a weak optimal, then A(u∗, t) = 0,∀t ∈ [t0, tf].

Theorem 3.3. Assume that infu∈C∞
r
J(u) > −∞, and conditions (2.3) and (3.9) hold. Then for a sequence {ui}

generated by the Algorithm 1 the condition:
lim
i→∞γi = 0

is satisfied.

Proof. By constructing of ui, we have

J(uiε) − J(u
i) = −εP(ui) +O(ε).

Taking into account of (2.3) and (3.9), we get:

J(ui+1) − J(ui) 6 −εγi +Q|ε|2,∀ε > 0,

J(ui) − J(ui+1) > εγi −Qε
2,

J(ui) − J(ui+1) > max
ε>0

[εγi −Qε
2] =

γ2
i

4Q
> 0.

Since J(.) is bounded below, there exist

lim
i→∞ J(ui) = A > −∞, J(ui) − J(ui+1) >

γ2
i

4Q
> 0.

Hence, we obtain limi→∞ γi = 0 which completes the proof.
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Algorithm 1 Derivative variation based algorithm
Step1. i := 0 and ui ∈ C∞

r be an admissible control and xi = xi(ui, t), x̄i = x̄i(xi,ui, t) are the solution of (2.6)
for u = ui and x = xi.
Step2. Compute A(ui, t) by the formula (3.8), i.e.,

A(u, t) = 〈∂H(x,u, x̄, t)
∂u

, u̇〉,∀t ∈ [t0, tf].

Step3. If A(ui, t) = 0,∀t ∈ [t0, tf] then stop and u∗ = ui is a weak optimal control.
Step4. Choose δi(t) ∈ S such that

δi(t) =
(t− t0)(tf − t0)

(tf − t0)Ci
A(ui, t), where Ci = max

t∈[t0,tf]
A(ui, t).

Step5. Calculate ui+1 as:

ui+1 = ui + εiδku̇
i, εi > 0,

where εi satisfies the condition
J(ui + εδiu̇

i) < J(ui), ε > 0.

Step6. Set i = i+ 1 and go to Step 1.

4. Numerical experiments

In this section, for showing the efficiency of the proposed method, three examples are introduced.

4.1. Example 1: Feldbaum problem

In this application, we consider the optimal control for the Feldbaum problem [4, 7, 12, 15].

Problem Formulation: The dynamic system for the Feldbaum problem is:

ẋ(t) = −x(t) + u(t),

with initial condition at t0 = 0 being x(0) = 1. The problem is to minimize:

J =
1
2

∫ 1

0
(x2(t) + u2(t))dx.

The adjoint equations are determined from the Hamiltonian function,

H(x(t),u(t), x̄(t)) =
1
2
(x2(t) + u2(t)) + x̄(t)(−x(t) + u(t))

as
˙̄x(t) = −x(t) + x̄(t), ¯̄x(tf) = 0.0.

The algebraic relation that must be satisfied is

∂H

∂u
= u(t) + x̄(t) = 0.

The ODE was solved on a equidistant discretization with 300 discretization points using the Euler method.
The optimal control and optimal state are depicted in Figure 1. The cost functional is reduced to J∗ =
0.19368096635, the running time is 0.002s, and |δ(t)| = 9.75251580493e− 05.
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Figure 1: Program data for the Feldbaum Example using Algorithm 1.

4.2. Example 2

Consider the following optimal control problem ([9]):

J = −x(2)

subject to the dynamic system:

ẋ(t) =
5
2
(−x+ xu− u2),

with initial condition at t0 = 0 being x(0) = 1.
The adjoint equations are determined from the Hamiltonian function,

H(x(t),u(t), x̄(t)) =
5
2
x̄(t)(−x+ xu− u2)

as
˙̄x(t) = −

5
2
x̄(1 + u), x̄(π) = 1.0.

The ODE was solved on a equidistant discretization with 300 discretization points using the Euler method.
The optimal control and optimal state are depicted in Figure 2. The cost functional is reduced to J∗ =
−0.00863510491982 and |δ(t)| = 0.0180760435862.

Figure 2: Program data for the Example 2 using Algorithm 1.



E. Rentsen, M. Kamada, A. Radwan, W. Alrashdan, J. Math. Computer Sci., 28 (2023), 203–212 211

4.3. Example 3

Consider the following optimal control problem ([6]):

J =

∫π
0
x sin(x)dx− x(π),

subject to the dynamic system:
ẋ(t) = u(t),

with initial condition at t0 = 0 being x(0) = 0.
The adjoint equations are determined from the Hamiltonian function,

H(x(t),u(t), x̄(t)) = x sin(x) + x̄(t)u(t)

as
˙̄x(t) = − sin(t), x̄(π) = −1.0.

Figure 3: Program data for the Example 3 using Algorithm 1.

The ODE was solved on a equidistant discretization with 300 discretization points using the Euler
method. The optimal control and optimal state are depicted in Figure 3. The cost functional is reduced to
J∗ = −1.57111862433 and |δ(t)| = 0.0134330255315.

5. Conclusions

We have introduced a new algorithm using derivative variation approach for solving some class of
optimal control problem with bounded control derivatives. Under certain assumptions, we prove that
the proposed algorithm converges to a weak solution. The proposed approach has been numerically
illustrated on some well know examples. The approach can be used also in solving engineering problems
such as robot control and signal processing control problems where only continuous control variables are
required.
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