

On bi-topological BCK-algebras

Ramadhan A. Mohammed ${ }^{\text {a }}$, Ghazala H. Rasheed ${ }^{\text {a }}$, Alias B. Khalaf ${ }^{\mathrm{fb}, *}$
${ }^{\text {a }}$ Department of Mathematics, College of Basic Education, University of Duhok, Kurdistan Region, Iraq.
${ }^{\text {b }}$ Department of Mathematics, College of Science, University of Duhok, Kurdistan Region, Iraq.

Abstract

In this paper, we present the concept of bi-topological BCK-algebra. Several characterizations and properties of this concept are obtained. Also, the concept of BCK-ideal of a BCK-algebra is defined and some of its properties are found.

Keywords: BCK-algebra, bi-topological BCK-algebra, BCK-ideal.
2020 MSC: 06F35, 54B10, 54A05.
©2023 All rights reserved.

1. introduction

Throughout this paper, we use the standard topological notation and terminology, mainly as in [5]. By A or (A, Ω), we denote a topological space, while ($A, \Omega_{1}, \Omega_{2}$) denotes a bitopological space [10] (called also bispace), that is a set S equipped with two (in general, unrelated) topologies. The closure and interior of a subset S of a space (A, Ω) are denoted by $\mathrm{Cl}(\mathrm{S})$ and $\operatorname{Int}(S)$, respectively. When $\left(A, \Omega_{1}, \Omega_{2}\right)$ is a bitopological space and $S \subseteq A$, then $\mathrm{Cl}_{\mathfrak{i}}(S)$ and $\operatorname{Int}_{i}(S), i=1,2$, denote the closure and interior in the space ($A, \Omega_{\mathfrak{i}}$). Imai and Iséki [7, 8], introduced the concept of algebras of type (2,0) called BCK-algebras which generalizes the concept of the algebra of sets with the set subtraction as the only essential and also it is a generalization of implication algebra. Many researchers have combined the concepts of topological spaces with algebras, and they studied the properties of algebras after they are equipped with a specific topology, which they called topological algebras. Alo and Deeba [1] 1996 introduced the concept of topological BCK-algebra and in 1998 Lee and Ryu [11] gave more properties and characterizations of topological BCK-algebras. In 1999 Jun et al. [9] introduced topological BCI-algebras, provided some properties of this structure, and characterized a topological BCI-algebra in terms of neighborhoods. Gonzaga [6] in 2019, introduced the concept of a topological B-algebra which characterized a topological B-algebra concerning open sets.

In 2017, Mehrshad and Golzarpoor [12] presented some properties of uniform topology and topological BE-algebras. In 2019, Satirad and Iampan [14], introduced the concept of topological UP-algebras and they obtained several properties of this concept.

[^0]A recent study on topological B-algebras was investigated by Belleza and Vilela in [2] in 2020, which characterized a topological B-algebra and investigated several properties of B-ideal in a topological Balgebra.

This paper provides a study of a BCK-algebra when it is equipped with two topologies, we call it a bitopological BCK-algebra. It can be considered as an extension of the concept of topological BCK-algebra which was introduced by Alo and Deeba [1] also, generalization of some of the results in Lee and Ryu [11].

Characterizations and properties of bi-topological BCK-algebra are investigated, and the BCK-ideals in a bi-topological BCK-algebra are studied.

2. Preliminaries

In this section, we give the basic notions of BCK-algebras and investigate the concept of a topological BCK-algebra. For further information, on BCK-algebras we refer to [13].

Definition 2.1. By a BCK-algebra we mean an algebra $(A, \cdot, 0)$ satisfying the following axioms: for every $a, b, c \in A$,

1. $((a \cdot b) \cdot(a \cdot c)) \cdot(c \cdot b)=0$;
2. $(a \cdot(a \cdot b)) \cdot b=0$;
3. $a \cdot a=0$;
4. $a \cdot b=0$ and $b \cdot a=0 \Rightarrow a=b$;
5. $0 \cdot a=0$.

In a BCK-algebra $(A, \cdot 0)$, we define a partial order relation (\leqslant) by $a \leqslant b$ if and only if $a \cdot b=0$.
From the definition of BCK-algebras we can get the following properties very easily see [4, Proposition 5.1.3].

Proposition 2.2. In a $B C K$-algebra A, the following statements are true for all $a, b, c \in A$:

1. $a \cdot 0=a$;
2. $a \cdot b \leqslant a$;
3. $(a \cdot b) \cdot c=(a \cdot c) \cdot b$;
4. $a \leqslant b \Rightarrow a \cdot c \leqslant b \cdot c$ and $c \cdot b \leqslant c \cdot a$;
5. $a \cdot(a \cdot(a \cdot b))=a \cdot b$.

Definition 2.3 ([4, 3]). A nonempty subset I of a BCK-algebra $(A, \cdot, 0)$ is called an ideal of A if the following two conditions are satisfied:

1. $0 \in \mathrm{I}$.
2. For all $a \in A$ and for all $b \in I$. If $a \cdot b \in I$, then $a \in I$.

If there is an element 1 of A satisfying $x \leqslant 1$, for all $a \in A$, then the element 1 is called unit of A. A BCK-algebra with unit is called a bounded BCK-algebra [4].

Definition $2.4([15])$. A BCK-algebra $(A, \cdot 0)$ is called negative implicative if $a \cdot(b \cdot c)=(a \cdot b) \cdot(a \cdot c)$ for all $a, b, c \in A$.

Definition 2.5 ([1]). A BCK-algebra A equipped with a topology Ω is called a topological BCK-algebra (for short TBCK-algebra) if $f: A \times A \rightarrow A$ defined by $f(x, y)=x \cdot y$ is continuous for all $(x, y) \in A \times A$ where $A \times A$ has the product topology. Equivalently, for each open set O containing $x \cdot y$, there exist open sets U and V containing x and y respectively such that $U \cdot V \subseteq O$.

Definition 2.6 ([4]). Let A be a BCK-algebra and $a \in A$ be a fixed element. The right map $R_{a}: A \rightarrow A$ is a map defined by $R_{a}(x)=x \star a$ for all $x \in A$.

Definition 2.7 ([11]). A BCK-algebra A equipped with a topology Ω is called a topological BCK-algebra (for short TBCK-algebra) if the operation $:=\mathrm{f}: A \times A \rightarrow A$ is topologicaly continuous i.e., the inverse image $f^{-1}(O)$ of each open set O containing $x \cdot y$ is open in the product space $A \times A$.

Lemma 2.8 ([1]). In a TBCK-algebra A,

1. If $\{0\}$ is open, then A is discrete.
2. $\{0\}$ is closed if and only if A is T_{2}.

3. (i, j)-topological ВСК-algebras

In this section we introduce the concept of (i, j)-topological BCK-algebras (where $i, j=1,2, i \neq j$) and establish some of its properties. First, we introduce the following definitions:

Definition 3.1. A function $f:\left(A, \Omega_{1}, \Omega_{2}\right) \rightarrow\left(A, \Omega_{1}, \Omega_{2}\right)$ is called (i, j)-continuous at an element $x \in A$ if for every Ω_{j}-open set U containing $f(x)$, there exists a Ω_{i}-open set V containing x such that $f(V) \subseteq U$. f is said to be (i, j)-open if the image of each Ω_{j}-open set is Ω_{i}-open. It is called (i, j)-homoeomorphism if it is a bijection, (i, j)-continuous and (i, j)-open.

Definition 3.2. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a bi-topological space. A function $f: A \times A \rightarrow A$ defined by $f(x, y)=$ $x \times y$ for all $x, y \in A$ is called (i, j)-continuous if for each Ω_{j}-open set G containing $x \times y$, there exist two Ω_{i}-open sets U and V containing x and y, respectively, such that $\mathrm{U} \times \mathrm{V} \subseteq \mathrm{G}$ for $i, j \in\{1,2\}$. Equivalently, $f: A \times A \rightarrow A$ is (i, j)-continuous if and only if $f^{-1}(G)$ is open in the product space $\left(A, \Omega_{\mathfrak{i}}\right) \times\left(A, \Omega_{\mathfrak{i}}\right)$ for every Ω_{j}-open set G.

Definition 3.3. A BCK-algebra A equipped with two topologies Ω_{1}, Ω_{2} is called a ($\mathfrak{i , j}$)-topological BCKalgebra (for short (i, j)-BCK-algebra) if $f: A \times A \rightarrow A$ defined by $f(x, y)=x \cdot y$ is (i, j)-continuous for all $x, y \in A$ and $i, j \in\{1,2\}$.

The following example shows that a (i, j)-BCK-algebra may not be either Ω_{i}-BCK-algebra or Ω_{j}-BCKalgebra.

Example 3.4. Let $A=\{0, a, b, c\}$ and \cdot be defined as in the following Cayley diagram:

\star	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	b
c	c	c	c	0

Table 1: $\mathrm{A}(\mathfrak{i}, \mathfrak{j})$-BCK-algebra which is not $\Omega_{\mathfrak{i}}$-BCK-algebra.
Then it can be easily checked that $(A, 0, \cdot)$ is a BCK-algebra. Consider the topology

$$
\Omega_{1}=\{\phi,\{0\},\{\mathbf{a}, \mathbf{b}\},\{\mathbf{c}\},\{0, \mathbf{c}\},\{\mathbf{a}, \mathbf{b}, \mathbf{c}\},\{0, \mathrm{a}, \mathrm{~b}\}, A\}, \quad \text { and } \quad \Omega_{2}=\{\phi,\{0, \mathrm{a}, \mathrm{~b}\}, A\} .
$$

Then A is a $(1,2)$-BCK-algebra which is neither Ω_{1}-BCK-algebra nor Ω_{2}-BCK-algebra.
In Example 3.4, suppose that $\Omega_{1}=\{\phi,\{0, a\},\{b\},\{c\},\{b, c\},\{0, a, b\},\{0, a, c\}, A\}$ and $\Omega_{2}=\{\phi,\{a\},\{0, b, c\}, A\}$. Then A is both a Ω_{1}-BCK-algebra and a Ω_{2}-BCK-algebra. But it is not a (1,2)-BCK-algebra because $a \cdot c=a$ and $\{0, a\} \cdot\{c\} \nsubseteq\{a\}$. Also, it is not $a(2,1)$-BCK-algebra because $b \cdot c=b$ and $\{0, b, c\} \cdot\{0, b, c\} \nsubseteq\{b\}$.

The proof of the following theorem follows directly from Definition 3.3.
Theorem 3.5. $A B C K$-algebra A is an (i, j)-BCK-algebra if and only if for all $x . y \in A$ and every Ω_{j}-open set G containing $\mathrm{x} \cdot \mathrm{y}$, there exist Ω_{i}-open sets U and V containing x and y respectively such that $\mathrm{U} \cdot \mathrm{V} \subseteq \mathrm{G}$.

Proposition 3.6. In any $(\mathfrak{i}, \mathfrak{j})$-BCK-algebra A. If $\{0\}$ is $\Omega_{\mathfrak{j}}$-open, then $\left(\mathcal{A}, \Omega_{\mathfrak{i}}\right)$ is a discrete space.
Proof. For every $x \in A$, we have $x \cdot x=0$ and hence, there exist some Ω_{i}-open set U and V containing x such that $\mathrm{U} \cdot \mathrm{V}=\{0\}$ because $\{0\}$ is Ω_{j}-open. Let $\mathrm{O}=\mathrm{U} \cap \mathrm{V}$. Then O is a $\Omega_{\mathfrak{i}}$-open sets and $\mathrm{O} \cdot \mathrm{O}=\{0\}$. This implies that $O=\{x\}$. Therefore, $\left(A, \Omega_{i}\right)$ is a discrete space.

Proposition 3.7. In any $(\mathfrak{i}, \mathfrak{j})$-BCK-algebra A. If $\{0\}$ is $\Omega_{\mathfrak{j}}$-closed, then $\left(A, \Omega_{\mathfrak{i}}\right)$ is a Hausdorff space.
Proof. Let x and y be any two distinct points in A. Then either $x \cdot y \neq 0$ or $y \cdot x \neq 0$. Suppose $x \cdot y \neq 0$, Then $x \cdot y \in A \backslash\{0\}$ and by hypothesis $A \backslash\{0\}$ is Ω_{j}-open, so there exist some Ω_{i}-open sets U and V containing x and y respectively such that $U \cdot V=\subseteq A \backslash\{0\}$. Obviously, $\mathrm{U} \cap \mathrm{V}=\phi$ because if there exists some $c \in U \cap V$, then we get $0=c \cdot c \subseteq A \backslash\{0\}$ which is contradiction. Thus, $\left(A, \Omega_{i}\right)$ is a Hausdorff space.

Corollary 3.8. If A is a finite $(\mathfrak{i}, \mathfrak{j})$-BCK-algebra and $\{0\} \in \Omega_{\mathfrak{j}} \cup\left(\Omega_{\mathfrak{j}}\right)^{c}$, then $\left(A, \Omega_{\mathfrak{i}}\right)$ is a discrete space.
Proof. The proof follows from Propositions 3.6, 3.7 and the fact that a finite Hausdorff space is discrete.
Proposition 3.9. Let A be a $B C K$-ideal of an (i, j)-BCK-algebra A. If $0 \in \operatorname{Int}_{\mathfrak{j}}(A)$, then A is $\Omega_{\mathfrak{i}}$-open.
Proof. For every $x \in A$, we have $x \cdot x=0$ and since $0 \in \operatorname{Int}_{j}(A)$, so there exists a Ω_{j}-open set U such that $x \cdot x=0 \in U \subseteq A$. Since A is a (i, j)-BCK-algebra, there exist Ω_{i}-open sets V and W of x such that $V \cdot W \subseteq U \subseteq A$. Now for each $y \in V$, we have $x \cdot y \in A$ and since $x \in A$, so $y \in A$ because A is a BCK-ideal implies $x \in \mathrm{~V} \subseteq A$. Hence, A is $\Omega_{\mathfrak{i}}$-open.

Proposition 3.10. If I is a $\Omega_{\mathfrak{j}}$-open BCK-ideal of an $(\mathfrak{i}, \mathfrak{j})$ - BCK-algebra A, then I is also $\Omega_{\mathfrak{i}}$-closed.
Proof. Suppose I is an Ω_{j}-open BCK-ideal of a (i, j) - BCK-algebra A. Let $x \in A \backslash I$. Since I is a BCK-ideal of A, so $x \cdot x=0 \in I$. By Theorem 3.5, there exists a Ω_{i}-open set $U(x)$ such that $U(x) \cdot U(x) \subseteq I$. We claim that $U(x) \subseteq A \backslash I$. If not, then $U(x) \cap I \neq \phi$. Then there exists $y \in U(x) \cap I$. Hence, for all $z \in U(x)$, we have $z \cdot y \in U(x) \cdot U(x) \subseteq I$. Since $y \in I$ and I is a BCK-ideal, so $z \in I$. Hence, $U(x) \subseteq I$ which implies that $x \in I$, a contradiction. Therefore, $A \backslash I$ is Ω_{i}-open. Thus, I is Ω_{i}-closed in A.

From Proposition 3.9 and Proposition 3.10, we obtain the following result.
Corollary 3.11. If I is a $\Omega_{\mathfrak{j}}$-open BCK-ideal of $a(\mathfrak{i}, \mathfrak{j})$ - BCK-algebra A, then I is $\Omega_{\mathfrak{i}}$-clopen.
Proposition 3.12. For any subsets S, R of an $(i, j)-B C K$-algebra A, the following statements are true:

1. $\mathrm{Cl}_{i}(\mathrm{~S}) \cdot \mathrm{Cl}_{\mathfrak{i}}(\mathrm{R}) \subseteq \mathrm{Cl}_{\mathrm{j}}(\mathrm{S} \cdot \mathrm{R})$.
2. If either $\mathrm{Cl}_{\mathfrak{i}}(\mathrm{S}) \cdot \mathrm{Cl}_{\mathrm{i}}(\mathrm{R})$ or $\mathrm{S} \cdot \mathrm{R}$ is Ω_{j}-closed, then the equality holds.

Proof. (1) Let $y=a \cdot b \in C_{i}(S) \cdot C l_{i}(R)$ where $a \in C_{i}(S), b \in C_{i}(R)$ and let U be any Ω_{j}-open set containing y. Since A is a (i, j)-BCK-algebra, so there exist Ω_{i}-open sets V and W containing a and b respectively such that $V \cdot W \subseteq U$. Also we have $a \in C l_{i}(S)$ implies that $S \cap V \neq \phi$ and $b \in C l_{i}(R)$ implies that $R \cap W \neq \phi$. Suppose that $a_{1} \in S \cap V$ and $b_{1} \in R \cap W$ implies that $a_{1} \cdot b_{1} \in V \cdot W$ and hence $a_{1} \cdot b_{1} \in U$. Also, $a_{1} \cdot b_{1} \in S \cdot R$ implies that $S \cdot R \cap U \neq \phi$. Thus, $y \in C l_{j}(S \cdot R)$ which implies that $\mathrm{Cl}_{\mathfrak{i}}(\mathrm{S}) \cdot \mathrm{Cl}_{\mathfrak{i}}(\mathrm{R}) \subseteq \mathrm{Cl}_{\mathfrak{j}}(\mathrm{S} \cdot \mathrm{R})$.
(2) Suppose that $\mathrm{Cl}_{\mathfrak{i}}(\mathrm{S}) \cdot \mathrm{Cl}_{\mathfrak{i}}(\mathrm{R})$ is $\Omega_{\mathfrak{j}}$-closed, then obviously $\mathrm{S} \cdot \mathrm{R} \subseteq \mathrm{Cl}_{\mathfrak{i}}(\mathrm{S}) \cdot \mathrm{Cl}_{\mathfrak{i}}(\mathrm{R})$ and hence

$$
\mathrm{Cl}_{\mathfrak{j}}(\mathrm{S} \cdot \mathrm{R}) \subseteq \mathrm{Cl}_{\mathfrak{j}}\left(\mathrm{Cl}_{\mathfrak{i}}(\mathrm{S}) \cdot \mathrm{Cl}_{\mathfrak{i}}(\mathrm{R})\right)=\mathrm{Cl}_{\mathfrak{i}}(\mathrm{S}) \cdot \mathrm{Cl}_{\mathfrak{i}}(\mathrm{R})
$$

Hence, by (1) we get the result. The other case is obvious.

Definition 3.13. Let A be a BCK-algebra and let $a \in A$, then we define the subset κ_{a} of A as follows:

$$
\mathrm{K}_{\mathrm{a}}=\{x \in A: x=a \cdot(a \cdot x)\}
$$

Example 3.14. let $A=\{0,1,2,3,4\}$ and let the operation \cdot be given by Table 2 . Then $(A, \cdot 0)$ is a BCK-

\star	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	0	0
3	3	1	1	0	0
4	4	3	2	1	0

Table 2: κ_{χ} subsets of a BCK-algebra.
algebra (see [4, Example 5.1.12]). Also, we have $\kappa_{0}=\{0\}, \kappa_{1}=\{0,1\}, \kappa_{2}=\{0,1,2\}, \kappa_{3}=\{0,1,3\}$ and $\kappa_{4}=A$.

Proposition 3.15. The following statements are true:

1. $a, 0 \in \kappa_{a}$ for all $a \in A$.
2. $\kappa_{0}=\{0\} \kappa_{0} \subseteq \kappa_{a}$ for all $a \in A$.
3. $\mathrm{b} \in \mathrm{K}_{\mathrm{a}}$ if and only if $\mathrm{b} \cdot(\mathrm{b} \cdot \mathrm{a})=\mathrm{a} \cdot(\mathrm{a} \cdot \mathrm{b})=\mathrm{b}$.
4. If $\mathrm{b} \in \mathrm{K}_{\mathrm{a}}$, then $\mathrm{K}_{\mathrm{b}} \subseteq \mathrm{K}_{\mathrm{a}}$.
5. If $\mathrm{b} \in \kappa_{\mathrm{a}}$ and $\mathrm{a} \in \mathrm{K}_{\mathrm{b}}$, then $\mathrm{a}=\mathrm{b}$.
6. If $\mathrm{c} \in \mathrm{K}_{\mathrm{a}} \cap \mathrm{K}_{\mathrm{b}}$, then $\mathrm{K}_{\mathrm{c}} \subseteq \mathrm{K}_{\mathrm{a}} \cap \mathrm{K}_{\mathrm{b}}$.

Proof. (1) and (2) are obvious.
(3) Let $b \in \kappa_{a}$, then by definition $a \cdot(a \cdot b)=b$. Now,

$$
b \cdot(b \cdot a)=b \cdot((a \cdot(a \cdot b)) \cdot a)=b \cdot((a \cdot a)(a \cdot b))=b \cdot 0=b
$$

The converse part is obvious.
(4) Let $b \in \kappa_{a}$, then by (3), $b \cdot(b \cdot a)=a \cdot(a \cdot b)=b$. Suppose that $c \in \kappa_{b}$, then $b \cdot(b \cdot c)=c \cdot(c \cdot b)=c$. Now $c=b \cdot(b \cdot c)=[a \cdot(a \cdot b)][(a \cdot(a \cdot b)) \cdot c]=[a \cdot(a \cdot b)][(a \cdot c)(a \cdot b)] \leqslant a \cdot(a \cdot c)$. Hence, $c \leqslant a \cdot(a \cdot c)$. Also, we have $(a \cdot(a \cdot c)) \cdot c=(a \cdot c)(a \cdot c)=0$, so $a \cdot(a \cdot c)) \leqslant c$. Therefore, $a \cdot(a \cdot c)=c$ implies that $c \in \kappa_{a}$ and thus $\kappa_{b} \subseteq \kappa_{a}$.
(5) If $b \in K_{a}$ and $a \in K_{b}$, then we have $a \cdot(a \cdot b)=b$ and $b \cdot(b \cdot a)=a$. From (3), we have $b \cdot(b \cdot a)=a \cdot(a \cdot b)$, so $a=b$.
(6) Follows from (5).

Proposition 3.16. Let A be a $B C K$-algebra and let $\mathcal{B}=\left\{\kappa_{x}: x \in A\right\}$. Then \mathcal{B} forms a base for a topology on A. This topology is denoted by Ω_{κ}.

Proof. Since $x \in \kappa_{x}$ for all $x \in A$, so $A=\bigcup_{x \in A} K_{x}$ and from Proposition 3.15 (6), we have if $c \in \kappa_{a} \cap \kappa_{b}$, then $\kappa_{c} \subseteq \kappa_{a} \cap \kappa_{b}$. Hence, \mathcal{B} forms a base for a topology on A.

Proposition 3.17. The space $\left(A, \Omega_{K}\right)$ is a T_{0}-space.
Proof. Let a, b be any two distinct points in A. Then by Proposition 3.15 (5), either $\mathrm{a} \notin \mathrm{k}_{\mathrm{b}}$ or $\mathrm{b} \notin \mathrm{k}_{\mathrm{a}}$. Therefore, $\left(A, \Omega_{K}\right)$ is T_{0}.

Proposition 3.18. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be an (i, j) - $B C K$-algebra and $a \in A$. If κ_{a} is Ω_{j}-open, then the following statements are true:

1. For each $\mathrm{x} \in \mathrm{K}_{\mathrm{a}}$ there exist $\Omega_{\mathfrak{i}}$-open sets U and V containing a and $\mathrm{a} \cdot \mathrm{x}$ respectively such that $\mathrm{U} \cdot \mathrm{V} \subseteq \mathrm{K}_{\mathrm{a}}$.
2. For each $x \in A$, there exists a $\Omega_{\mathfrak{i}}$-open set U containing x such that $\mathrm{U} \cdot \mathrm{U} \subseteq \kappa_{\mathrm{a}}$.
3. There exist $\Omega_{\mathfrak{i}}$-open sets U and V containing a and 0 , respectively, such that $\mathrm{U} \cdot \mathrm{V} \subseteq \mathrm{K}_{\mathrm{a}}$.
4. There exist Ω_{i}-open sets U and V containing 0 and a , respectively, such that $\mathrm{U} \cdot \mathrm{V} \subseteq \kappa_{\mathrm{a}}$.

Proof. (1) For each $x \in \kappa_{a}$, we have $a \cdot(a \cdot x)=x \in \kappa_{a}$. Since k_{a} is Ω_{j}-open and A is (i, j)-BCK-algebra, the result follows.
(2) Follows from the fact that $x \cdot x=0 \in \kappa_{a}$.
(3) Follows from the fact that $a \cdot 0=a \in \kappa_{a}$.
(4) Follows from the fact that $0 \cdot a=0 \in \kappa_{a}$.

Theorem 3.19. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a (i, j)-BCK-algebra satisfying the condition that $\mathrm{y}=\mathrm{x} \cdot(\mathrm{x} \cdot \mathrm{y})$ for all distinct points $x, y \in A$ and $x \neq 0$, then for any $0 \neq a \in S$ and $S, R \subseteq A$ the following statements are true:

1. $a \cdot C l_{i}(R) \subseteq C l_{j}(a \cdot R)$.
2. $a \cdot C l_{j}(R) \supseteq \mathrm{Cl}_{i}(a \cdot R)$.
3. $a \cdot \operatorname{Int}_{j}(R) \subseteq \operatorname{Int}_{i}(a \cdot R)$.
4. $a \cdot \operatorname{Int}_{i}(R) \supseteq \operatorname{Int}_{j}(a \cdot R)$.
5. $S \cdot \operatorname{Int}_{j}(R) \subseteq \operatorname{Int}_{i}(S \cdot R)$.

Proof. 1. Let $y \in a \cdot C l_{i}(R)$, then $y=a \cdot b$ where $b \in C l_{i}(R)$ and let $U \in \Omega_{j}$ with $y=a \cdot b \in U$. Since $\left(A, \Omega_{1}, \Omega_{2}\right)$ is a ($\left.i, j\right)$-BCK-algebra, then there exists $V \in \Omega_{i}$ with $b \in V$ and $a \cdot V \subseteq U$. Since $b \in C_{i}(R)$, so there is $c \in R \cap V$, thus $a \cdot c \in a \cdot V \subseteq U$. Therefore, $a \cdot c \in(a \cdot R) \cap U$ which implies $y=a \cdot b \in C_{j}(a \cdot R)$. Hence, $a \cdot C l_{i}(R) \subseteq C l_{j}(a \cdot R)$.
2. Let $c \in C_{i}(a \cdot R)$ we have to show that $c \in a \cdot C l_{j}(R)$. Let $U \in \Omega_{j}$ containing $a \cdot c$. As A is $(i, j)-$ $B C K$-algebra, so there exists a Ω_{i}-open set H containing c such that $a \cdot H \subseteq U$. Since $c \in C_{i}(a \cdot R)$, so $(a \cdot R) \cap H \neq \phi$. Let $a \cdot z \in(a \cdot R) \cap H$, then $(a \cdot z) \in H$ implies that $z=a \cdot(a \cdot z) \in a \cdot H \subseteq U$. Therefore, we obtain that $R \cap U \neq \phi$. Hence $a \cdot c \in C l_{j}(R)$ which implies that $c \in a \cdot C l_{j}(R)$. Therefore, $\mathrm{Cl}_{i}(a \cdot R) \subseteq a \cdot \mathrm{Cl}_{j}(R)$.
3. Let $a \cdot b \in a \cdot \operatorname{Int}_{j}(R)$, then there is an Ω_{j}-open set O such that $b \in O \subseteq R$. Since $b=a \cdot(a \cdot b) \in O$ and O is Ω_{j}-open, there is a Ω_{i}-open set V with $a \cdot b \in V$ and $a \cdot V \subseteq O$. By hypothesis, we have $V=a \cdot(a \cdot V)$, so $V \subseteq a \cdot O$. Thus, $a \cdot b \in V \subseteq a \cdot O \subseteq a \cdot R$. Therefore, $a \cdot b \in \operatorname{Int}_{i}(a \cdot R)$ and hence, $a \cdot \operatorname{Int}_{j}(R) \subseteq \operatorname{Int}_{i}(a \cdot R)$.
4. Let $c \in \operatorname{Int}_{j}(a \cdot R)$, then there is a Ω_{j}-open set O such that $c \in O \subseteq a \cdot R$, so we can write $c=$ $a \cdot x \in O \subseteq a \cdot R$. Since A is (i, j)-BCK-algebra, then there is $a \Omega_{i}$-open set V containing x such that $a \cdot V \subseteq O$. Therefore, $x \in V \subseteq a \cdot O \subseteq R$. Hence, $x \in \operatorname{Int}_{i}(R)$ implies that $c \in a \cdot \operatorname{Int}_{i}(R)$. Thus, $a \cdot \operatorname{Int}_{i}(R) \supseteq \operatorname{Int}_{j}(a \cdot R)$.
5. Let $0 \neq a \in S$, then by (2), $a \cdot \operatorname{Int}_{j}(R) \subseteq \operatorname{Int}_{i}(a \cdot R) \subseteq \operatorname{Int}_{i}(S \cdot R)$. Hence, $S \cdot \operatorname{Int}_{j}(R)=\bigcup_{a \in S}(a$. $\left.\operatorname{Int}_{j}(R)\right) \subseteq \bigcup_{a \in S} \operatorname{Int}_{i}(a \cdot R) \subseteq \operatorname{Int}_{i}(S \cdot R)$.

Corollary 3.20. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a (i, j)-BCK-algebra $a \in A$, then the following statements are true:

1. $a \cdot C l_{i}\left(\kappa_{a}\right) \subseteq \mathrm{Cl}_{\mathfrak{j}}\left(a \cdot k_{a}\right)$.
2. $a \cdot C l_{j}\left(\kappa_{a}\right) \supseteq \mathrm{Cl}_{i}\left(a \cdot \kappa_{a}\right)$.
3. $a \cdot \operatorname{Int}_{j}\left(\kappa_{a}\right) \subseteq \operatorname{Int}_{i}\left(a \cdot \kappa_{a}\right)$.
4. $a \cdot \operatorname{Int}_{i}\left(\kappa_{a}\right) \supseteq \operatorname{Int}_{j}\left(a \cdot \kappa_{a}\right)$.

Proof. Follows from that fact that $a \cdot(a \cdot x)=x$ for all $x \in \kappa_{a}$. Thus in Theorem 3.19, if we replace κ_{a} instead of R the result follows.

Theorem 3.21. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a (i, j)-BCK-algebra and let $a \in A$. If $R \subseteq A$ satisfying the condition $x=$ $(x \cdot a) \cdot a$ for all $x \in R$, then the following statements are true:

1. $\mathrm{Cl}_{i}(R) \cdot a \subseteq \mathrm{Cl}_{\mathfrak{j}}(\mathrm{R} \cdot \mathrm{a})$.
2. $\mathrm{Cl}_{i}(R \cdot a) \supseteq \mathrm{Cl}_{j}(R) \cdot a$.
3. $\operatorname{Int}_{j}(R) \cdot a \subseteq \operatorname{Int}_{i}(R \cdot a)$.
4. $\operatorname{Int}_{i}(R) \cdot a \supseteq \operatorname{Int}_{j}(R \cdot a)$.
5. If the condition is true for all $a \in A$, then $\operatorname{Int}_{j}(R) \cdot A \subseteq \operatorname{Int}_{i}(R \cdot A)$.

Proof. 1. Let $y \in C l_{i}(R) \cdot a$, then $y=b \cdot a$ where $b \in C l_{i}(R)$ and let $U \in \Omega_{j}$ with $y=b \cdot a \in U$. Since $\left(A, \Omega_{1}, \Omega_{2}\right)$ is a ($\left.i, j\right)$-BCK-algebra, then there exists $V \in \Omega_{i}$ with $b \in V$ and $V \cdot a \subseteq u$. Since $b \in C_{i}(R)$, so there is $c \in R \cap V$, thus $c \cdot a \in V \cdot a \subseteq U$. Therefore, $c \cdot a \in(R \cdot a) \cap U$ which implies $y=b \cdot a \in C_{j}(R \cdot a)$. Hence, $C l_{i}(R) \cdot a \subseteq C_{j}(R \cdot a)$.
2. Let $c \in C_{i}(R \cdot a)$ we have to show that $c \cdot a \in C l_{j}(R)$. Let $U \in \Omega_{j}$ containing $c \cdot a$. As A is $(i, j)-$ BCK-algebra, so there exists a Ω_{i}-open set H containing c such that $H \cdot a \subseteq U$. Since $c \in C_{i}(R \cdot a)$, so $(R \cdot a) \cap H \neq \phi$. Let $z \cdot a \in(R \cdot a) \cap H$, then $(z \cdot a) \in H$ implies that $z=(z \cdot a) \cdot a \in H \cdot a \subseteq U$. Therefore, we obtain that $R \cap U \neq \phi$. Hence $c \cdot a \in C l_{j}(R)$ which implies that $c \in C l_{j}(R) \cdot a$. Therefore, $\mathrm{Cl}_{i}(R \cdot a) \subseteq \mathrm{Cl}_{j}(R) \cdot a$.
3. Let $b \cdot a \in \operatorname{Int}_{j}(R) \cdot a$, then there is an Ω_{j}-open set O such that $b \in O \subseteq R$. Since $b=(b \cdot a) \cdot a \in O$ and O is Ω_{j}-open, there is a Ω_{i}-open set V with $a \cdot b \in V$ and $a \cdot V \subseteq O$. By hypothesis, we have $V=(V \cdot a) \cdot a$, so $V \subseteq O \cdot a$. Thus, $b \cdot a \in V \subseteq O \cdot a \subseteq R \cdot a$. Therefore, $b \cdot a \in \operatorname{Int}_{i}(R \cdot a)$ and hence, $\operatorname{Int}_{j}(R) \cdot a \subseteq \operatorname{Int}_{i}(R \cdot a)$.
4. Let $c \in \operatorname{Int}_{j}(R \cdot a)$, then there is a Ω_{j}-open set O such that $c \in O \subseteq R \cdot a$, so we can write $c=x \cdot a \in$ $O \subseteq R \cdot a$ where $x \in R$. Since A is (i, j)-BCK-algebra, then there is a Ω_{i}-open set V containing x such that $V \cdot a \subseteq O$. Therefore, $x \in V \subseteq O \cdot a \subseteq R$. Hence, $x \in \operatorname{Int}_{i}(R)$ implies that $c \in \operatorname{Int}_{i}(R) \cdot a$. Thus, $\operatorname{Int}_{i}(R) \cdot a \supseteq \operatorname{Int}_{j}(R \cdot a)$.
5. Let $a \in A$, then by (2), $\operatorname{Int}_{j}(R) \cdot a \subseteq \operatorname{Int}_{i}(R \cdot a) \subseteq \operatorname{Int}_{i}(R \cdot A)$. Hence,

$$
\operatorname{Int}_{j}(R) \cdot A=\bigcup_{a \in A}\left(\operatorname{Int}_{j}(R) \cdot a\right) \subseteq \bigcup_{a \in A} \operatorname{Int}_{i}(R \cdot a) \subseteq \operatorname{Int}_{i}(R \cdot A)
$$

Corollary 3.22. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a (i, j) - $B C K$-algebra satisfying the condition that $\mathrm{y}=\mathrm{x} \cdot(\mathrm{x} \cdot \mathrm{y})$ for all distinct points $x, y \in A$ and $x \neq 0$, then for any $0 \neq a \in A$ and $A, R \subseteq A$ the following statements are true:

1. If R is $\Omega_{\mathfrak{j}}$-closed, then $\mathrm{a} \cdot \mathrm{R}$ is $\Omega_{\mathfrak{i}}$-closed.
2. If R is $\Omega_{\mathfrak{j}}$-open, then $\mathrm{A} \cdot \mathrm{R}$ is $\Omega_{\mathfrak{i}}$-open.

Proof. The proof follows from Theorem 3.19.
Corollary 3.23. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a (i, j)-BCK-algebra and let $a \in A . I f R \subseteq A$ satisfying the condition $x=$ $(x \cdot a) \cdot a$ for all $x \in R$, then the following statements are true:

1. If R is $\Omega_{\mathfrak{j}}$-closed, then $\mathrm{R} \cdot \mathrm{a}$ is $\Omega_{\mathfrak{i}}$-closed.
2. If If R is $\Omega_{\mathfrak{j}}$-open, then $\mathrm{R} \cdot \mathrm{A}$ is $\Omega_{\mathfrak{i}}$-open.

Proof. The proof follows from Theorem 3.21.
Theorem 3.24. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a (i, j)-BCK-algebra and let $a \in A$. If $R \subseteq A$ satisfying the condition that $x=a \cdot(a \cdot x)$ for all $x \in R$, then the following statements are true:

1. The left map $l_{a}: A \rightarrow A$ defined by $l_{a}(x)=a \cdot x$, is an (i, j)-homeomorphism of A onto A.
2. For any elements x, y in A such that $y=a \cdot x$, there exists an (i, j)-homeomorphism f of A onto itself such that $f(y)=x$.

Proof. 1. Let $x, y \in A$ and $l_{a}(x)=l_{a}(y)$, then $a \cdot x=a \cdot y$ implies that $a \cdot(a \cdot x)=a \cdot(a \cdot y)$ and hence $x=y$. Therefore, l_{a} is one-to-one. For every $x \in A, a \cdot x \in A$, thus $l_{a}(a \cdot x)=a \cdot(a \cdot x)=x$. Hence l_{a} is onto. Let O be a Ω_{j}-open set, then $l_{a}(O)=a \cdot O$. By Theorem $3.19(3), a \cdot O$ is Ω_{i}-open. Hence l_{a} is (i, j)-open. Let $x \in A$ and O be any Ω_{j}-open set containing $l_{a}(x)$, then by Theorem $3.19(3), a \cdot O$ is Ω_{i}-open. Since $l_{a}(x)=a \cdot x \in O$. Hence, $x \in a \cdot O$ and $l_{a}(a \cdot O) \subseteq O$. Hence, l_{a} is (i, j)-continuous. Thus, l_{a} is an (i, j)-homeomorphism.
2. Let $x, y \in A$, then the function $f=l_{a}: A \rightarrow A$ is (i, j)-homeomorphism, and

$$
l_{a}(y)=(a \cdot y)=a \cdot(a \cdot x)=x
$$

Theorem 3.25. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be a (i, j)-BCK-algebra and let $a \in A$.If $R \subseteq A$ satisfying the condition $x=$ $(x \cdot a) \cdot a$ for all $x \in R$, then the following statements are true:

1. The right map $r_{a}: A \rightarrow A$ defined by $r_{a}(x)=x \cdot a$, is an (i, j)-homeomorphism of A onto A.
2. For every element $x \in A$, there exists $a(i, j)$-homeomorphism f of A onto itself such that $f(a)=x$.

Proof. 1. Let $x, y \in A$ and $r_{a}(x)=r_{a}(y)$, then $x \cdot a=y \cdot a \operatorname{implies}$ that $(x \cdot a) \cdot a=(y \cdot a) \cdot a \cdot$ and hence $x=y$. Therefore, r_{a} is one-to-one. For every $x \in A, x \cdot a \in A$, thus $r_{a}(x \cdot a)=(x \cdot a) \cdot a=x$. Hence r_{a} is onto. To prove that r_{a} is (i, j)-open, let O be a Ω_{j}-open set in A, then $r_{a}(O)=O \cdot a$. By Theorem 3.21 (3), $O \cdot a$ is Ω_{i}-open. Hence r_{a} is (i, j)-open. Let $x \in A$ and let O be any Ω_{j}-open set containing $l_{a}(x)$, then by Theorem 3.21 (3), $O \cdot a$ is Ω_{i}-open. Since $l_{a}(x)=x \cdot a \in O$. Hence, $x \in O \cdot a$ and $r_{a}(a \cdot O) \subseteq O$. Hence, r_{a} is (i, j)-continuous. Thus, r_{a} is an (i, j)-homeomorphism.
2. Let $x \in A$, we define $f=r_{x \cdot a}: A \rightarrow A$ as above, then $r_{x \cdot a}$ is (i, j)-homeomorphism, and $r_{x \cdot a}(a)=$ $(x \cdot a) \cdot a=x$.

Theorem 3.26. Let $\left(A, \Omega_{1}, \Omega_{2}\right)$ be an (i, j)-BCK-algebra and let S be a $B C K$-subalgebra satisfying the condition $\mathrm{y}=\mathrm{x} \cdot(\mathrm{x} \cdot \mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{S}$. If S is $\Omega_{\mathfrak{j}}$-open, then $\operatorname{Int}_{\mathrm{i}}(\mathrm{S})$ is also a BCK-subalgebra.

Proof. Let $x, y \in \operatorname{Int}_{i}(S)$, then by hypothesis, S is a Ω_{j}-open set containing y. Since S is closed under the operation (\cdot), so $(x) \cdot S \subseteq S$. Hence, by Theorem $3.19(3), x \cdot S$ is $\Omega_{\mathfrak{i}}$-open and $x \cdot y \in x \cdot S \subseteq S$. Hence, $x \cdot y \in \operatorname{Int}_{i}(S)$. Therefore, $\operatorname{Int}_{i}(S)$ is closed under the operation (\cdot).

Proposition 3.27. If $\left(A, \Omega_{1}, \Omega_{2}\right)$ is a negative implicative $B C K$-algebra. If S is a $B C K$-subalgebra, then $x \cdot S$ is also a BCK-subalgebra.

Proof. Let $x \cdot a, x \cdot b \in(x \cdot S)$, then obviously, $a, b \in S$ and since S is closed, so $a \cdot b \in S$. Therefore, $x \cdot(a \cdot b) \in x \cdot S$. Hence, by hypothesis, $x \cdot(a \cdot b)=(x \cdot a) \cdot(x \cdot b) \in x \cdot S$. Thus $x \cdot S$ is also a BCKsubalgebra.

Proposition 3.28. Let A be an $(i, j) B C K$-algebra and $\phi \neq W \in \Omega_{j}$, then the following statements are true:

1. If $x \in W$, then there exists $a \Omega_{i}$-open set U containing 0 such that $\mathrm{x} \cdot \mathrm{U} \subseteq \mathrm{W}$.
2. If $0 \in W$, then there exists a Ω_{i}-open set U containing x such that $\mathrm{U} \cdot \mathrm{U} \subseteq \mathrm{W}$.
3. If $0 \in W$, then there exist two Ω_{i}-open sets U and V containing 0 and x respectively such that $(\mathrm{U} \cdot \mathrm{V}) \subseteq \mathrm{W}$.
4. If $0 \in W$, then for each $x, y \in A$ there exist two a $\Omega_{\mathfrak{i}}$-open sets U and V containing $\mathrm{y} \cdot \mathrm{x}$ and y respectively such that $\mathrm{U} \cdot \mathrm{V} \subseteq \mathrm{W}$.

Proof. 1. Obvious.
2. Let $0 \in W$ and $x \in A$. Since $x \cdot x=0 \in W$ and A is (i, j)-BCK-algebra, then there exist two Ω_{i}-open sets G and H containing x such that $G \cdot H \subseteq W$. Suppose that $U=G \cap H$, then U is a Ω_{i}-open set containing x. Hence, $\mathrm{U} \cdot \mathrm{U} \subseteq \mathrm{W}$.
3. Let $0 \in W$ and $x \in A$. Since $0 \cdot x=0$, and A is (i, j)-BCK-algebra, then there exist Ω_{i}-open sets G, H containing 0 and A such that $\mathrm{G} \cdot \mathrm{H} \subseteq \mathrm{W}$.
4. Let $0 \in W$ and $x, y \in A$. Since $x \cdot y \leqslant x$ and A is (i, j)-BCK-algebra, then there exist a Ω_{i}-open set U containing $x \cdot y$, and a Ω_{i}-open set G containing x such that $U \cdot G \subseteq W$.

Proposition 3.29. Let A be an $(\mathfrak{i}, \mathfrak{j})$-BCK-algebra and U_{0} be the least $\Omega_{\mathfrak{i}}$ and $\Omega_{\mathfrak{j}}$-open set containing 0 . If $x \in \mathrm{U}_{0}$, then U_{0} is the least $\Omega_{\mathfrak{j}}$-open set containing x.

Proof. Let $x \in \mathrm{U}_{0}$ and N be any Ω_{j}-open in A which contains x. By Definition 2.1 , we have $x \cdot 0=x \in N$. By Theorem 3.5, there exist Ω_{i}-open sets N_{x} and N_{0} such that $N_{x} \cdot N_{0} \subseteq N$. Since N_{0} is a Ω_{i}-open set containing 0, it follows from assumption and Proposition 2.2 that $0=x \cdot x \in N_{x} \cdot U_{0} \subseteq N_{x} \cdot N_{0} \subseteq N$. Therefore, N is a Ω_{j}-open set containing 0 . By assumption, we have $\mathrm{U}_{0} \subseteq \mathrm{~N}$. Hence, U_{0} is the least Ω_{j}-open set containing A.

Proposition 3.30. In every (i, j)-BCK-algebra $\left(A, \Omega_{1}, \Omega_{2}\right)$, the following statements are true:

1. If $\left(A, \Omega_{\mathfrak{j}}\right)$ is T_{0}, then $\left(A, \Omega_{\mathfrak{i}}\right)$ is T_{1}.
2. If $\left(A, \Omega_{j}\right)$ is T_{1}, then $\left(A, \Omega_{i}\right)$ is T_{2}.
3. If $\left(A, \Omega_{\mathfrak{j}}\right)$ is T_{2}, then $\left(A, \Omega_{\mathfrak{i}}\right)$ is T_{0}.

Proof. (1): Suppose that $\left(A, \Omega_{j}\right)$ is T_{0} and let $x, y \in A$ such that $x \neq y$. Thus we have either $x \cdot y \neq 0$ or $y \cdot x \neq 0$ without loss of generality, assume that $x \cdot y \neq 0$, so we have two cases:

Case 1: There exists a Ω_{j}-open set W containing $x \cdot y$ but not 0 . Since A is ($\left.i, j\right)$-BCK-algebra, then there exist two Ω_{i}-open sets U and V containing x and y respectively such that $\mathrm{U} \cdot \mathrm{V} \subseteq \mathrm{W}$. Since $0 \notin \mathrm{~W}$ so that $0 \notin \mathrm{U} \cdot \mathrm{V}$. Hence, $\mathrm{y} \notin \mathrm{U}$ and $x \notin \mathrm{~V}$.

Case 2: There exists Ω_{j}-open W containing 0 but not $x \cdot y$. Since $x \cdot x=0, y \cdot y=0$ and A is (i, j)-BCKalgebra, then by Proposition 3.28 there exists Ω_{i}-open set U containing x such that $\mathrm{U} \cdot \mathrm{U} \subseteq \mathrm{W}$. Also, there exists $\Omega_{\mathfrak{i}}$-open set V containing y such that $\mathrm{V} \cdot \mathrm{V} \subseteq W$. Obviously, $\mathrm{y} \notin \mathrm{U}$ and $x \notin \mathrm{~V}$. Therefore, $\left(A, \Omega_{\mathfrak{i}}\right)$ is T_{1}.
(2): Suppose that $\left(A, \Omega_{\mathfrak{j}}\right)$ is T_{1} then $\{0\}$ is $\Omega_{\mathfrak{j}}$ - closed. Therefore, by Proposition $3.7,\left(\mathcal{A}, \Omega_{\mathfrak{i}}\right)$ is T_{2}. (3): Obvious.

The converse of the above proposition is not true in general, for this if we take $\Omega_{\mathfrak{i}}$ is a discrete space and Ω_{j} is any space which is not T_{0} on a BCK-algebra A, then $\left(A, \Omega_{1}, \Omega_{2}\right)$ is an (i, j)-BCK-algebra.

Proposition 3.31. Let A be an (i, j)-BCK-algebra and U_{0} be the least $\Omega_{\mathfrak{i}}$ and $\Omega_{\mathfrak{j}}$-open set containing 0 . If $x \in \mathrm{U}_{0}$, then U_{0} is the least Ω_{j}-open set containing x .

Proof. Let $x \in \mathrm{U}_{0}$ and N be any Ω_{j}-open in A which contains x. By Definition 2.1, we have $x \cdot 0=x \in N$. By Theorem 3.5, there exist Ω_{i}-open sets N_{x} and N_{0} such that $N_{x} \cdot N_{0} \subseteq N$. Since N_{0} is a Ω_{i}-open set containing 0, it follows from assumption and Proposition 2.2 that $0=x \cdot x \in N_{x} \cdot U_{0} \subseteq N_{x} \cdot N_{0} \subseteq N$. Therefore, N is a Ω_{j}-open set containing 0 . By assumption, we have $\mathrm{U}_{0} \subseteq \mathrm{~N}$. Hence, U_{0} is the least Ω_{j}-open set containing x .

4. Conclusion

In this paper we extended the concept of topological BCK-algebra to a bitopological BCK-algebra. We proved some properties of this concept and gave illustrative examples when they are needed. Some relations linked with bitopological BCK-algebras to separation axioms and homeomorphisms are investigated.

References

[1] R. A. Alo, E. Y. Deeba, Topologies of BCK-algebras, Math. Japon., 31 (1986), 841-853. 1, 2.5, 2.8
[2] K. E. Belleza, J. P. Vilela, On B-ideals in a topological B-algebra and the uniform B-topological space, Eur. J. Pure Appl. Math., 13 (2020), 830-839. 1
[3] R. A. Borzooei, M. Bakhshi, The lattice structure of ideals of a BCK-algebra, J. Mult.-Valued Logic Soft Comput., 18 (2012), 387-399. 2.3
[4] A. Dvurečenskij, S. Pulmannová, New trends in quantum structures, Kluwer Academic Publishers, Dordrecht, (2000). 2, 2.3, 2, 2.6, 3.14
[5] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa, (1977). 1
[6] N. C. Gonzaga, Analyzing Some Structural Properties of Topological B-Algebras, Int. J. Math. Math. Sci., 2019 (2019), 7 pages. 1
[7] Y. Imai, K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19-22. 1
[8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42 (1966), 26-29. 1
[9] Y. B. Jun, X. L. Xin, D. S. Lee, On Topological BCI-Algebras, Inform. Sci., 116 (1999), 253-261. 1
[10] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3), 13 (1963), 71-89. 1
[11] D. S. Lee, D. N. Ryu, Notes on topological BCK-algebras, Sci. Math., 1 (1998), 231-235. 1, 2.7
[12] S. Mehrshad, J. Golzarpoor, On topological BE-algebras, Math. Morav., 21 (2017), 1-13. 1
[13] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, (1994). 2
[14] A. Satirad, A. Iampan, Topological UP-algebras, Discuss. Math. Gen. Algebra Appl., 39 (2019), 231-250. 1
[15] Q. Zhang, C. L. Mi, X. C. Wang, Y. H. Cui, Y. L. Zhang, Negative implicative BCK-algebras, Proceedings of Annual Conference of China Institute of Communications, 2010 (2010), 273-276. 2.4

[^0]: *Corresponding author
 Email address: aliasbkhalaf@uod.ac (Alias B. Khalaf)
 doi: 10.22436/jmcs.028.03.08
 Received: 2022-04-19 Revised: 2022-05-18 Accepted: 2022-05-28

