
J. Math. Computer Sci., 28 (2023), 258–269

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Expressions and dynamical behavior of solutions of
eighteenth-order of a class of rational difference equations

Lama Sh. Aljoufia,∗, Samir Al Mohammadya,b, A. M. Ahmedc

aDepartment of Mathematics, College of Science, Jouf University, P.O. Box 2014, Sakaka, Jouf, Saudi Arabia.
bDepartment of Mathematics, Faculty of Science, Helwan University, Helwan 11795, Egypt.
cDepartment of Mathematics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo, Egypt.

Abstract

The aim of this work is to obtain the forms of the solutions of the following nonlinear eighteenth-order difference equations

xn+1 =
xn−17

±1± xn−2xn−5xn−8xn−11xn−14xn−17
, n = 0, 1, 2, . . . ,

where the initial conditions x−17, x−16, . . . , x0 are arbitrary real numbers. Moreover, we investigate stability, boundedness,
oscillation, and the periodic character of these solutions. Finally, we confirm the results with some numerical examples and
graphs by using Matlab program.

Keywords: Recursive sequence, oscillation, semicycles, stability, periodicity, solutions of difference equations.

2020 MSC: 39A10, 39A22, 39A23.

©2023 All rights reserved.

1. Introduction

The study of difference equations is a very rich research field, and difference equations have been
applied in several mathematical models in biology, economics, genetics, population dynamics, medicine,
and so forth. Solving difference equations and studying the asymptotic behavior of their solutions has
attracted the attention of many authors, see for results in this area, for example,

Ahmed et al. [4] obtained the solutions of the difference equations

xn+1 =
xn−14

±1± xn−2xn−5xn−8xn−11xn−14
, n = 0, 1, 2, . . . ,

where the initial conditions are arbitrary real numbers.
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Elsayed et al. [14] obtained the solutions of the difference equations

xn+1 =
xn−11

±1± xn−2xn−5xn−8xn−11
, n = 0, 1, 2, . . . ,

where the initial conditions are arbitrary real numbers.
Elsayed [13] studied the difference equation

xn+1 =
xn−5

−1 + xn−2xn−5
.

For other related papers, see [1–3, 5–12, 15–18].
In this paper, we obtain the solutions of the following nonlinear difference equations

xn+1 =
xn−17

±1± xn−2xn−5xn−8xn−11xn−14xn−17
, n = 0, 1, 2, . . . ,

with conditions posed on the initial values x−j, j = 0, 1, 2, . . . , 17.
Moreover, we investigate stability, boundedness, oscillation and the periodic character of these so-

lutions. Finally, we confirm the results with some numerical examples and graphs by using Matlab
program.

Throughout this paper, we define mod (k, 3) = k− 3
[
k
3

]
, where [x] be the greatest integer less than or

equal to the real number x.

2. The difference equation xn+1 =
xn−17

1 + xn−2xn−5xn−8xn−11xn−14xn−17

In this section, we give a specific form of the solutions of the first equation in the form

xn+1 =
xn−17

1 + xn−2xn−5xn−8xn−11xn−14xn−17
, n = 0, 1, 2, . . . , (2.1)

with conditions posed on the initial values x−j, j = 0, 1, 2, . . . , 17. Also, we investigate the stability and
boundedness of these solutions.

Theorem 2.1. Let {xn}∞n=−17 be a solution of the difference (2.1). Then for n = 0, 1, 2, . . . ,

x18n−k = ak

n−1∏
i=0

(
1 + (6i+Mk − 1)Pk

1 + (6i+Mk)Pk

)
, (2.2)

where Pk =
5∏

j=0
amod(k,3)+3j, Mk = 6 −

[
k
3

]
and x−k = ak, with rPk 6= −1 such that r ∈ {1, 2, 3, . . .}, k =

0, 1, 2, . . . , 17.

Proof. For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for n− 1. That
is

x18n−18−k = ak

n−2∏
i=0

(
1 + (6i+Mk − 1)Pk

1 + (6i+Mk)Pk

)
. (2.3)

Now, it follows from (2.1) and using (2.3) that

x18n−17 =
x18n−35

1 + x18n−20x18n−23x18n−26x18n−29x18n−32x18n−35
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=

a17

n−2∏
i=0

(
1+(6i+M17−1)P17

1+(6i+M17)P17

)
1 +

5∏
j=0

(
a3j+2

n−2∏
i=0

(
1+(6i+M3j+2−1)P3j+2

1+(6i+M3j+2)P3j+2

))

=

a17

n−2∏
i=0

(
1+(6i)a2a5a8a11a14a17

1+(6i+1)a2a5a8a11a14a14a17

)
1 + a2a5a8a11a14a17

n−2∏
i=0

(
1+(6i)a2a5a8a11a14a14

1+(6i+6)a2a5a8a11a14a14a17

) .

Hence, we have

x18n−17 = a17

n−1∏
i=0

(
1 + (6i)a2a5a8a11a14a17

1 + (6i+ 1)a2a5a8a11a14a17

)
.

Also, it follows from (2.1) and using (2.3) that

x18n−16 =
x18n−34

1 + x18n−19x18n−22x18n−25x18n−28x18n−31x18n−34

=

a16

n−2∏
i=0

(
1+(6i+M16−1)P16

1+(6i+M16)P16

)
1 +

5∏
j=0

(
a3j+1

n−2∏
i=0

(
1+(6i+M3j+1−1)P3j+1

1+(6i+M3j+1)P3j+1

))

=

a16

n−2∏
i=0

(
1+(6i)a1a4a7a10a13a16

1+(6i+1)a1a4a7a10a13a16

)
1 + a1a4a7a10a13a16

n−2∏
i=0

(
1+(6i)a1a4a7a10a13a16

1+(6i+6)a1a4a7a10a13a16

) .

Hence, we have

x18n−16 = a16

n−1∏
i=0

(
1 + (6i)a1a4a7a10a13a16

1 + (6i+ 1)a1a4a7a10a13a16

)
.

Also, it follows from (2.1) and using (2.3) that

x18n−15 =
x18n−33

1 + x18n−18x18n−21x18n−24x18n−27x18n−30x18n−33

=

a15

n−2∏
i=0

(
1+(6i+M15−1)P15

1+(6i+M15)P15

)
1 +

5∏
j=0

(
a3j

n−2∏
i=0

(
1+(6i+M3j−1)P3j

1+(6i+M3j)P3j

))

=

a15

n−2∏
i=0

(
1+(6i)a0a3a6a9a12a15

1+(6i+1)a0a3a6a9a12a15

)
1 + a0a3a6a9a12a15

n−2∏
i=0

(
1+(6i)a0a3a6a9a12a15

1+(6i+6)a0a3a6a9a12a15

) .

Hence, we have

x18n−15 = a15

n−1∏
i=0

(
1 + (6i)a0a3a6a9a12a15

1 + (6i+ 1)a0a3a6a9a12a15

)
.

Similarly, one can easily obtain the other relations for (2.2). Hence, the proof is completed.
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Theorem 2.2. Assume that the initial values of the difference equation (2.1), x−17, x−16, . . . , x0 ∈ [0,∞), then
every solution of (2.1) is bounded.

Proof. Let {xn}∞n=−17 be a solution of (2.1). It follows from (2.1) that

0 6 xn+1 =
xn−17

1 + xn−2xn−5xn−8xn−11xn−14xn−17
6 xn−17 for all n > 0.

Then the sequence {x18n−i}
∞
n=0 , i = 0, 1, . . . , 17 is decreasing and so is bounded from above by M =

max{x−17, x−16, . . . , x0}.

Theorem 2.3. The only equilibrium point x of (2.1) is x = 0.

Proof. From (2.1), we can write

x =
x

1 + x6 .

Then we have
x+ x7 = x,

or,
x7 = 0.

Thus, the only equilibrium point of (2.1) is x = 0.

Theorem 2.4. Assume that the initial values of the difference equation (2.1), x−17, x−16, . . . , x0 ∈ [0,∞), then the
equilibrium point x = 0 of (2.1) is locally stable.

Proof. Let ε > 0, and let {xn}∞n=−17 be a solution of (2.1) such that

17∑
j=0

∣∣x−j

∣∣ < ε.

It suffices to show that |x1| < ε. Now

0 < x1 =
x−17

1 + x−2x−5x−8x−11x−14x−17
6 x−17 < ε,

and so the proof is completed.

Theorem 2.5. Assume that the initial values of the difference equation (2.1), x−17, x−16, . . . , x0 ∈ [0,∞), then the
equilibrium point x = 0 of (2.1) is globally asymptotically stable.

Proof. We know by Theorem 2.4 that the equilibrium point x = 0 of (2.1) is locally stable. So let {xn}∞n=−17
be a positive solution of (2.1). It suffices to show that limn→∞ xn = x = 0. From Theorem 2.2 we have
xn+1 < xn−17 for all n > 0, so the sequences {x18n−i}

∞
n=0 , i = 0, 1, . . . , 17 are decreasing and bounded

which implies that the sequences {x18n−i}
∞
n=0, i = 0, 1, . . . , 17 converge to limit (say Li > 0). So

L17 =
L17

1 + L2L5L8L11L14L17
= 0,L16 =

L16

1 + L1L4L7L10L13L16
= 0, . . . ,L0 =

L0

1 + L0L3L6L9L12L15
= 0,

which implies that L0 = L1 = · · · = L17 = 0, from which the result follows.

3. The difference equation xn+1 =
xn−17

1 − xn−2xn−5xn−8xn−11xn−14xn−17

In this section we give a specific form of the solutions of the second equation in the form

xn+1 =
xn−17

1 − xn−2xn−5xn−8xn−11xn−14xn−17
, n = 0, 1, 2, . . . , (3.1)

with conditions posed on the initial values x−j, j = 0, 1, 2, . . . , 17.
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Theorem 3.1. Let {xn}∞n=−17 be a solution of the difference equation (3.1). Then for n = 0, 1, 2, . . . ,

x18n−k = ak

n−1∏
i=0

(
−1 + (6i+Mk − 1)Pk
−1 + (6i+Mk)Pk

)
, (3.2)

where Pk =
5∏

j=0
amod(k,3)+3j, Mk = 6 −

[
k
3

]
and x−k = ak, with rPk 6= 1 such that r ∈ {1, 2, 3, . . .}, k =

0, 1, 2, . . . , 17.

Proof. For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for n− 1. That
is

x18n−18−k = ak

n−2∏
i=0

(
−1 + (6i+Mk − 1)Pk
−1 + (6i+Mk)Pk

)
. (3.3)

Now, it follows from (3.1) and using (3.3) that

x18n−17 =
x18n−35

1 − x18n−20x18n−23x18n−26x18n−29x18n−32x18n−35

=

a17

n−2∏
i=0

(
−1+(6i+M17−1)P17
−1+(6i+M17)P17

)
1 −

5∏
j=0

(
a3j+2

n−2∏
i=0

(
−1+(6i+M3j+2−1)P3j+2

−1+(6i+M3j+2)P3j+2

))

=

a17

n−2∏
i=0

(
−1+(6i)a2a5a8a11a14a17

−1+(6i+1)a2a5a8a11a14a17

)
1 − a2a5a8a11a14a17

n−2∏
i=0

(
−1+(6i)a2a5a8a11a14a17

−1+(6i+6)a2a5a8a11a14a17

) .

Hence, we have

x18n−17 = a17

n−1∏
i=0

(
−1 + (6i)a2a5a8a11a14a17

−1 + (6i+ 1)a2a5a8a11a14a17

)
.

Also, it follows from (3.1) and using (3.3) that

x18n−16 =
x18n−34

1 − x18n−19x18n−22x18n−25x18n−28x18n−31x18n−34

=

a16

n−2∏
i=0

(
−1+(6i+M16−1)P16
−1+(6i+M16)P16

)
1 −

5∏
j=0

(
a3j+1

n−2∏
i=0

(
−1+(6i+M3j+1−1)P3j+1

−1+(6i+M3j+1)P3j+1

))

=

a16

n−2∏
i=0

(
−1+(6i)a1a4a7a10a13a16

−1+(6i+1)a1a4a7a10a13a16

)
1 − a1a4a7a10a13a16

n−2∏
i=0

(
−1+(6i)a1a4a7a10a13a16

−1+(6i+6)a1a4a7a10a13a16

) .

Hence, we have

x18n−16 = a16

n−1∏
i=0

(
−1 + (6i)a1a4a7a10a13a16

−1 + (6i+ 1)a1a4a7a10a13a16

)
.

Also, it follows from (3.1) and using (3.3) that

x18n−15 =
x18n−33

1 − x18n−18x18n−21x18n−24x18n−27x18n−30x18n−33
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=

a15

n−2∏
i=0

(
−1+(6i+M15−1)P15
−1+(6i+M15)P15

)
1 −

5∏
j=0

(
a3j

n−2∏
i=0

(
−1+(6i+M3j−1)P3j

−1+(6i+M3j)P3j

))

=

a15

n−2∏
i=0

(
−1+(6i)a0a3a6a9a12a15

−1+(6i+1)a0a3a6a9a12a15

)
1 − a0a3a6a9a12a15

n−2∏
i=0

(
−1+(6i)a0a3a6a9a12a15

−1+(6i+6)a0a3a6a9a12a15

) .

Hence, we have

x18n−15 = a15

n−1∏
i=0

(
−1 + (6i)a0a3a6a9a12a15

−1 + (6i+ 1)a0a3a6a9a12a15

)
.

Similarly, one can easily obtain the other relations for (3.2). Hence, the proof is completed.

Theorem 3.2. (3.1) has a unique equilibrium point x = 0, which is a non hyperbolic equilibrium point.

Proof. From (3.1), we can write

x =
x

1 − x6 .

Then we have
x− x7 = x,

or,
x7 = 0.

Thus the only equilibrium point of (3.1) is x = 0.
Define the function f (x,y, z,u, v, t) = x

1−xyzuvt on I6 where I is a subset of R such that 0 ∈ I and
f(I6) ⊆ I. Clearly, f is continuously differentiable on I6 and we have

f (x,y, z,u, v, t) =
x

1 − xyzuvt
.

Then we have

fx(x,y, z,u, v, t) =
1

(1 − xyzuvt)2 , fy(x,y, z,u, v, t) =
x2zuvt

(1 − xyzuvt)2 ,

fz(x,y, z,u, v, t) =
x2yuvt

(1 − xyzuvt)2 , fu(x,y, z,u, v, t) =
x2yzvt

(1 − xyzuvt)2 ,

fv(x,y, z,u, v, t) =
x2yzut

(1 − xyzuvt)2 , ft(x,y, z,u, v, t) =
x2yzuv

(1 − xyzuvt)2 ,

which implies that

fx(x, x, x, x, x, x) = 1,
fy(x, x, x, x, x, x) = fz(x, x, x, x, x, x) = fu(x, x, x, x, x, x) = fv(x, x, x, x, x, x) = ft(x, x, x, x, x, x) = 0.

So, the linearized equation of (3.1) about the equilibrium point x = 0 is

zn+1 = zn−17, (3.4)

and the characteristic equation of (3.4) about the equilibrium point x = 0 is

λ18 − 1 = 0,

which implies that
|λi| = 1 ; i = 1, 2, . . . , 18,

so, x is a non hyperbolic equilibrium point.
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4. The difference equation xn+1 =
xn−17

−1 + xn−2xn−5xn−8xn−11xn−14xn−17

In this section we give a specific form of the solutions of the third equation in the form

xn+1 =
xn−17

−1 + xn−2xn−5xn−8xn−11xn−14xn−17
, n = 0, 1, 2, . . . , (4.1)

with conditions posed on the initial values x−j, j = 0, 1, 2, . . . , 17. Also, we investigate the oscillation and
periodicity of these solutions.

Theorem 4.1. Let {xn}∞n=−17 be a solution of the difference equation (4.1). Then for n = 0, 1, 2, . . . ,

x18n−k =
ak

(−1 + Pk)
nqk

, (4.2)

where Pk =
5∏

j=0
amod(k,3)+3j , qk = (−1)[

k
3 ]+1, and x−k = ak, with Pk 6= 1, k = 0, 1, 2, . . . , 17.

Proof. For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for n− 1. That
is

x18n−18−k =
ak

(−1 + Pk)
(n−1)qk

, (4.3)

Now, it follows from (4.1) and using (4.3) that

x18n−17 =
x18n−35

−1 + x18n−20x18n−23x18n−26x18n−29x18n−32x18n−35

=

a17

(−1+P17)
n−1

−1 + a2 (−1 + P2)
n−1 a5

(−1+P5)
n−1a8 (−1 + P8)

n−1 a11

(−1+P11)
n−1a14 (−1 + P14)

n−1 a17

(−1+P17)
n−1

=
a17

(−1 + a2a5a8a11a14a17)
n−1 (−1 + a2a5a8a11a14a17)

.

Hence, we have
x18n−17 =

a17

(−1 + a2a5a8a11a14a17)
n .

Also, it follows from (4.1) and using (4.3) that

x18n−16 =
x18n−34

−1 + x18n−19x18n−22x18n−25x18n−28x18n−31x18n−34

=

a16

(−1+P16)
n−1

−1 + a1 (−1 + P1)
n−1 a4

(−1+P4)
n−1a7 (−1 + P7)

n−1 a10

(−1+P10)
n−1a13 (−1 + P13)

n−1 a16

(−1+P16)
n−1

=
a16

(−1 + a1a4a7a10a13a16)
n−1 (−1 + a1a4a7a10a13a16)

.

Hence, we have
x18n−16 =

a16

(−1 + a1a4a7a10a13a16)
n .

Also, it follows from (4.1) and using (4.3) that

x18n−15 =
x18n−33

−1 + x18n−18x18n−21x18n−24x18n−27x18n−30x18n−33

=

a15

(−1+P15)
n−1

−1 + a0 (−1 + P0)
n−1 a3

(−1+P3)
n−1a6 (−1 + P6)

n−1 a9

(−1+P9)
n−1a12 (−1 + P12)

n−1 a15

(−1+P15)
n−1
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=
a15

(−1 + a0a3a6a9a12a15)
n−1 (−1 + a0a3a6a9a12a15)

.

Hence, we have
x18n−15 =

a15

(−1 + a0a3a6a9a12a15)
n .

Similarly, one can easily obtain the other relations for (4.2). Hence, the proof is completed.

Theorem 4.2. (4.1) has three equilibrium points 0 and ± 6
√

2, which are nonhyperbolic equilibrium points.

Proof. The proof is similar to the proof of Theorem 3.2, and will be omitted.

Theorem 4.3. (4.1) is periodic of period 18 iff Pk = 2; k = 0, 1, . . . , 17 and will take the form

x18n−k = ak; k = 0, 1, . . . , 17, and n = 0, 1, 2, . . . .

Proof. The proof follows immediately from Theorem 4.1.

Theorem 4.4. Assume that a0,a1, . . . ,a17 ∈ (0, 1). Then the solution {xn}
∞
n=−17 oscillates about the equilibrium

point x = 0, with positive semicycles of length 18, and negative semicycles of length 18.

Proof. From Theorem 4.1, we have x1, x2, . . . , x18 < 0 and x19, x20, . . . , x36 > 0, and the result follows by
induction.

5. The difference equation xn+1 =
xn−17

−1 − xn−2xn−5xn−8xn−11xn−14xn−17

In this section, we give a specific form of the solutions of the fourth equation in the form

xn+1 =
xn−17

−1 − xn−2xn−5xn−8xn−11xn−14xn−17
, n = 0, 1, 2, . . . , (5.1)

with conditions posed on the initial values x−j, j = 0, 1, 2, . . . , 17. Also, we investigate the oscillation and
periodicity of these solutions.

Theorem 5.1. Let {xn}∞n=−17 be a solution of the difference (5.1). Then for n = 0, 1, 2, . . . ,

x18n−k =
ak

(−1 − Pk)
nqk

, (5.2)

where Pk =
5∏

j=0
amod(k,3)+3j , qk = (−1)[

k
3 ]+1 and x−k = ak, with Pk 6= −1, k = 0, 1, 2, . . . , 17.

Proof. For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for n− 1. That
is

x18n−18−k =
ak

(−1 − Pk)
(n−1)qk

. (5.3)

Now, it follows from (5.1) and using (5.3) that

x18n−17 =
x18n−35

−1 − x18n−20x18n−23x18n−26x18n−29x18n−32x18n−35

=

a17

(−1−P17)
n−1

−1 − a2 (−1 − P2)
n−1 a5

(−1−P5)
n−1a8 (−1 − P8)

n−1 a11

(−1−P11)
n−1a14 (−1 − P14)

n−1 a17

(−1−P17)
n−1

=
a17

(−1 − a2a5a8a11a14a17)
n−1 (−1 − a2a5a8a11a14a17)

.
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Hence, we have
x18n−17 =

a17

(−1 − a2a5a8a11a14a17)
n .

Also, it follows from (5.1) and using (5.3) that

x18n−16 =
x18n−34

−1 − x18n−19x18n−22x18n−25x18n−28x18n−31x18n−34

=

a16

(−1−P16)
n−1

−1 − a1 (−1 − P1)
n−1 a4

(−1−P4)
n−1a7 (−1 − P7)

n−1 a10

(−1−P10)
n−1a13 (−1 − P13)

n−1 a16

(−1−P16)
n−1

=
a16

(−1 − a1a4a7a10a13a16)
n−1 (−1 − a1a4a7a10a13a16)

.

Hence, we have
x18n−16 =

a16

(−1 − a1a4a7a10a13a16)
n .

Also, it follows from (5.1) and using (5.3) that

x18n−15 =
x18n−33

−1 − x18n−18x18n−21x18n−24x18n−27x18n−30x18n−33

=

a15

(−1−P15)
n−1

−1 − a0 (−1 − P0)
n−1 a3

(−1−P3)
n−1a6 (−1 − P6)

n−1 a9

(−1−P9)
n−1a12 (−1 − P12)

n−1 a15

(−1−P15)
n−1

=
a15

(−1 − a0a3a6a9a12a15)
n−1 (−1 − a0a3a6a9a12a15)

.

Hence, we have
x18n−15 =

a15

(−1 − a0a3a6a9a12a15)
n .

Similarly, one can easily obtain the other relations for (5.2). Hence, the proof is completed.

Theorem 5.2. (5.1) has a unique equilibrium point x = 0, which is a nonhyperbolic equilibrium point.

Proof. The proof is similar to the proof of Theorem 3.2, and will be omitted.

Theorem 5.3. (5.1) is periodic of period 18 iff Pk = 2; k = 0, 1, . . . , 17 and will take the form

x18n−k = ak; k = 0, 1, . . . , 17, and n = 0, 1, 2, . . . .

Proof. The proof follows immediately from Theorem 5.1.

Theorem 5.4. Assume that a0,a1, . . . ,a17 ∈ (0, 1). Then the solution {xn}
∞
n=−17 oscillates about the equilibrium

point x = 0, with positive semicycles of length 18, and negative semicycles of length 18.

Proof. From Theorem 5.1, we have x1, x2, . . . , x18 < 0 and x19, x20, . . . , x36 > 0, and the result follows by
induction.

6. Numerical examples

To verify the results of this paper, we consider some numerical examples as follows.

Example 6.1. The graph of the difference equation (2.1) and the case when x−17 = 9, x−16 = 8, x−15 = 7,
x−14 = 6, x−13 = 5, x−12 = 4, x−11 = 3, x−10 = 2, x−9 = 1, x−8 = 0.9, x−7 = 0.8, x−6 = 0.7, x−5 = 0.6,
x−4 = 0.5, x−3 = 0.4, x−2 = 0.3, x−1 = 0.2, and x0 = 0.1 is shown in Figure 1.
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Plot of x(n+1)= (x(n-17)/(1+x(n-2)*x(n-5)*x(n-8)*x(n-11)*x(n-14)*x(n-17))

Figure 1: Graph of the difference equation (2.1).

Example 6.2. The graph of the difference equation (3.1) and the case when x−17 = 23, x−16 = 21, x−15 = 28,
x−14 = 2.5, x−13 = 9, x−12 = 3, x−11 = 1.5, x−10 = 10, x−9 = 0.1, x−8 = 7, x−7 = 6, x−6 = 5, x−5 = 1,
x−4 = 6, x−3 = 2.5, x−2 = 2.5, x−1 = 1.5, and x0 = 0.2 is shown in Figure 2.
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x
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Plot of x(n+1)= (x(n-17)/(1-x(n-2)*x(n-5)*x(n-8)*x(n-11)*x(n-14)*x(n-17))

Figure 2: Graph of the difference equation (3.1).

Example 6.3. The graph of the difference equation (4.1) and the case when x−17 = 0.75, x−16 = 0.22,
x−15 = 0.2, x−14 = 0.15, x−13 = 0.30, x−12 = 0.6, x−11 = 0.6, x−10 = 0.22, x−9 = 0.7, x−8 = 0.9, x−7 = 0.8,
x−6 = 0.7, x−5 = 0.8, x−4 = 0.5, x−3 = 0.4, x−2 = 0.9, x−1 = 0.8, and x0 = 0.1 is shown in Figure 3.
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Plot of x(n+1)= (x(n-17)/(-1+x(n-2)*x(n-5)*x(n-8)*x(n-11)*x(n-14)*x(n-17))

Figure 3: Graph of the difference equation (4.1).

Example 6.4. The graph of the difference equation (5.1) and the case when x−17 = 2.75, x−16 = 0.22,
x−15 = 0.13, x−14 = 5.15, x−13 = 0.30, x−12 = 2.2, x−11 = 0.6, x−10 = 0.22, x−9 = 0.7, x−8 = 0.12, x−7 =
0.10, x−6 = 0.8, x−5 = 0.20, x−4 = 0.6, x−3 = 0.4, x−2 = 0.2, x−1 = 15, and x0 = 0.10 is shown in Figure 4.
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Plot of x(n+1)= (x(n-17)/(-1-x(n-2)*x(n-5)*x(n-8)*x(n-11)*x(n-14)*x(n-17))

Figure 4: Graph of the difference equation (5.1).

7. Conclusion

To summarize, this paper has investigated four main rational difference equations with Eighteenth-
Order. We have introduced the solutions of the considered equations using modulus operator. In Theorem
2.1, we have presented and proved the solutions of (2.1), while Theorem 2.2 has shown the boundedness
of the solutions of (2.1). It has been proved that the fixed point of (2.1) is globally asymptotically stable.
Theorem 4.3 has presented that (4.1) is periodic of period 18 if and only if Pk = 2. Furthermore, in
Theorem 5.3, we have explored the solutions of (5.1) which are periodic of period 18 if and only if
Pk = −2. We have also plotted the periodicity of (4.1) and (5.1) in Figures 3 and 4, respectively. Finally,
the used approaches can be simply applied for other nonlinear equations.
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