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Abstract
A non-autonomous discrete commensal symbiosis model with Beddington-DeAngelis functional response is proposed and

studied in this paper. Sufficient conditions are obtained for the existence of positive periodic solution of the system.
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1. Introduction

In the past decade, numerous works ([6, 13, 14, 31, 32, 37–39]) on the mutualism model has been
published and many excellent works concerned with the persistence, existence of positive periodic so-
lution, and stability of the system were obtained. However, only recently did scholars paid attention to
the commensal symbiosis model, an interaction in which one population obtains benefits while the other
population is neither benefited nor harmed ([1, 2, 4, 5, 7, 8, 11, 12, 15–30, 33–36, 41, 42]).

Though there are numerous works on commensalism model, most of them were focus on the continu-
ous case, and to this day, there are only few works on discrete commensalism model (see[5, 20, 25, 33–35]).
It is well known that the discrete time models governed by difference equations are more appropriate than
the continuous ones when the populations have non-overlapping generations.

In 2015, Xue et al. [34] first time proposed a discrete commensalism model

x1(k+ 1) = x1(k) exp
{
r1

(
1 −

x(k)

K1
+
αy(k)

K1

)}
, x2(k+ 1) = x2(k) exp

{
r2

(
1 −

y(k)

K2

)}
. (1.1)

They investigated the local and global stability property of the system. Xie et al. [33] proposed the
following discrete commensal symbiosis model

x1(k+ 1) = x1(k) exp
{
a1(k) − b1(k)x1(k) + c1(k)x2(k)

}
, x2(k+ 1) = x2(k) exp

{
a2(k) − b2(k)x2(k)

}
.
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Under the assumption that {bi(k)}, i = 1, 2, {c1(k)} are all positive ω-periodic sequences, ω is a fixed

positive integer, {ai(k)} are ω-periodic sequences, which satisfies ai = 1
ω

ω−1∑
k=0

ai(k) > 0, i = 1, 2. They

investigated the positive periodic solution of the system. Li et al. [20] argued that a suitable relationship
between two species should be a nonlinear one. They adopt the Holling II functional response to system
(1.1), and proposed the following two species discrete commensal symbiosis model

x1(k+ 1) = x1(k) exp
{
a1(k) − b1(k)x1(k) +

c1(k)x2(k)

e1(k) + f1(k)x2(k)

}
,

x2(k+ 1) = x2(k) exp
{
a2(k) − b2(k)x2(k)

}
.

(1.2)

The authors of [20] also obtained a set of sufficient conditions which ensure the existence of the positive
periodic solution of the system.

It brings to our attention that in system (1.2), the functional response takes the form

c1(k)x2(k)

e1(k) + f1(k)x2(k)
,

which is independent of the first species. Such an assumption seems curiously since generally speaking,
in the process of obtain the benefit from the second species, mutual interference between the first species
will be happen and this reduce the overall benefit from the second species.

Now, if we introduce the Beddington-DeAngelis functional response [3, 11, 21, 40] to two species
commensalism model, we can propose the following model

x1(k+ 1) = x1(k) exp
{
a1(k) − b1(k)x1(k) +

c1(k)x2(k)

e1(k) + f1(k)x2(k) + f2(k)x1(k)

}
,

x2(k+ 1) = x2(k) exp
{
a2(k) − b2(k)x2(k)

}
,

(1.3)

where {bi(k)}, {fi(k)}, i = 1, 2, {c1(k)}{e1(k)} are all positive ω-periodic sequences, ω is a fixed positive

integer, {ai(k)} are ω-periodic sequences, which satisfies ai = 1
ω

ω−1∑
k=0

ai(k) > 0, i = 1, 2. x(k) and y(k)

represent the densities of the first and second species of k-generation, respectively. We assume that
the coefficients of the system (1.3) are all periodic sequences with a common integer period. Such an
assumption seems reasonable in view of seasonal factors, e.g., mating habits, availability of food, weather
conditions, harvesting, and hunting, etc. Here, in model (1.3), the second species has positive effect on
the first species, which obeys the Beddington-DeAngelis type functional response, i.e.,

c1(k)x2(k)

e1(k) + f1(k)x2(k) + f2(k)x1(k)
.

The Beddington-DeAngelis functional response is similar to the Holling type II functional response in sys-
tem (1.2) but has an extra term f2(k)x1(k) in the denominator which models mutual interference between
the first species. We argued that in general, the intra-competition among the first species may reduce the
influence of the second species, so the functional response in commensalism models must be both species
involved, which means the Beddington-DeAngelis type functional response is more reasonable.

The aim of this paper is to obtain a set of sufficient conditions which ensure the existence of positive
periodic solution of system (1.2). To the best of our knowledge, this is the first time that such kind of
commensal symbiosis model is proposed and studied.

2. Main result

In the proof of our existence theorem below, we will use the continuation theorem of Gaines and
Mawhin ([10]).
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Lemma 2.1 (Continuation theorem). Let L be a Fredholm mapping of index zero and let N be L-compact on Ω̄.
Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x 6∈ ∂Ω;
(b) QNx 6= 0 for each x ∈ ∂Ω∩Ker(L) and

deg{JQN,Ω∩Ker(L), 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in Dom(L)∩ Ω̄.

Let Z,Z+,R, and R+ denote the sets of all integers, nonnegative integers, real unumbers, and nonneg-
ative real numbers, respectively. For convenience, in the following discussion, we will use the notation
below throughout this paper:

Iω = {0, 1, . . . ,ω− 1}, g =
1
ω

ω−1∑
k=0

g(k), gu = max
k∈Iω

g(k), gl = min
k∈Iω

g(k),

where {g(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.

Lemma 2.2 ([9]). Let g : Z → R be ω-periodic, i.e., g(k+ω) = g(k). Then for any fixed k1,k2 ∈ Iω, and any
k ∈ Z, one has

g(k) 6 g(k1) +

ω−1∑
s=0

|g(s+ 1) − g(s)|, g(k) > g(k2) −

ω−1∑
s=0

|g(s+ 1) − g(s)|.

Lemma 2.3. The system of algebraic equations

ā1 − b̄1x1 +
c̄1x2

ē1 + f̄1x2 + f̄2x1
= 0, ā2 − b̄2x2 = 0 (2.1)

has a unique positive solution (x∗1 , x∗2) ∈ R
+
2 , where

x∗1 =
−A2 +

√
A2

2 − 4A1A3

2A1
, x∗2 =

ā2

b̄2
,

A1 = b1b2f2 > 0,
A2 = −a1b2f2 + a2b1f1 + b1b2e1,
A3 = −a1f1a2 − a1e1b2 − c1a2 < 0.

(2.2)

Proof. From the second equation of (2.1), it immediately follows that

x2 =
ā2

b̄2
. (2.3)

Substituting (2.3) into the first equation of (2.1) and simplify, we finally obtain

A1x
2
1 +A2x1 +A3 = 0, (2.4)

where A1,A2, and A3 are defined as in (2.2), since A1 > 0, A3 < 0, it immediately follows that the
equation (2.4) has a unique positive solution x∗1 . Consequently, system (2.1) has a unique positive solution
(x∗1 , x∗2) ∈ R

+
2 . This ends the proof of Lemma 2.3.

We now reach the position to establish our main result.

Theorem 2.4. System (1.3) admits at least one positive ω-periodic solution.
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Proof. Let
xi(k) = exp{ui(k)}, i = 1, 2,

so that system (1.3) becomes

u1(k+ 1) − u1(k) = a1(k) − b1(k) exp{u1(k)}+
c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}
,

u2(k+ 1) − u2(k) = a2(k) − b2(k) exp{u2(k)}.

Define

l2 =

{
y =
{
y(k)
}

,y(k) = (y1(k),y2(k))
T ∈ R2

}
.

For a = (a1,a2)
T ∈ R2, define |a| = max{|a1|, |a2|}. Let lω ⊂ l2 denote the subspace of all ω sequences

equipped with the usual normal form ‖y‖ = max
k∈Iω

|y(k)|. It is not difficult to show that lω is a finite-

dimensional Banach space. Let

lω0 = {y = {y(k)} ∈ lω :

ω−1∑
k=0

y(k) = 0}, lωc = {y = {y(k)} ∈ lω : y(k) = h ∈ R2,k ∈ Z},

then lω0 and lωc are both closed linear subspace of lω, and

lω = lω0 ⊕ lωc , dim(lωc ) = 2.

Now let us define X = Y = lω, (Ly)(k) = y(k+ 1) − y(k). It is trivial to see that L is a bounded linear
operator and

ker(L) = lωc , Im(L) = lω0 , dim Ker(L) = 2 = CodimIm(L).

Then it follows that L is a Fredholm mapping of index zero. Let

N(u1,u2)
T = (N1,N2)

T := N(u,k),

where

N1 = a1(k) − b1(k) exp{u1(k)}+
c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}
,

N2 = a2(k) − b2(k) exp{u2(k)},

Px =
1
ω

ω−1∑
s=0

x(s), x ∈ X, Qy =
1
ω

ω−1∑
s=0

y(s),y ∈ Y.

It is not difficult to show that P and Q are two continuous projectors such that

Im(P) = Ker(L) and Im(L) = Ker(Q) = Im(I−Q).

Furthermore, the generalized inverse (to L) Kp: ImL→KerP∩DomL exists and is given by

Kp(z) =

k−1∑
s=0

z(s) −
1
ω

ω−1∑
s=0

(ω− s)z(s).

Thus

QNx =
1
ω

ω−1∑
k=0

N(x,k), Kp(I−Q)Nx =

k−1∑
s=0

N(x, s) +
1
ω

ω−1∑
s=0

sN(x, s) −
( k
ω

+
ω− 1

2ω

)ω−1∑
s=0

N(x, s).
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Obviously, QN and Kp(I−Q)N are continuous. Since X is a finite-dimensional Banach space, it is not
difficult to show that Kp(I−Q)N(Ω) is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω)
is bounded. Thus, N is L-compact on any open bounded set Ω ⊂ X. The isomorphism J of Im(Q) onto
Ker(L) can be the identity mapping, since Im(Q)=Ker(L).

Now we are at the point to search for an appropriate open, bounded subset Ω in X for the application
of the continuation theorem. Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have

u1(k+ 1) − u1(k) = λ
[
a1(k) − b1(k) exp{u1(k)}+

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}

]
,

u2(k+ 1) − u2(k) = λ[a2(k) − b2(k) exp{u2(k)}].
(2.5)

Suppose that y = (y1(k),y2(k))
T ∈ X is an arbitrary solution of system (2.5) for a certain λ ∈ (0, 1).

Summing on both sides of (2.5) from 0 to ω− 1 with respect to k, we reach

ω−1∑
k=0

[
a1(k) − b1(k) exp{u1(k)}+

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}

]
= 0,

ω−1∑
k=0

[a2(k) − b2(k) exp{u2(k)}] = 0.

That is,

ω−1∑
k=0

b1(k) exp{u1(k)} = ā1ω+

ω−1∑
k=0

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}
, (2.6)

ω−1∑
k=0

b2(k) exp{u2(k)} = ā2ω. (2.7)

From (2.6) and (2.7), we have

ω−1∑
k=0

|u1(k+ 1) − u1(k)| = λ

ω−1∑
k=0

∣∣∣a1(k) − b1(k) exp{u1(k)}+
c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}

∣∣∣
6
ω−1∑
k=0

|a1(k)|+

ω−1∑
k=0

(
b1(k) exp{u1(k)}+

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}

)

=

ω−1∑
k=0

|a1(k)|+ ā1ω+ 2
ω−1∑
k=0

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}

= (Ā1 + ā1)ω+ 2
ω−1∑
k=0

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}
(2.8)

6 (Ā1 + ā1)ω+ 2
ω−1∑
k=0

c1(k)

f1(k)
= (Ā1 + ā1)ω+ 2

(c1

f1

)
ω,

ω−1∑
k=0

|u2(k+ 1) − u2(k)| = λ

ω−1∑
k=0

|a2(k) − b2(k) exp{u2(k)}|

6
ω−1∑
k=0

|a2(k)|+

ω−1∑
k=0

b2(k) exp{u2(k)} 6
ω−1∑
k=0

|a2(k)|+ ā2ω 6 (Ā2 + ā2)ω.

where Ā1 = 1
ω

ω−1∑
k=0

|a1(k)|, Ā2 = 1
ω

ω−1∑
k=0

|a2(k)|,
(
c1
f1

)
= 1
ω

ω−1∑
k=0

c1(k)
f1(k)

.
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Since {u(k)} = {(u1(k),u2(k))
T } ∈ X, there exist ηi, δi, i = 1, 2 such that

ui(ηi) = min
k∈Iω

ui(k), ui(δi) = max
k∈Iω

ui(k).

By (2.7), we have

exp{u2(η2)}

ω−1∑
k=0

b2(k) 6 ā2ω.

So
u2(η2) 6 ln

ā2

b̄2
. (2.9)

It follows from Lemma 2.2, (2.8), and (2.9) that

u2(k) 6 u2(η2) +

ω−1∑
k=0

|u2(k+ 1) − u2(k)| 6 ln
ā2

b̄2
+ (Ā2 + ā2)ω, (2.10)

from (2.7) we also have

exp{u2(δ2)}

ω−1∑
k=0

b2(k) > ā2ω,

and so
u2(δ2) > ln

ā2

b̄2
. (2.11)

It follows from Lemma 2.2, (2.8), and (2.11) that

u2(k) > u2(δ2) −

ω−1∑
k=0

|u2(k+ 1) − u2(k)| > ln
ā2

b̄2
− (Ā2 + ā2)ω,

which together with (2.10) leads to

|u2(k)| 6 max
{
| ln

ā2

b̄2
+ (Ā2 + ā2)ω|, | ln

ā2

b̄2
− (Ā2 + ā2)ω|

}
def
= H2.

It follows from (2.6) that

ω−1∑
k=0

b1(k) exp{u1(η1)} = ā1ω+

ω−1∑
k=0

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}

6 ā1ω+

ω−1∑
k=0

c1(k)

f1(k)
= ā1ω+

(c1

f1

)
ω,

and so,

u1(η1) 6 ln
∆1

b1
, (2.12)

where
∆1 = ā1 +

(c1

f1

)
.

It follows from Lemma 2.2, (2.8), and (2.12) that

u1(k) 6 u1(η1) +

ω−1∑
k=0

|u1(k+ 1) − u1(k)| 6 ln
∆1

b1
+ (Ā1 + ā1)ω+ 2

(c1

f1

)
ω

def
= M1. (2.13)
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It follows from (2.6) that
ω−1∑
k=0

b1(k) exp{u1(δ1)} = ā1ω+

ω−1∑
k=0

c1(k) exp{u2(k)}

e1(k) + f1(k) exp{u2(k)}+ f2(k) exp{u1(k)}
> ā1ω,

and so,
u1(δ1) > ln

ā1

b1
. (2.14)

It follows from Lemma 2.2, (2.8), and (2.14) that

u1(k) > u1(δ1) −

ω−1∑
k=0

|u1(k+ 1) − u1(k)| > ln
ā1

b1
− (Ā1 + ā1)ω− 2

(c1

f1

)
ω

def
= M2. (2.15)

It follows from (2.13) and (2.15) that

|u1(k)| 6 max
{
|M1|, |M2|

}
def
= H1.

Clearly, H1 and H2 are independent on the choice of λ. Already, in Lemma 2.3, we had showed that the
system of algebraic equations

ā1 − b̄1x1 +
c̄1x2

ē1 + f̄1x2 + f̄2x1
= 0, ā2 − b̄2x2 = 0

has a unique positive solution (x∗1 , x∗2) ∈ R
+
2 .

Let H = H1 +H2 +H3, where H3 > 0 is taken sufficiently enough large such that ||(ln{x∗1 }, ln{x∗2 })
T || =

| ln{x∗1 }|+ | ln{x∗2 }| < H3. Let H = H1 +H2 +H3, and define

Ω =
{
u(t) = (u1(k),u2(k))

T ∈ X : ‖u‖ < H
}

.

It is clear that Ω verifies requirement (a) in Lemma 2.1. When u ∈ ∂Ω ∩Ker(L) = ∂Ω ∩ R2, u is constant
vector in R2 with ||u|| = B. Then

QNu =

 ā1 − b̄1 exp{u1}+
c̄1 exp{u2}

ē1 + f̄1 exp{u2}+ f̄2 exp{u1}
ā2 − b̄2 exp{u2}

 6= 0.

Moreover, direct calculation shows that

deg{JQN,Ω∩Ker(L), 0} = sgn
(
Γ
)
= 1 6= 0,

where

Γ =
(
b̄1 +

c̄1f̄2 exp{u∗2 }
(f̄1 exp{u∗2 }+ f̄2 exp{u∗1 }+ ē1)2

)
b̄2 exp{u∗1 } exp{u∗2 },

where deg(.) is the Brouwer degree and the J is the identity mapping since Im(Q) = Ker(L).
By now we have proved that Ω verifies all the requirements in Lemma 2.1. Hence (2.1) has at least

one solution (u∗1(k),u
∗
2(k))

T in Dom(L) ∩ Ω̄. And so, system (1.3) admits a positive periodic solution
(x∗1(k), x

∗
2(k))

T , where x∗i (k) = exp{u∗i (k)}, i = 1, 2. This completes the proof of Theorem 2.4.

3. Numeric simulations

Now let us consider the following example.

Example 3.1.

x1(k+ 1) = x1(k) exp
{

1 − 2x1(k) −
(1 + 0.5 sin(πk))x2(k)

1 + x2(k) + f2(k)x1(k)

}
,

x2(k+ 1) = x2(k) exp
{

1 −
(
1 + 0.5 cos(πk+

π

3
)
)
x2(k)

}
.

(3.1)

Corresponding to system (1.3), here we choose a1(k) = 1,b1(k) = 2, c(k) = 1 + 0.5 sin(πk), e1(k) =
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1, f1(k) = 1, a2(k) = 1,b2(k) = 1 + 0.5 cos(πk + π
3 ). One could easily check that the condition of The-

orem 2.4 holds, and consequently, system (3.1) admits at least one positive 2-period solution. Now let us
choose f2(k) = 0.1, 10, and 100, respectively shown in Figures 1-3, numeric simulations also support this
assertion.

time n

0 2 4 6 8 10 12 14 16 18 20

so
lu

tio
n 

x1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 1: Dynamic behaviors of the first component x1 in system (3.1) with the initial
condition (x(0),y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5), and (2, 2), f2(k) = 0.1, respectively.

time n

0 5 10 15 20 25 30 35 40 45 50

so
lu

tio
n 

x1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2: Dynamic behaviors of the first component x1 in system (3.1) with the initial
condition (x(0),y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5), and (2, 2), f2(k) = 10, respectively.

time n

0 5 10 15 20 25 30 35 40 45 50

so
lu

tio
n 

x1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3: Dynamic behaviors of the first component x1 in system (3.1) with the initial
condition (x(0),y(0)) = (0.5, 0.5), (1, 1), (1.5, 1.5), and (2, 2), f2(k) = 100, respectively.

4. Discussion

In this paper, we propose a commensalism model with Beddington-DeAngelis functional response, we
argued that in the process of obtaining the benefit from the second species, mutual interference among
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the first species will happen and this reduces the overall benefit from the second species. Beddington-
DeAngelis functional response is a suitable way to describe this factor.

Theorem 2.4 shows that Beddington-DeAngelis functional response has no influence on the existence
of the positive periodic solution. However, numeric simulations (Figures 1-3) show that with the increas-
ing of mutual interference, the fluctuation of the first species will reduce. This could make the system
more observable and the amount of the species could be easy to control in appropriate quantities.
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