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Abstract
In this paper, we investigate the stabilization of stochastic nonlinear impulsive reaction-diffusion systems (SNIRDSs) with

time delays and boundary feedback control via average impulsive interval approach. Boundary feedback control strategy are
designed to stabilization of SNIRDSs. By constructing a Lyapunov-Krasovskii functional (LKF), and using Wirtinger’s inequality,
Gronwall inequality, average impulsive interval approach, sufficient conditions are derived to guarantee the finite-time stability
(FTS) of proposed systems. We investigate the stabilization results by designing the control gain matrices for boundary feedback
controller. The criterions are expressed in terms of linear matrix inequalities (LMIs) that can be verified by Matlab LMI toolbox.
Finally, numerical example are given to verify the efficiency and superiority of proposed stabilization criterions.
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1. Introduction

In recent decades, partial differential systems (PDSs) have been extensively studied by many scholars
because they can be adeptly applied to wide range of fields, including science and engineering. The
complete structure and non-linear dynamical behaviors of nonlinear systems depend not only on the
temporal evolution and space position of all variable, but also on its connections stemming from the space
distributed structure of whole networks. However, because of the spatially inhomogeneous environment,
diffusion effects are usually unavoidable. As a representative model, reaction-diffusion terms are used
to investigate a wide range of issues such as secure communication [18], chemical reaction process [28],
oncolytic M1-virotherapy model [8], virus transmission [21], and food web model [46]. As a result, PDSs
with reaction-diffusion terms have received a lot of attention [7, 10, 20, 25, 27, 36, 48].

In real-world systems such as nonlinear circuits, biological systems, power systems, chemical industry
systems, and reaction-diffusion systems (RDSs), time delays are mostly inevitable. Oscillation or instabil-
ity in RDSs can be characterized by the presence of time delays. The LKF are useful when dealing with
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time delays in RDSs. The work [24] used the LKF functional technique to deal with the effect of time
delays on the RDSs. The work [50] studied the stability of the RDSs with time delays by employing the
LKF. The LKF was also used to solve the stabilization problems for RDSs with time-varying delays [1, 6].
As a result, time delays are considered for RDSs [3, 26, 32, 33, 47, 54].

For whatever reason, the state of a system may undergo abrupt changes or disturbances in a very short
period of time, altering the original trajectory, which is known as the impulse phenomenon. As a result,
the RDSs with impulsive effects need to be more realistic and accurate the structure process of evolution.
The dynamic behaviors of impulsive systems has attracted much interest recently [4, 5, 17, 19, 31, 34, 35,
37–39, 49, 55]. In general, the study of the stability and stabilization of impulsive nonlinear systems can
be classified into two types based on impulsive effects: impulsive perturbation and impulsive control.
Basically, impulsive perturbation takes into account the robustness of a system in which destabilizing
impulses are typically present. Even as impulsive control is concerned with the stabilization of a systems,
stabilizing impulses are often included.

Boundary controllers, as a particular control technique for PDSs, can be efforts to achieve the required
dynamic behaviors of such PDSs while saving cost and making it simple to implement [9, 16, 22]. The back
stepping method has been used to explore boundary control for RDSs. In [15, 52], the authors designed
the boundary controller for RDSs. The authors of [23, 51] utilized the Lyapunov functional techniques for
dealing with stabilization problems in RDSs using a boundary controller.

Motivated by preceding discussions, the aim of this paper is to obtain the FTS and stabilization of
SNIRDSs with time delays and boundary feedback control via average impulsive interval approach. This
paper contains the following major contributions: (i) a boundary feedback controller was designed to FTS
and stabilization for SNIRDSs with time delays; (ii) by construct a LKF, and using Wirtinger’s inequality,
Gronwall inequality, LMIs, sufficient criterions are derived to ensure that the FTS of proposed systems; (iii)
our main results reflect the effects of impulsive phenomenon, boundary feedback control, and reaction-
diffusion terms on the FTS.
Notations: N: set of natural numbers; Z+: set of positive integers; R: set of real numbers; R+: set of pos-
itive real numbers; Rn: Euclidean space of n-dimensions; Rm×n: Euclidean space of (m×n)-dimensions;
A < 0: real symmetric negative definite matrix; A > 0: real symmetric positive definite matrix; AT : trans-
pose of A; λmin(A): minimum eigen value of A; λmax(A): maximum eigenvalue of A; ∗: the entries are
implied by symmetric; He{A} = (A+AT ); ‖ · ‖: Euclidean norms; E(X): mathematical expectation of X;
W1,2([0,Ω]; Rn): Soblev n-dimensional space of continuous functions;

∫1
0 =
T (x, t)=(x, t)dx = ‖=(x, t)‖2.

2. System description and preliminaries

Consider the following stochastic nonlinear impulsive reaction-diffusion systems (SNIRDSs) with time
delays and boundary feedback control

d=(x, t) =
[
D
∂2=(x,t)
∂x2 +A=(x, t) +B=(x, t− σ) + f(t, =(x, t)) + g(t, =(x, t− σ))

]
dt

+h(t, =(x, t), =(x, t− σ))dω(t), t 6= tk,
=(x, tk) = Υ=(x, t−k ), t = tk, k ∈N,

(2.1)

with initial and Neumann boundary conditions as follows:

=(x, s) = φ(x, s), x ∈ (0, 1), s ∈ [−σ, 0],
∂=(x, t)
∂x

|x=0 = 0,
∂=(x, t)
∂x

|x=1 = u(t), (2.2)

where =(x, t) = [=1(x, t), =2(x, t), . . . ,=n(x, t)]T ∈ Rn is a state vector, t > 0 is a time variable, x ∈ (0, 1)
is a space variable, and φ(x, s) = [φ1(x, s),φ2(x, s), . . . ,φn(x, s)]T ∈ Rn is a continuous initial function.
u(t) = [u1(t),u2(t), . . . ,un(t)]T ∈ Rn denotes a boundary feedback control which will be designed later.
D is a positive definite diffusion matrix. f,g : R+ ×Rn → Rn and h : R+ ×Rn ×Rn → Rn×m are the
continuous nonlinear functions. ω(t) = [ω1(t),ω2(t), . . . ,ωn(t)]T ∈ Rm denotes the Brownian motions.
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σ is a time delay. A,B are constant matrices with suitable dimensions. tk is a impulsive instant time and
satisfying the conditions 0 < t0 < t1 < · · · < tk < · · · , with limk→∞ tk = ∞. Υ is impulsive gain matrix.
In this paper, we take =(x, tk) = =(x, t+k ).

Assumption 2.1 ([24]).
(H1) There exist nonnegative constants α1 and α2 such that

(f(η1) − f(η2))
T (f(η1) − f(η2)) 6 α1(η1 − η2)

T (η1 − η2),

(g(γ1) − g(γ2))
T (g(γ1) − g(γ2)) 6 α2(γ1 − γ2)

T (γ1 − γ2), ∀ η1,η2,γ1,γ2 ∈ Rn.

Assumption 2.2 ([4]).
(H2) There exist nonnegative constants β1 and β2 such that

trace[hT (t, l,m)h(t, l,m)] 6 β1l
T l+β2m

Tm, ∀ l,m ∈ Rn.

Lemma 2.3 ([54]). The following matrix inequality applies to any real matrices M,N and a positive definite matrix
R:

MTN+NTM 6 MTR−1M+NTRN.

Lemma 2.4 ([52]). For a state vector x(t) ∈ W1,2([0,Ω]; Rn) with x(0) = 0 or x(Ω) = 0 and matrix M > 0, we
get ∫Ω

0
xT (s)Mx(s)ds 6

4Ω2

π2

∫Ω
0

(dx(s)
ds

)T
M
(dx(s)
ds

)
ds.

Lemma 2.5 ([4]). Let µ ∈ R and ρ ∈ R+ be a constants. If there is a function y(t) that meets the criteria

y(t) 6 µ+
∫t
b

ρy(s)ds, b 6 t 6 c,

then one has
y(t) 6 µeρ(t−b).

Lemma 2.6 ([39]). Let U,V,W be given matrices such that UT = U and VT = V > 0, then

U+WTV−1W < 0⇔
[
U WT

∗ −V

]
< 0 or

[
−V W

∗ U

]
< 0.

Definition 2.7 ([4]). An impulsive sequence $ = {t1, t2, . . .} is said to have average impulsive interval Tε
if there exist constants Tε > 0 and Nε ∈ Z+ such that

T − t

Tε
−Nε 6 N$(T , t) 6 Nε +

T − t

Tε
, ∀ T > t > 0,

where N$(T , t) is a number of impulsive times of $ = {t1, t2, . . .}.

Definition 2.8 ([15]). Given three constants κ1, κ2, and T with κ1 < κ2, the SNIRDSs (2.1) is called finite-
time stable (FTS) with respect to (κ1, κ2, T) if

E
{

sup
s∈[−σ,0]

||=(x, s)||2
}
6 κ1 ⇒ E||=(x, t)||2 < κ2,∀ t ∈ [0, T ].

Definition 2.9 ([54]). The SNIRDSs (2.1) is said to be stabilizable if there exist control gain matrices for
boundary feedback controller such that the SNIRDSs (2.1) is FTS with respect to given constants (κ1, κ2, T).

Remark 2.10. In this paper, we are interested in studying the dynamic characteristics of the SNIRDSs (2.1)
within a finite-time interval [0, T ]. Therefore, it is supposed that there exists a scalar N$(T , 0) ∈ Z+ such
that 0 < t1 < t2 < · · · < tN$(T ,0) 6 T .
Remark 2.11. In this paper, FTS condition is derived for the class of SNIRDSs (2.1), with the boundary
feedback controller is designed. Secondly, stabilization for the class of SNIRDSs (2.1), with the control gain
matrix is designed. In the analysis process, Lyapunov-function method and average impulsive interval
technique are used to achieve our main results.
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3. Main results

In this section, we obtain the FTS and stabilization for SNIRDSs (2.1) by using boundary feedback
controller. The boundary feedback controller is proposed as

u(t) = Φ

∫ 1

0
=(x, t)dx,

where Φ is a control gain matrix will be designed later.

Theorem 3.1. Let Tε be the average impulsive interval of $ = {t1, t2, . . .}. Under Assumptions (H1) and (H2), the
SNIRDSs (2.1) is said to be FTS with respect to given constants (κ1, κ2, T) if there exist constants Nε, ρ > 0, ε > 1
and symmetric positive definite matrices P,Q,R1,R2 such that the following LMIs holds:

(i) Π =

 Π11 Π12 Π13
∗ Π22 Π23
∗ ∗ Π33

 < 0, (3.1)

(ii) ΥTPΥ 6 εP, (3.2)

(iii)
κ1

λmin(P)
εNεe

(
In(ε)
Tε

+ρ

)
T
[
λmax(P) + e

ρσλmax(Q)
]
< κ2, (3.3)

where

Π11 = He(PA+DPΦ) +Q+PR−1
1 P+α1R1 +PR−1

2 P+ λmax(P)β1 − ρP, Π12 = −ΦTPTDT ,

Π13 = PB, Π22 = −
1
2
π2PD, Π23 = 0, Π33 = −eρσQ+α2R2 + λmax(P)β2.

Proof. Let us construct the following Lyapunov-Krasovskii functional (LKF) candidate,

V(t, =(x, t)) =
2∑
p=1

Vp(t, =(x, t)),

where

V1(t, =(x, t)) =
∫ 1

0
=T (x, t)P=(x, t)dx, V2(t, =(x, t)) =

∫ 1

0

∫t
t−σ

eρ(t−s)=T (x, s)Q=(x, s)dsdx.

For t ∈ [tk, tk+1),k ∈ N, calculating LV(t, =(x, t)) along the trajectories of SNIRDSs (2.1) by Ito’s differ-
ential formula, we get

LV(t, =(x, t)) = LV1(t, =(x, t)) +LV2(t, =(x, t)). (3.4)

Further, we have

LV1(t, =(x, t)) = 2
∫ 1

0
=T (x, t)P

[
D
∂2=(x, t)
∂x2 +A=(x, t) +B=(x, t− σ) + f(t, =(x, t)) + g(t, =(x, t− σ))

]
dx

+

∫ 1

0
trace

[
hT (t)Ph(t)

]
dx− ρ

∫ 1

0
=T (x, t)P=(x, t)dx+ ρV1(t, =(x, t)),

(3.5)

where h(t) = h(t, =(x, t), =(x, t− σ)),

LV2(t, =(x, t)) = ρ
∫ 1

0

∫t
t−σ

eρ(t−s)=T (x, s)Q=(x, s)dsdx+
∫ 1

0
=T (x, t)Q=(x, t)dx

− eρσ
∫ 1

0
=T (x, t− σ)Q=(x, t− σ)dx

6 ρV2(t, =(x, t)) +
∫ 1

0
=T (x, t)Q=(x, t)dx− eρσ

∫ 1

0
=T (x, t− σ)Q=(x, t− σ)dx.

(3.6)
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Based on Lemma 2.3 and Assumption (H1), we have

2=T (x, t)Pf(t, =(x, t)) 6 =T (x, t)PR−1
1 P=(x, t) + fT (t, =(x, t))R1f(t, =(x, t))

6 =T (x, t)PR−1
1 P=(x, t) + =T (x, t)α1R1=(x, t),

(3.7)

similarly

2=T (x, t)Pg(t, =(x, t− σ)) 6 =T (x, t)PR−1
2 P=(x, t) + =T (x, t− σ)α2R2=(x, t− σ). (3.8)

Based on Assumption (H2), we get

trace
[
ρT (t)Pρ(t)

]
6 λmax(P)

[
β1=

T (x, t)=(x, t) +β2=
T (x, t− σ)=(x, t− σ)

]
. (3.9)

By using integration by parts and Neumann boundary condition (2.2), we obtain that∫ 1

0
=T (x, t)D

∂2=(x, t)
∂x2 dx =

[
=T (x, t)D

∂=(x, t)
∂x

]x=1

x=0
−

∫ 1

0

∂=T (x, t)
∂x

D
∂=(x, t)
∂x

dx

=

∫ 1

0
=T (1, t)DΦ=(x, t)dx−

∫ 1

0

∂=T (x, t)
∂x

D
∂=(x, t)
∂x

dx.
(3.10)

To obtain =̄(x, t) = 0, create a new state variable =̄(x, t) = =(x, t) − =(1, t) that satisfies the following
condition,

∂=T (x, t)
∂x

D
∂=(x, t)
∂x

=
∂=̄T (x, t)
∂x

D
∂=̄(x, t)
∂x

. (3.11)

Applying Lemma 2.4, we have∫ 1

0
=T (x, t)D

∂2=(x, t)
∂x2 dx 6

∫ 1

0
=T (1, t)DΦ=(x, t)dx−

1
4
π2
∫ 1

0
=̄T (x, t)D=̄(x, t)dx

6
∫ 1

0
=T (x, t)DΦ=(x, t)dx−

∫ 1

0
=̄T (x, t)DΦ=(x, t)dx−

1
4
π2
∫ 1

0
=̄T (x, t)D=̄(x, t)dx.

(3.12)

Combining the inequalities (3.4)-(3.12), we get

LV(t, =(x, t)) 6
∫ 1

0
ξT (x, t)Πξ(x, t)dx+ ρV(t, =(x, t)),

where
ξ(x, t) =

[
=T (x, t) =̄T (x, t) =T (x, t− σ)

]T
.

Based on the inequality (3.1), we get

LV(t, =(x, t)) 6 ρV(t, =(x, t)).

Then by taking mathematical expectations on both sides, we have

D+EV(t, =(x, t)) = ELV(t, =(x, t)) 6 ρV(t, =(x, t)).

Integrating on both sides from tk to t and using Lemma 2.5, we have

EV(t, =(x, t)) 6 EV(tk, =(x, tk)) + ρ
∫t
tk

EV(s, =(x, s))ds 6 Eeρ(t−tk)EV(tk, =(x, tk)).

Besides, for any k ∈ {1, 2, . . . , tN$(T ,0)}, it follows from inequality (3.2) that,

V1(tk, =(x, tk)) =
∫ 1

0
=T (x, tk)P=(x, tk)dx =

∫ 1

0
=T (x, t−k )Υ

TPΥ=(x, t−k )dx 6 εV1(tk, =(x, t−k )). (3.13)

Note that V2(t, =(x, t)) is continuous on t, then we have
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V2(tk, =(x, tk)) = V2(t
−
k , =(x, t−k )) 6 εV2(t

−
k , =(x, t−k )). (3.14)

Combining the inequalities (3.13) and (3.14), we have

V(tk, =(x, tk)) 6 εV(t−k , =(x, t−k )).

By using iterative operation, when t ∈ [tk, tk+1),

EV(t, =(x, t)) 6 eρ(t−tk)EV(tk, =(x, tk))

6 εeρ(t−tk)EV(t−k , =(x, t−k ))
...

6 εkeρ(t−t0)EV(t0, =(x, t0)),

and also we obtain for t ∈ [tN$(T ,0), T ],

EV(t, =(x, t)) 6 eρ(t−tN$(T ,0))EV(tN$(T ,0), =(x, tN$(T ,0)))

6 εeρ(t−tN$(T ,0))EV(tN$(T ,0), =(x, tN$(T ,0)))

...

6 εN$(T ,0)eρTEV(t0, =(x, t0)).

Let N$[T , 0) be the impulsive time of $ on [0, T). According to Definition 2.7, for ε > 1, we get

EV(t, =(x, t)) 6 εN$(T ,0)eρTEV(t0, =(x, t0))

6 ε(
T−0
Tε

+Nε)eρTEV(t0, =(x, t0)) 6 ε
Nεe(

In(ε)
Tε

+ρ)TEV(t0, =(x, t0)).
(3.15)

From the definition of V(t, =(x, t)), we obtain that

EV1(t0, =(x, t0)) 6 λmax(P)E
{

sup
s∈[−σ,0]

‖=(x, s)‖2
}

, (3.16)

EV2(t0, =(x, t0)) 6 e
ρσλmax(Q)E

{
sup

s∈[−σ,0]
‖=(x, s)‖2

}
. (3.17)

From the inequalities (3.16) and (3.17), we have

EV(t0, =(x, t0)) 6
[
λmax(P) + e

ρσλmax(Q)
]
E
{

sup
s∈[−σ,0]

‖=(x, s)‖2
}

. (3.18)

Also, we have

EV(t, =(x, t)) > λmin(P)E
{ ∫ 1

0
=T (x, t)=(x, t)dx

}
= λmin(P)E‖=(x, t)‖2. (3.19)

Combining the inequalities (3.15), (3.18), and (3.19), we have

E‖=(x, t)‖2 6
1

λmin(P)
εNεe

(
In(ε)
Tε

+ρ

)
T
[
λmax(P) + e

ρσλmax(Q)
]
E
{

sup
s∈[−σ,0]

‖=(x, s)‖2
}

, ∀ t ∈ [0, T ].

Considering the inequality (3.3), when the following initial condition holds:

E
{

sup
s∈[−σ,0]

‖=(x, s)‖2
}
< κ1,

it implies immediately that E‖=(x, t)‖2 < κ2, ∀ t ∈ [0, T ]. According to the Definition 2.8, the SNIRDSs
(2.1) is FTS with respect to constants (κ1, κ2, T). The proof is completed.



V. Gokulakrishnan, R. Srinivasan, J. Math. Computer Sci., 28 (2023), 350–362 356

The next theorem states that the control gain matrix can be designed to obtain the stabilization for
SNIRDSs (2.1).

Theorem 3.2. Let Tε be the average impulsive interval of $ = {t1, t2, . . .}. Under Assumptions (H1) and (H2),
the SNIRDSs (2.1) is stabilizable if there exist constants Nε, ρ > 0, ε > 1, symmetric positive definite matrices
P,Q,R1,R2 and constant matrix Ψ such that (3.3) holds, and

(iv)
[
−εP ΥTP

∗ −P

]
6 0, (3.20)

(v) Ξ =


Ξ11 Ξ12 Ξ13 Ξ14 Ξ15
∗ Ξ22 Ξ23 Ξ24 Ξ25
∗ ∗ Ξ33 Ξ34 Ξ35
∗ ∗ ∗ Ξ44 Ξ45
∗ ∗ ∗ ∗ Ξ55

 < 0, (3.21)

where

Ξ11 = He(PA+DΨ) +Q+α1R1 + λmax(P)β1 − ρP, Ξ12 = P, Ξ13 = P,

Ξ14 = −ΨTDT , Ξ15 = PB, Ξ22 = −R1, Ξ23 = 0, Ξ24 = 0, Ξ25 = 0, Ξ33 = −R2,

Ξ34 = 0, Ξ35 = 0, Ξ44 = −
1
2
π2PD, Ξ45 = 0, Ξ55 = −eρσQ+α2R2 + λmax(P)β2,

are satisfied. Furthermore, the control gain matrix is designed by

(vi) Φ = ΨP−1. (3.22)

Proof. Clearly, the proof of the Theorem 3.2 follows from Lemma 2.6 and Theorem 3.1.

Remark 3.3. The impulsive control approach was utilized to stabilize the RDSs [37–39, 49] and the bound-
ary control technique was also utilized to stabilize the RDSs [9, 15, 16, 22, 23, 51, 52]. To best of our
knowledge, there are few works that investigate the FTS and stabilization of SNIRDSs with time delays
and the boundary feedback control. That is the issue we addressed in this paper.

Remark 3.4. The obtained results in this paper extended and improved the results in [15]. In [15], the
author discussed the FTS for SRDSs with boundary control. In this paper, we discussed the FTS for
SNIRDSs with time delays and boundary feedback control.

Remark 3.5. In [22, 49, 51, 52], the authors obtained the FTS and stabilization of RDSs without stochastic
terms. In fact, noise presented a fundamental issue in the transmission of information impacting all
facets of the neuron systems operating within the neuron systems. It is worth noting that, introduction of
stochastic terms into the systems, it is suitable to addressing a practical situations.

Remark 3.6. In this paper, Theorem 3.2 presents a sufficient condition to guarantee the stabilization for
a class of SNIRDSs with time delays and boundary feedback control. In [15, 23, 51, 52], the authors
investigated the stabilization for a class of RDSs. It’s a pity that the impulsive effects are not considered.
Thus, our results are improved than those reported in [15, 23, 51, 52].

Remark 3.7. In this paper, we investigated the FTS and stabilization for a class of SNIRDSs with time
delays and boundary feedback control. In [11–14, 29, 30, 45], the authors discussed the stability analysis
for neural networks and complex dynamical networks. It’s a pity that the reaction-diffusion terms are not
considered. Thus, our results are improved than those reported in [11–14, 29, 30, 45].

Remark 3.8. In [15, 23, 51, 52], the authors discussed the FTS and stabilization for RDSs by using boundary
control. However, for the FTS and stabilization of SNIRDSs with time delays and boundary feedback
control related results have not been found in previous works. To shorten this gap, we discussed the FTS
and stabilization for SNIRDSs with time delays via boundary feedback control.
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Remark 3.9. From SNIRDSs (2.1), the impulsive effects can be ignored. Then, the SNIRDSs (2.1) can be
rewritten as:

d=(x, t) =
[
D
∂2=(x, t)
∂x2 +A=(x, t) +B=(x, t− σ) + f(t, =(x, t)) + g(t, =(x, t− σ))

]
dt

+ h(t, =(x, t), =(x, t− σ))dω(t).

The following corollary states that the control gain matrix can be designed to obtain the stabilization
for SNIRDSs (2.1) without impulsive effects.

Corollary 3.10. Let Tε be the average impulsive interval of $ = {t1, t2, . . .}. Under Assumptions (H1) and (H2),
the SNIRDSs (2.1) without impulsive effects is stabilizable if there exist constant ρ > 0, symmetric positive definite
matrices P,Q,R1,R2 and constant matrix Ψ such that (3.21) holds, and

(vii)
κ1e

ρT

λmin(P)

[
λmax(P) + e

ρσλmax(Q)
]
< κ2,

are satisfied. Moreover, the control gain matrix is designed by (3.22).

Remark 3.11. From Neumann boundary condition (2.2), let the boundary feedback control u(t) = 0. Then,
the Neumann boundary condition (2.2) can be rewritten as:

∂=(x, t)
∂x

|x=0 = 0,
∂=(x, t)
∂x

|x=1 = 0.

The next corollary is to investigate the FTS for SNIRDSs (2.1) without boundary feedback control.

Corollary 3.12. Let Tε be the average impulsive interval of $ = {t1, t2, . . .}. Under Assumptions (H1) and (H2),
the SNIRDSs (2.1) without boundary feedback control is said to be FTS with respect to given constants (κ1, κ2, T)
if there exist constants Nε, ρ > 0, ε > 1 and symmetric positive definite matrices P,Q,R1,R2 such that (3.3) and
(3.20) hold, and

(viii) Γ =


Γ11 Γ12 Γ13 Γ14 Γ15
∗ Γ22 Γ23 Γ24 Γ25
∗ ∗ Γ33 Γ34 Γ35
∗ ∗ ∗ Γ44 Γ45
∗ ∗ ∗ ∗ Γ55

 < 0,

where

Γ11 = He(PA) +Q+α1R1 + λmax(P)β1 − ρP, Γ12 = P, Γ13 = P, Γ14 = 0,
Γ15 = PB, Γ22 = −R1, Γ23 = 0, Γ24 = 0, Γ25 = 0, Γ33 = −R2, Γ34 = 0,

Γ35 = 0, Γ44 = −
1
2
π2PD, Γ45 = 0, Γ55 = −eρσQ+α2R2 + λmax(P)β2,

are satisfied.

4. Numerical example

In this section, numerical example is given to illustrate the our boundary feedback controller and
impulsive phenomenon are effective.

Consider the following 2-dimensional SNIRDSs with time delays and boundary feedback control
d=(x, t) =

[
D
∂2=(x,t)
∂x2 +A=(x, t) +B=(x, t− 0.5) + f(t, =(x, t)) + g(t, =(x, t− 0.5))

]
dt

+h(t, =(x, t), =(x, t− 0.5))dω(t), t 6= tk,
=(x, tk) = Υ=(x, t−k ), t = tk, k ∈N,

(4.1)
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where

D =

[
0.3 0
0 0.3

]
, A =

[
0.1 −0.1
0.2 0.1

]
, B =

[
0.2 −0.2
0.5 0.1

]
, Υ =

[
1.0 0
0 1.0

]
,

f(t, =(x, t)) = 0.1(1 + sin(t))=(x, t),
g(t, =(x, t− 0.5)) = 0.1(1 + cos(t))=(x, t− 0.5),

h(t, =(x, t), =(x, t− 0.5)) = 0.2=(x, t) + 0.5=(x, t− 0.5).

The initial and Neumann boundary conditions of SNIRDSs (4.1) are{
=1(x, s) = 0.01(1 − sin(0.5πx))In(50(s− 0.5)),
=2(x, s) = 0.01(1 − cos(0.5πx))In(50(s− 0.5)),

and
∂=(x, t)
∂x

|x=0 = 0,
∂=(x, t)
∂x

|x=1 = u(t).

The boundary feedback controller is

u(t) = Φ

∫ 1

0
=(x, t)dx.
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Figure 1: Trajectories for system (4.1) without boundary feedback control.
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To stabilize the SNIRDSs (4.1), let, ρ = 2.1, Tε = 0.3, Nε = 5, ε = 1, κ1 = 1, κ2 = 5, and T = 10.
Solving the LMIs in Theorem 3.2 by Matlab LMI toolbox, we obtain the following feasible solutions as:

P = 10−4 ×
[

0.5539 −0.0029
−0.0029 0.6013

]
, Q = 10−4 ×

[
−0.2030 0.0010
0.0010 −0.2196

]
,

R1 =

[
0.0258 −0.0002
−0.0002 0.0260

]
, R2 =

[
0.0059 0.0000
0.0000 0.0057

]
,

Ψ = 10−3 ×
[
−0.9197 0.0028
0.0028 −0.9393

]
, Φ =

[
−16.6057 −0.0329
−0.0305 −15.6207

]
.

Therefore, based on Theorem 3.2, the SNIRDSs (4.1) is FTS with respect to constants (κ1, κ2, T).

Remark 4.1. Under boundary feedback controller and impulsive phenomenon, the systems =q(x, t)(q =
1, 2) are shown in Figures 2 and 4, and we see that they achieve stabilization for SNIRDSs (4.1). To
show the efficiency of boundary feedback controller and impulsive phenomenon, consider u(t) = 0 and
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=(x, tk) = 0, that is, SNIRDSs (4.1) has no boundary feedback controller and impulsive effects. Figures
1 and 3 are display the systems =q(x, t)(q = 1, 2), which means that, no boundary feedback controller
and impulsive effects, system (4.1) does not realize the FTS. This illustrates that the boundary feedback
controller and impulsive phenomenon are effective.

5. Conclusions

In this paper, boundary feedback controller on stabilization of SNIRDSs with time delays are dis-
cussed. By utilizing LKF, Wirtinger’s inequality, Gronwall inequality, average impulsive interval ap-
proach, and LMIs, sufficient conditions are obtained to ensure the FTS for SNIRDSs. Furthermore, the
control gain matrices are designed for the boundary feedback controller with delay-dependent results for
stabilization of proposed systems. At last, numerical example is given to show that the efficiency and
superiority of obtained theoretical results. Our future study will focus on the stabilization problems for
fractional-order SNIRDSs using boundary feedback controller.
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