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Abstract
We discuss the situation when all solutions of the half-linear 3rd-order advanced difference equation with a negative

middle term are oscillatory. We provided sufficient conditions for all solutions of the studied equation to be oscillatory which
are different from the existing results. Examples are presented to illustrate the new results.
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1. Introduction

Here we investigate the oscillatory behavior of the 3rd-order advanced difference equations

∆(c(`)∆(d(`)(∆x(`))α)) − a(`)(∆x(`+ 1))α − b(`)g(x(σ(`))) = 0, ` > `0, (1.1)

where `0 is a positive integer and α is a quotient of odd positive integers. We consider the following
conditions to provide the results:

(H1) {c(`)}, {d(`)} and {b(`)} are positive real sequences and {a(`)} is a nonnegative real sequence for all
` > `0;

(H2) {σ(`)} is a nondecreasing sequence of integers such that σ(`) > `+ 1 for all ` > `0;
(H3) mg(m) > 0, g is nondecreasing for m 6= 0, and −g(−mn) > g(mn) > g(m)g(n) for mn > 0.

By a solution of (1.1), we mean a nontrivial real sequence {x(`)} which satisfies (1.1) for all ` > `0. A
nontrivial solution {x(`)} of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative and nonoscillatory otherwise. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

Oscillatory phenomena take part in different models from real world applications; we refer to the
papers [15, 23] for models form mathematical biology where oscillation and/or delay actions may be
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formulated by means of cross-diffusion terms. Half-linear equations have numerous applications in the
study of p-Laplace equations, non-Newtonian fluid theory, porous medium, and so forth; see, for instance,
the papers [9–11, 20] for more details and the papers [9–11, 14, 21, 22] regarding the oscillation of half-
linear equations. Recently, the investigation of oscillatory properties of solutions of various classes of
difference equations experienced long-term interest to many researches, see for example [1–5, 7, 8, 12, 16–
19, 24–26] and the references cited therein. In particular 3rd-order difference equations have very useful
applications in hydrodynamics, population dynamics and physics, see for example [1, 6, 19].

In [5, 7, 24, 26] the authors used comparison method and summation averaging technique to establish
the oscillation of all solutions of trinomial 3rd-order difference equation

∆(c(`)∆(d(`)(∆x(`))α)) + a(`)(∆x(`+ 1))α + b(`)g(x(σ(`))) = 0, ` > `0, (1.2)

where {a(`)} and {b(`)} are positive sequences and the auxiliary equation

∆(c(`)∆z(`)) +
a(`)

d(`+ 1)
z(`+ 1) = 0,

is nonoscillatory.
In [8], the authors studied the asymptotic properties of (1.2) when {a(`)} is negative and {b(`)} is pos-

itive. They presented several comparison theorems in which the desired properties of solutions are de-
duced from those of corresponding 1st-order delay difference equations. Their results, however, strongly
depend on the knowledge of the auxiliary solution {z(`)}.

In a very recent work [25], the authors discussed the asymptotic and oscillatory behaviour of (1.1)
when d(`) ≡ 1 and σ(`) 6 `− 1. By the conditions (H1)–(H3), we derive the results of (1.1), which are new
and complement the ones from [7, 8, 24–26].

2. Auxiliary lemmas

Let us define
D0x(`) = x(`),
D1x(`) = d(`)(∆x(`))

α,
D2x(`) = c(`)∆(D1x(`)),
D3x(`) = ∆(D2x(`)),

for all ` > `0. With this notation, (1.1) can be rewritten as

D3x(`) −
a(`)

d(`+ 1)
D1x(`+ 1) − b(`)g(x(σ(`)) = 0.

The functions given below will be used for the easy understanding in this paper:

E1(`, `1) =
`−1∑
s=`1

d
−1
α (s), E2(`, `1) =

`−1∑
s=`1

1
c(s)

,

E12(`, `1) =
`−1∑
s=`1

d
−1
α (s)E

1
α
2 (s, `1), A(`) =

`−1∏
s=`1

(
1 −

1
c(s)

∞∑
t=s

Q(t)

d(t+ 1)

)
,

B(`) =

∞∑
s=`

1
c(s)

∞∑
t=s

b(t), Q(`) =
a(`)

d(`+ 1)
B(`+ 1) + b(`),

Q̄(`) =
1
c(`)

∞∑
s=`

Q(s),
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b̄(s, `) =
s∑
t=`

1
c(t)

t−1∑
j=`

b(j)g(E12(σ(j), `1)),

E(s, `) =
a(s)

d(s+ 1)
b̄(s, `) + b(s)g(E12(σ(s), `1)),

for all s > ` > `1 > `0.
Throughout, we assume without further mention that

(H4) E1(`, `0)→∞ and E2(`, `0)→∞ as `→∞,

which implies that the operator D3x(`) is so-called canonical form.
To make the sense of the definitions of A(`) and B(`), here we consider

(H5)
∑∞̀

=`0

a(`)
d(`+1) <∞ and

∑∞̀
=`0

b(`) <∞.

In what follows, all difference inequalities considered in this paper are assumed to hold eventually,
that is, they are satisfied for all sufficiently large `. Moreover, in the sequel and without loss of generality,
we look over only the positive solutions of (1.1).

The solutions of (1.1) and auxiliary second-order linear ordinary difference equations are closely rele-
vant

∆(c(`)∆z(`)) =
a(`)

d(`+ 1)
z(`+ 1), (2.1)

as the following lemma says.

Lemma 2.1. Let the positive solution of (2.1) be {z(`)} for all ` > `0. Then (1.1) can be written in the form

∆

(
c(`)z(`)z(`+ 1)∆

(
d(`)

z(`)
(∆x(`))α

))
= b(`)z(`+ 1)g(x(σ(`))), ` > `0.

Proof. From a straightforward calculation, we see that

∆(c(`)∆(d(`)(∆x(`))α)) − a(`)(∆x(`+ 1))α =
1

z(`+ 1)
∆

(
c(`)z(`)z(`+ 1)∆

(
d(`)

z(`)
(∆x(`))α

))
.

The proof is obtained by [25, Lemma 2.1] and so it is omitted.

In view of [1, Theorem 6.3.4] Equation (2.1) always has a pair of nonoscillatory solutions {z(`)} such
that either

z(`)∆z(`) > 0,

or
z(`)∆z(`) < 0, (2.2)

for all ` > `0.
The following property of a nonoscillatory solution {z(`)} satisfying (2.2) to disclose the structure of

possible nonoscillatory solutions of (1.1).

Lemma 2.2. If ∞∑
`=`1

(
A(`)

d(`)

) 1
α

= ∞, (2.3)

then (2.1) has a positive solution {z(`)} satisfying

∞∑
`=`1

1
c(`)z(`)z(`+ 1)

=

∞∑
`=`1

(
z(`)

d(`)

) 1
α

= ∞.
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Proof. The proof is obtained by [1, Lemma 2.1 ] and so the details are omitted. Now, we introduce the
following classes of nonoscillatory (let us say positive) solutions:

x(`) ∈W1 =⇒ x(`) > 0, D1x(`) > 0, D2x(`) < 0, D3x(`) > 0,

x(`) ∈W3 =⇒ x(`) > 0, D1x(`) > 0, D2x(`) > 0, D3x(`) > 0,

for all ` > `1 > `0.

Lemma 2.3. Assume that (2.3) holds. If {x(`)} is a positive solution of (1.1) for all ` > `0, then there exists an
integer `1 such that either x(`) ∈W1 or x(`) ∈W3 for all ` > `1 > `0.

Proof. The proof is obtained by [25, Lemma 2.3] and hence the details are omitted. If we assume (2.3), the
set W of all positive solutions of (1.1) has the following decomposition:

W =W1 ∪W3.

The results in [1, 2] of oscillation criteria have been commonly established by introducing property A and
/ or B. Equation (1.1) is said to have property B if W =W3.

We provided few useful estimates for our main results.

Lemma 2.4. Let x(`) ∈W1 be a positive solution of (1.1) for all ` > `1. Then

x(`)

E1(`, `1)
is nonincreasing,

and there exists `2 > `1 such that
D1x(`) > B(`)g(x(σ(`))), (2.4)

for all ` > `2.

Proof. Assume that x(`) ∈W1 is a positive solution of (1.1) for all ` > `1. It follows from the monotonicity
of D1x(`) that

x(`) > x(`) − x(`1) =
`−1∑
s=`1

d
−1
α (s)D

1
α

1 x(s) > E1(`, `1)D
1
αx(`).

Therefore,

∆

(
x(`)

E1(`, `1)

)
=

E1(`, `1)D
1
α

1 x(`) − x(`)

d
1
α (`)E1(`, `1)E1(`+ 1, `1)

6 0,

and so x(`)
E1(`,`1)

is nonincreasing.
Next, summing (1.1) form ` to ∞, yields

−D2x(`) >
∞∑
s=`

a(s)

d(s+ 1)
D1x(s+ 1) +

∞∑
s=`

b(s)g(x(σ(s)))

> g(x(σ(n)))
∞∑
s=`

b(s).

By repeated summation, we obtain

D1x(`) >
∞∑
s=`

g(x(σ(s)))

c(s)

∞∑
t=s

b(t) > B(`)g(x(σ(`))).

The proof is complete.
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Lemma 2.5. Let x(`) ∈W3 be a positive solution of (1.1). For all ` > `1 > `0. If
∞∑
s=`

a(s)

d(s)
E2(s, `1) + b(s)g(E12(σ(s), `1)) = ∞, (2.5)

then there is an integer `2 > `1 such that

x(`)

E12(`, `1)
is nondecreasing for all ` > `2.

Proof. The proof is obtained by [25, Lemma 2.5 ] and hence the details are skipped.

We conclude this section by recalling a use full result found in [2].

Lemma 2.6. If the inequality
∆x(`) − b(`)g(x(σ(`))) > 0,

has an eventually positive solution, then so does equation

∆x(`) − b(`)g(x(σ(`))) = 0.

3. Main results

In this section, we first present sufficient conditions under which (1.1) enjoys property B. Then using
these results, we obtain conditions for the oscillation of all solutions of (1.1).

Theorem 3.1. Let (2.3) hold. If the 1st-order advanced difference equation

∆x(`) − c
−1
α (`)

( ∞∑
s=`

Q̄(s)

) 1
α

g
1
α (x(σ(`+ 1)) = 0, (3.1)

is oscillatory, then (1.1) has property B.

Proof. Let {x(`)} be a positive solution of (1.1) for all ` > `0. Then from Lemma 2.3, there exists an integer
`1 > `0 such that either x(`) ∈W1 or x(`) ∈W3 for all ` > `1. If x(`) ∈W1, then by virtue of (1.1) and (2.4),
we have

D3x(`) >

(
a(`)

d(`+ 1)
B(`+ 1) + b(`)

)
g(x(σ(`+ 1))) = Q(`)g(x(σ(`+ 1))).

Summing up the last inequality from ` to ∞, we find

−D2x(`) >
∞∑
s=`

Q(s)g(x(σ(s+ 1))) >
( ∞∑
s=`

Q(s)

)
g(x(σ(`+ 1))).

Again summing the above inequality form ` to ∞ yields

D1x(`) >
∞∑
s=`

g(x(σ(s+ 1)))
c(s)

∞∑
t=s

Q(t) >

( ∞∑
s=`

Q̄(s)

)
g(x(σ(`+ 1))).

Therefore {x(`)} is a positive solution of the advanced difference inequality

∆ x(`) − c
−1
α (`)

( ∞∑
s=`

Q̄(s)

) 1
α

g
1
α (x(σ(`+ 1)) > 0.

By Lemma 2.6, we see that (3.1) also has positive solution which is a contradiction. Hence x(`) ∈ W3,
which means that (1.1) has property B. Hence proved.
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Corollary 3.2. Assume that g(u) = uα and let (2.3) hold. If

lim inf`→∞
σ(`+1)−1∑
s=`+1

c
−1
α (s)

( ∞∑
t=s

Q̄(t)

) 1
α

>
1
e

, (3.2)

then (1.1) has property B.

Proof. Using [13, Theorem 2.1] and (3.2), we see that equation (3.1) is oscillatory. Hence by Theorem 3.1
the conclusion follows.

Corollary 3.3. Assume that g(u) = uβ where β is a ratio of odd positive integers with β > α and let (2.3) hold.
If ∞∑

`=`1

c
−1
α (`)

( ∞∑
t=`

Q̄(t)

) 1
α

= ∞, (3.3)

then (1.1) has property B.

Proof. Proceeding as in the proof of Theorem 3.1, we obtain

∆x(`) − c
−1
α (`)

( ∞∑
s=`

Q̄(s)

) 1
α

x
β
α (σ(`+ 1)) > 0,

or

∆x(`) > c
−1
α (`)

( ∞∑
s=`

Q̄(s)

) 1
α

x
β
α (`+ 1).

Hence ∫x(`+1)

x(`)

ds

s
β
α

>
∆x(`)

xβ(`+ 1)
> c

−1
α (`)

( ∞∑
s=`

Q̄(s)

) 1
α

.

Summing the last inequality from n1 to ∞, we obtain

1

(βα − 1)x
β
α−1(`1)

>
∞∑
`=`1

c
−1
α (`)

( ∞∑
s=`

Q̄(s)

) 1
α

,

which contradicts (3.3). Hence x(`) ∈W3, which means that (1.1) has property B. Hence proved.

In the following theorems we obtain criteria for the oscillation of all solutions of (1.1) by eliminating
the remaining class of nonoscillatory solution of (1.1).

Theorem 3.4. Assume that all conditions of Corollary 3.2 are satisfied and (2.5) hold. If

lim sup
`→∞

1
E12(σ(`), `1)

σ(`)−1∑
s=`1

(
1
d(s)

s−1∑
t=`

1
c(t)

t−1∑
i=`

E(i, `)
) 1
α

> 1, (3.4)

then (1.1) is oscillatory.

Proof. Let {x(`)} be a positive solution of (1.1) for ` > `0. If follows from Lemma 2.3 that there exists an
integer `1 > `0 such that x(`) ∈ W1 or x(`) ∈ W3 for all ` > `1. From Corollary 3.2, we see that (1.1) has
property B, that is, x(`) ∈W3. Summing up (1.1) from ` to j− 1, we have

D2x(j) > D2x(j) −D2x(`) >
j−1∑
s=`

a(s)

d(s+ 1)
D1x(s+ 1) +

j−1∑
s=`

b(s)g(x(σ(s))). (3.5)
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From Lemma 2.3, there exists an integer `2 > `1 such that x(`)
E12(`,`1)

is nondecreasing for all ` > `2, and
hence

D2x(j) >
j−1∑
s=`

b(s)g(x(σ(s))) > g

(
x(σ(`))

E12(σ(`), `1)

) j−1∑
s=`

b(s)g(E12(σ(s), `1)), ` > `2. (3.6)

Summing (3.6) in j, one obtains

D1x(j) > g

(
x(σ(`))

E12(σ(`), `1)

) j−1∑
s=`

1
c(s)

s−1∑
t=`

b(t)g(E12(σ(t), `1)). (3.7)

Using (3.7) in (3.5), we have

D2x(j) > g

(
x(σ(`))

E12(σ(`), `1)

) j−1∑
s=`

a(s)

d(s+ 1)
b̄(s, `) +

j−1∑
s=`

b(s)g(x(σ(s)))

> g

(
x(σ(`))

E12(σ(`), `1)

) j−1∑
s=`

E(s, `).

Summing in j once more, we get

D1x(j) > g

(
x(σ(`))

E12(σ(`), `1)

) j−1∑
s=`

1
c(s)

s−1∑
t=`

E(t, `).

Summing the last inequality finally in j we find

x(j) > g
1
α

(
x(σ(`))

E12(σ(`), `1)

) j−1∑
s=`

(
1
d(s)

s−1∑
t=`

1
c(s)

t−1∑
i=`

E(i, `)
) 1
α

. (3.8)

Setting j = σ(`) and g(u) = uα, we obtain

1 >
1

E12(σ(`), `1)

σ(`)−1∑
s=`

(
1
d(s)

s−1∑
t=`

1
c(s)

t−1∑
i=`

E(i, `)
) 1
α

.

Taking the lim sup on both sides of the resulting inequality we are led to the contradiction with (3.4).
Thus W3 = φ and so (1.1) is oscillatory. Hence proved.

Theorem 3.5. Assume that all conditions of Corollary 3.3 are satisfied and (2.5) holds. If

lim sup
`→∞

(
1

E12(σ(`), `1)

)β
α
σ(`)−1∑
s=`

(
1
d(s)

s−1∑
t=`

1
c(t)

t−1∑
i=`

E(i, `)
) 1
α

> 0, (3.9)

then (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.4, we arrive at (3.8). Now setting j = σ(`) and g(u) = uβ

with β > α in (3.8), we obtain

x(σ(`))

x
β
α (σ(`))

>

(
1

E12(σ(`), `1)

)β
α
σ(`)−1∑
s=`

(
1
d(s)

s−1∑
t=`

1
c(t)

t−1∑
i=`

E(i, `)
) 1
α

.

Taking lim sup on both sides of the inequality we see that

0 > lim sup
`→∞

(
1

E12(σ(`), `1)

)β
α
σ(`)−1∑
s=`

(
1
d(s)

s−1∑
t=`

1
c(t)

t−1∑
i=`

E(i, `)
) 1
α

,

which contradicts (3.9). Thus W3 = φ and so (1.1) is oscillatory. Hence proved.



M. Vijayakumar, S. Thamilvanan, E. Thandapani, J. Math. Computer Sci., 28 (2023), 316–325 323

4. Examples

Example 4.1. Let us take the 3rd-order linear advanced difference equation

∆3x(`) −
1

(`+ 1)(`+ 2)
∆x(`+ 1) −

b

`(`+ 1)(`+ 2)
x(2`) = 0, ` > 1, (4.1)

where b > 0. Here c(`) = d(`) = 1, a(`) =
1

(`+ 1)(`+ 2)
, b(`) =

b

`(`+ 1)(`+ 2)
, σ(`) = λ`, g(m) = m and

α = 1. A simple calculation shows that conditions (H1)–(H5) hold and A(`) =
1
`

and

Q̄(`) >
3b
4

1
(`+ 1)(`+ 2)

.

Thus Condition (2.3) holds, and Condition (3.2) becomes

lim inf
`→∞

2`+1∑
s=`+1

( ∞∑
t=s

Q̄(t)

)
> lim inf

`→∞
2`+1∑
s=`+1

3b
4

(
1

s+ 1

)
> lim inf

`→∞ 3b
4

(
1

2`+ 2

)
(`+ 1)

=
3b
8
>

1
e

.

Hence by Corollary 3.2, Equation (4.1) has property B if
3b
8
>

1
e

. Moreover, the condition (2.5) holds. The

condition (3.4) clearly holds for b > 0. Hence by Theorem 3.4, Equation (4.1) is oscillatory if b >
8
3e

.

Example 4.2. Let us take the 3rd-order advanced difference equation

∆2(`(∆x(`))3) −
1

`+ 2
(∆x(`+ 1))3 −

1
`(`+ 1)(`+ 2)

x3(2`) = 0, ` > 1. (4.2)

Here c(`) = 1,d(`) = 1,a(`) =
1

`+ 2
,b(`) =

1
`(`+ 1)(`+ 2)

,σ(`) = 2` and f(m) = m3. A simple calculation

shows that assumptions (H1)–(H5) are satisfied, and

A(`) =
1
`

, and Q̄(`) >
3

4(`+ 1)(`+ 2)
.

Thus Condition (2.3), which takes the form
∞∑
`−1

(
A(`)

d(`)

)
=

∞∑
`=1

1

n
2
3
= ∞,

is satisfied. Now Condition (3.2) becomes

lim inf
`→∞

2`+1∑
s=`+1

( ∞∑
t=s

Q̄(t)

) 1
3

> lim inf
`→∞

(
3
4

) 1
3 2`+1∑
s=`+1

1

(s+ 1)
1
3

> lim
`→∞

(
3
8

) 1
3

(`+ 1)
2
3 = ∞ >

1
e

.

Therefore by Corollary 3.2, Equation (4.2) has Property B. Moreover E12(n, 1) ≈ `, b̄(s, `) ≈ 8(s2 + s− `s),

and E(s, `) ≈ 16+
8
s
−

8`
s

. Now, Condition (3.4) holds. Hence by Theorem 3.4, Equation (4.2) is oscillatory.
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5. Conclusion

In [5, 7, 8, 24–26], the authors investigated the oscillatory and asymptotic properties of (1.1) and the
present work can be considered as a complement of the earlier results. In contrary to [5, 7, 8, 24, 26], these
criteria do not depend on the solutions of auxiliary equation (2.1). The problem is open for researchers to
get the solution structure and corresponding oscillatory criteria for the equation

∆(c(`)∆(d(`)(∆x(`))α)) + a(`)(∆x(`+ 1))α − b(`)g(x(σ(`)) = 0,

where σ(`) is such that either σ(`) 6 ` or σ(`) > `+ 1.
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