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Abstract

Drug abuse is now regarded as a global issue that brings severe consequences on the health, social well-being, and economy.
In this study, an illicit drugs model with saturated incidence rate and relapse of individuals who quit using drugs is proposed
and analyzed qualitatively. This study aims to determine the behavior of a drug epidemic when the psychological or inhibitory
effect and relapse are being considered as well as assist the policymakers in devising effective control measures. The basic
reproduction number R0 is derived and used as a threshold parameter in the global stability analysis. It is found that the
drug-free equilibrium is globally asymptotically stable when R0 6 1. This implies that we can eradicate a drug epidemic when
the threshold R0 is less than or equal to one, irrespective of the initial population size of drug users. On the other hand, the
drug persistent equilibrium is globally asymptotically stable when R0 > 1. This indicates that the phenomenon of drug use will
remain in a community when the threshold R0 is greater than one, irrespective of the initial population size of drug users. Next,
the sensitivity analysis is performed and the results show that the effective contact rate should be targeted to reduce its value.
The numerical simulations are also carried out to illustrate the analytical results and investigate the relationship between the
measure of psychological or inhibitory effect and the number of drug users.
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1. Introduction

The human usage of drugs or substances has existed since antiquity where they were used for three
main purposes, namely religious use, medicinal use, and recreational use [3]. At present, illicit drug
use remains a severe global threat that brings numerous health, social, and financial problems. Some
examples of common illicit drugs are heroin, methamphetamine, cocaine, cannabis, and opioids. In 2017,
it was estimated that 271 million individuals, or 5.5 percent of the world population aged 15-64, had
taken drugs in the previous year [24]. Over 2020, there were about 275 million people had used drugs,
which had increased by 22 percent compared to 2010 [25]. The number of drug users had been projected
to increase by 11 percent worldwide by 2030. Moreover, the number of drug-related deaths was between
0.5 and 1.3 percent of the total number of deaths for individuals aged 15-64 years throughout the world
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in 2012 [6]. Particularly, there were about 211000 drug-related deaths annually which mostly involve
juveniles. In 2019, drug use took about half a million lives and the drug users have a higher chance
to contract severe illnesses, such as HIV and Hepatitis C [25]. Economically, $471 billion of opioid use
disorder and $550 billion of fatal opioid overdose added up to a total of $1021 billion loss in 2017 owing
to opioid use [10]. In 2018, the annual drug-related cost in Alaska was estimated at $1055 million, where
the productivity loss costs $429 million (40.7%), traffic collision makes up $60 million (5.7%), criminal
justice & protective services account for $442 million (41.9%), health care constitutes $106 million (10%),
and public assistance & social services are composed of $18 million (1.7%) [13].

There were several previous studies regarding the general drug models. First of all, Kalula and
Nyabadza [7] proposed a substance abuse model which incorporates the core and non-core groups. The
core group contains the class of permanent quitters while the non-core group is the source of individ-
uals to the core group. A bilinear incidence rate was employed in this model. Besides, Njagarah and
Nyabadza [19] studied a drug model with amelioration (heavy drug users can revert to light drug use).
In this model, a standard incidence rate was adopted and the permanent quitting of drug users was as-
sumed. Furthermore, Mushayabasa and Tapedzesa [18] studied an illicit drugs model which includes the
class of mentally ill individuals. The bilinear incidence rate was employed and the permanent recovery
of detected illicit drug users was assumed in this study. Moreover, Ma et al. [11] proposed a drug model
which considers the role of media coverage on the transmission of drugs. Thus, the incidence rate of
this model contains an exponential decreasing factor that measures the impact of media coverage. In
this model, the individuals in treatment will become susceptible again after completing the treatment.
Besides general drug models, there were also previous studies regarding heroin models [16, 27], metham-
phetamine models [17, 20, 21], and synthetic drugs models [12, 22].

Note that the incidence rates of the aforementioned general drug models were assumed to be propor-
tional to the number of drug users. However, it is believed that the incidence rate is a bounded function
of the number of drug users. This is owing to the susceptible individuals will change their behavior after
noting many drug users experience the adverse effects of drug use. Moreover, a portion of susceptible
individuals is believed will not start taking drugs, even though contact with the drug users. In addition,
the number of contacts that can result in new drug users is limited when a community is crowded with
drug users. Thus, the saturated incidence rate [9, 29] will be adopted in the proposed model. On the
other hand, the aforementioned general drug models did not consider the relapse of individuals who
quit using drugs. Relapse is a common phenomenon where the relapse rate of individuals with drug
use disorders was between 40% and 60% [14]. Hence, the relapse of individuals who quit using drugs
will be considered in the proposed model. The main contributions of our study are: 1) the introduction
of saturated incidence rate and relapse of individuals who quit using drugs to an illicit drugs model; 2)
the qualitative analysis of the newly proposed illicit drugs model; 3) the sensitivity analysis of model
parameters on the initial spread of drug use.

There are several aims for conducting this study. The first aim is to formulate an illicit drugs model
with the saturated incidence rate and relapse of individuals who quit using drugs. Note that most illicit
drug users are aged 13 or above [15, 23], and so the formulated model in this paper is only applicable
to individuals who are at least 13 years old. Besides, we aim to establish sufficient conditions for the
eradication and persistence of the drug epidemic which incorporates the psychological or inhibitory effect
and relapse of individuals who quit using drugs. Moreover, we also aim to devise some effective control
measures that can control or eradicate the drug epidemic. Lastly, we aim to determine the impact of the
measure of psychological or inhibitory effect on the number of drug users.

This paper is organized as follows. In Section 2, an illicit drugs model with saturated incidence rate
and relapse of individuals who quit using drugs is formulated. Next, the basic reproduction number will
be given in Section 3. In Section 4, the existence of drug persistence equilibrium is shown. Then, the
local and global stabilities analysis will be performed in Sections 5 and 6, respectively. In Section 7, the
sensitivity analysis of the basic reproduction number is presented. Lastly, the numerical simulations will
be provided in Section 8.
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2. Mathematical modelling

2.1. Model formulation

A heterogeneous population of size N(t) is divided into the classes of susceptible individuals aged
above 13 S(t), drug users U(t), and individuals who quit using drugs Q(t). Hence, the total population
size at time t is given by

N(t) = S(t) +U(t) +Q(t)

For simplifying the notations, the functions of time S(t), U(t), Q(t), and N(t) are denoted as the variables
S, U, Q, and N, respectively. In order to have a manageable model, we make the following assumptions:

1. Homogeneous mixing where each individual has the same chance to contact other individuals.
2. The susceptible individuals start taking drugs via effective contact with drug users only.
3. The individuals who quit taking drugs relapse due to their own decisions.

Table 1: Description and dimensions of model parameters.
Parameter Description Dimension

Λ Recruitment rate of susceptible individuals Individuals ×Time−1

µ Natural death rate Time−1

c Average number of contacts per unit time Time−1

β̂ Probability that a contact results in a new drug user Dimensionless
β = cβ̂ Effective contact rate Time−1

k Measure of psychological or inhibitory effect Individuals−1

σ Drug-related death rate Time−1

α Recovery rate through abstinence Time−1

γ Recovery rate through treatment Time−1

η Relapse rate of individuals who quit using drugs Time−1

Like other models, the proposed model also contains several parameters which are shown in Table 1.
With the parameters in Table 1, the movements of individuals from one class to another are illustrated in
Figure 1.

Figure 1: Compartmental diagram of the proposed illicit drugs model.
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According to the assumptions, Table 1 and Figure 1, we have the following set of governing equations
which is a nonlinear system of ordinary differential equations:

dS

dt
= Λ−

βSU

1 + kU
− µS, (2.1)

dU

dt
=

βSU

1 + kU
−A1U+ ηQ, (2.2)

dQ

dt
= A2U−A3Q, (2.3)

where A1 = α+ γ+ σ+ µ, A2 = α+ γ, and A3 = η+ µ. Given β = 0.34 and k = 0.4 [5], the function
g(U) = βU/(1 + kU) is plotted in Figure 2. From Figure 2, we can observe that the curve of function
g(U) = βU/(1 + kU) increases and approaches the saturated level β/k = 0.85, when the number of drug
users U gets larger. Note that the qualitatively similar curves would also be obtained for different values
of β and k. Thus, function g(U) = βU/(1 + kU) is said to be bounded and monotonically increasing.
Accordingly, function Sg(U) = βSU/(1+ kU) is called the saturated incidence rate. It is worth noting that
βU represents the force of spread of drug use which is similar to the force of infection in epidemiology.
On the other hand, 1/(1+ kU) measures the psychological or inhibitory effect from the behavioral change
of susceptible individuals or from the crowding effect of drug users.

Figure 2: Graph of function g(U) = βU
1+kU .

2.2. Basic properties
It is crucial to note that all variables S, U, and Q of model (2.1)-(2.3) must be positive and bounded

since they represent various subpopulations.

2.2.1. Positivity of solutions
Lemma 2.1. If S(0) > 0, U(0) > 0, and Q(0) > 0, then variables S, U, and Q of model (2.1)-(2.3) are positive for
t > 0.

Proof. We first prove the positivity of variable S. From equation (2.1), we have

dS

dt
+

(
µ+

βU

1 + kU

)
S > 0. (2.4)

Multiplying inequality (2.4) with integrating factor exp(µt+
∫t

0
βU(s)

1+kU(s)ds), we have

d

dt

[
S exp

(
µt+

∫t
0

βU(s)

1 + kU(s)
ds

)]
> 0. (2.5)
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Changing the independent variable of inequality (2.5) from t to s and integrating it from s = 0 to s = t

gives ∫t
0

d

ds

[
S(s) exp

(
µs+

∫s
0

βU

1 + kU
dt

)]
ds > 0.

Thus, we obtain

S > S(0) exp
[
−

(
µt+

∫t
0

βU(s)

1 + kU(s)
ds

)]
> 0.

Similarly, the positivity of variables U and Q can be proved in the same way. So, variables S, U, and Q of
model (2.1)-(2.3) are positive for t > 0, given any non-negative initial conditions: S(0) > 0, U(0) > 0, and
Q(0) > 0.

2.2.2. Positively invariant region
Lemma 2.2. The region

ω =

{
(S,U,Q) ∈ R3

+| 0 6 N 6
Λ

µ

}
with non-negative initial conditions S(0) > 0, U(0) > 0, and Q(0) > 0, is positively invariant and attracting with
respect to model (2.1)-(2.3) for t > 0.

Proof. Adding equations (2.1)-(2.3) gives

dN

dt
= Λ− µN− σU.

Since σU > 0, we have
dN

dt
+ µN 6 Λ. (2.6)

Multiplying inequality (2.6) with integrating factor exp(µt) gives

d

dt
(N exp(µt)) 6 Λ exp(µt). (2.7)

Changing the independent variable of inequality (2.7) from t to s and integrating it from s = 0 to s = t,
we have ∫t

0

d

ds
[N(s) exp(µs)]ds 6

∫t
0
Λ exp(µs)ds.

After some algebraic manipulations and given Lemma 2.1, we obtain

0 6 N 6
Λ

µ
+

[
N(0) −

Λ

µ

]
exp(−µt). (2.8)

As t→∞, inequality (2.8) becomes

0 6 N 6
Λ

µ
.

If N(0) 6 Λ/µ, then we have limt→∞N = Λ/µ. This indicates the upper bound of total population size
N is Λ/µ. Whereas, if N(0) > Λ/µ, then N will decrease to Λ/µ as t → ∞. This indicates the solution
(S,U,Q) of model (2.1)-(2.3) will enter or approach region ω =

{
(S,U,Q) ∈ R3

+| 0 6 N 6 Λ/µ
}

over time.
As a result, region ω is positively invariant and attracting with respect to model (2.1)-(2.3) for t > 0.
Therefore, model (2.1)-(2.3) is said to be mathematically and epidemiologically well-posed in region ω.
Accordingly, it is sufficient to study the dynamics of solutions of model (2.1)-(2.3) that start in region ω
only.
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3. Drug-free equilibrium and basic reproduction number

We first point out that model (2.1)-(2.3) always has the drug-free equilibrium for any parameter values:

E0 =

(
Λ

µ
, 0, 0

)
. (3.1)

Then, the next-generation matrix method [26] is employed to derive a crucial threshold, which is called
the basic reproduction number R0. With the derivation of R0 in the Appendix 1 and some algebraic
manipulations, we obtain

R0 =
βΛ(η+ µ)

µ[µ(α+ γ) + (η+ µ)(σ+ µ)]
=

βΛA3

µ[µA2 +A3(σ+ µ)]
. (3.2)

The basic reproduction number R0 can be defined as the expected number or the average number of
secondary cases of drug use caused by a drug user during his/ her period of drug use, when he/she
was introduced into a fully susceptible population. Accordingly, the initial spread of drug use is directly
related to R0. From equation (3.2), it is worth noting that R0 is independent of the measure of psychological
or inhibitory effect k whilst R0 is dependent on the relapse rate of individuals who quit using drugs
η. Thus, there is no relationship between parameter k and the initial spread of drug use. In contrast,
parameter η affects the initial spread of drug use.

4. Existence of drug persistent equilibrium

In this section, the drug persistent equilibrium is found by letting the right-hand side of model (2.1)-
(2.3) equals zero. With some algebraic manipulations, we have

S∗ =
Λ(1 + kU∗)

βU∗ + µ(1 + kU∗)
, (4.1)

Q∗ =
A2

A3
U∗. (4.2)

Substituting equations (4.1) and (4.2) into equation (2.2) gives

U∗ =
βΛA3 − µ[µA2 +A3(σ+ µ)]

(β+ µk)[µA2 +A3(σ+ µ)]
=

µ

β+ µk
(R0 − 1). (4.3)

It is crucial to note that U∗ > 0 if and only if R0 > 1. Therefore, if R0 > 1, then the drug persistent
equilibrium is

E∗ = (S∗,U∗,Q∗),

where S∗, U∗, and Q∗ are given in equations (4.1), (4.3), and (4.2), respectively. The existence of equilibria
of model (2.1)-(2.3) can be summarised as follows:

1. If R0 6 1, then only the drug-free equilibrium E0 = (S0,U0,Q0) exists.
2. If R0 > 1, then the drug-free equilibrium E0 = (S0,U0,Q0) and a unique drug persistent equilibrium

E∗ = (S∗,U∗,Q∗) exist.

Based on the above results, we can conclude that model (2.1)-(2.3) does not undergo backward bifurcation
as the unique drug persistent equilibrium exists only when R0 > 1.

5. Local stability analysis

The local stability analysis is performed in the first place instead of directly performing the global
stability analysis. This is because the global properties of models with complicated dynamics are laborious
to be determined and the conditions of local stability and global stability are not necessarily the same.
Accordingly, we first perform the linear stability analysis [28] to have a look at the behavior of the solutions
near to the equilibria of model (2.1)-(2.3).
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5.1. Drug-free equilibrium
Theorem 5.1. If R0 < 1, then the drug-free equilibrium E0 = (Λ/µ, 0, 0) is locally asymptotically stable.

Proof. The Jacobian evaluated at the drug-free equilibrium E0 = (Λ/µ, 0, 0) is

J(E0) =

 −µ −βΛµ 0
0 βΛµ −A1 η

0 A2 −A3

 .

So, the characteristic equation for J(E0) is

(µ+ λ)(λ2 + a1λ+ a2) = 0,

where a1 = A1 +A3 − βΛ/µ and a2 = A1A3 − ηA2 −A3βΛ/µ. It is crucial to note that a zero eigenvalue
would be obtained when R0 = 1, since a2 = 0. Thus, if R0 = 1, then the drug-free equilibrium E0 is said
to be nonhyperbolic, since matrix J(E0) has a zero eigenvalue [1]. As a result, when R0 = 1, the linear
stability analysis fails to help us to draw any conclusion on the local stability of E0, based on the Hartman-
Grobman theorem [8]. In the following, we proceed to find the signs of the real parts of eigenvalues of
matrix J(E0) for R0 6= 1. The sign of the first eigenvalue can be found easily which is

λ1 = −µ < 0.

For the remaining eigenvalues, the Routh-Hurwitz criteria are employed to determine the signs of their
real parts. The computations of determinants of all Hurwitz matrices are shown as follows.

det(H1) = a1 =
µA2 +A3(σ+ µ)

A3

[
A3(A1 +A3)

µA2 +A3(σ+ µ)
−

βΛA3

µ[µA2 +A3(σ+ µ)]

]
=
µA2 +A3(σ+ µ)

A3
[
A3(A1 +A3)

µA2 +A3(σ+ µ)
− R0].

If R0 < A3(A1 +A3)/[µA2 +A3(σ+ µ)], then we have

det(H1) > 0.

Next, we find

det(H2) =

∣∣∣∣ a1 0
1 a2

∣∣∣∣ = det(H1)(A1A3 − ηA2 −A3β
Λ

µ
).

It is worth noting that

A1A3 − ηA2 −A3β
Λ

µ
= [µA2 +A3(σ+ µ)](1 − R0).

Thus, we have
det(H2) = det(H1)[µA2 +A3(σ+ µ)](1 − R0).

If R0 < 1 and R0 < A3(A1 +A3)/[µA2 +A3(σ+ µ)] (so that det(H1) > 0), then we obtain

det(H2) > 0.

Note that
A3(A1 +A3)

µA2 +A3(σ+ µ)
=
µ(α+ γ) + (η+ µ)(σ+ 2µ) + η(α+ γ+ η) + µη

µ(α+ γ) + (η+ µ)(σ+ µ)
> 1.

As a result, we have

R0 < 1 <
A3(A1 +A3)

µA2 +A3(σ+ µ)
.

Therefore, the determinants of the Hurwitz matrices H1 and H2 are greater than zero when R0 < 1. This
implies the real parts of all eigenvalues of the Jacobian evaluated at E0 = (Λ/µ, 0, 0) are negative. As a
result, the drug-free equilibrium E0 is locally asymptotically stable when R0 < 1.
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5.2. Drug persistent equilibrium
Theorem 5.2. If R0 > 1, then the drug persistent equilibrium E∗ = (S∗,U∗,Q∗) is locally asymptotically stable.

Proof. The Jacobian evaluated at drug persistent equilibrium E∗ = (S∗,U∗,Q∗) is

J(E∗) =

 −( βU
∗

1+kU∗ + µ) − βS∗

1+kU∗ +
kβS∗U∗

(1+kU∗)2 0
βU∗

1+kU∗
βS∗

1+kU∗ −
kβS∗U∗

(1+kU∗)2 −A1 η

0 A2 −A3

 .

The characteristic equation for J(E∗) is found to be

λ3 + b1λ
2 + b2λ+ b3 = 0,

where

b1 =
βU∗

1 + kU∗
+ µ−

βS∗

1 + kU∗
+

kβS∗U∗

(1 + kU∗)2 +A1 +A3,

b2 =

(
βU∗

1 + kU∗
+ µ

)[
−

βS∗

1 + kU∗
+

kβS∗U∗

(1 + kU∗)2 +A1 +A3

]

+A3

[
−

βS∗

1 + kU∗
+

kβS∗U∗

(1 + kU∗)2 +A1

]
− ηA2 +

β2S∗U∗

(1 + kU∗)3 ,

b3 =

(
βU∗

1 + kU∗
+ µ

){
A3[−

βS∗

1 + kU∗
+

kβS∗U∗

(1 + kU∗)2 +A1] − ηA2

}
+
β2S∗U∗A3

(1 + kU∗)3 .

The Routh-Hurwitz criteria are again adopted to determine the signs of real parts of all eigenvalues of
the Jacobian evaluated at E∗. The computations of the determinants of Hurwitz matrices are shown as
follows.

det(H1) = b1 =
βU∗

1 + kU∗
+ µ+A3 +

kβS∗U∗

(1 + kU∗)2 + (A1 −
βS∗

1 + kU∗
).

Note that
βS∗

1 + kU∗
=
µ(α+ γ) + (η+ µ)(σ+ µ)

η+ µ
(5.1)

and

A1 =
µ(α+ γ) + (η+ µ)(σ+ µ) + η(α+ γ)

η+ µ
. (5.2)

By comparing equations (5.1) and (5.2), we can conclude that

A1 >
βS∗

1 + kU∗
. (5.3)

Accordingly, if R0 > 1(U∗ > 0), then we have

det(H1) > 0.

Next, we find

det(H2) =

∣∣∣∣ b1 b3
1 b2

∣∣∣∣ =
[
kβS∗U∗

(1 + kU∗)2 + (A1 −
βS∗

1 + kU∗
)

]
b2 + (

βU∗

1 + kU∗
+ µ)

2
[(A1 −

βS∗

1 + kU∗
)

+
kβS∗U∗

(1 + kU∗)2 +A3] + (
βU∗

1 + kU∗
+ µ)

β2S∗U∗

(1 + kU∗)3
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+A3(
βU∗

1 + kU∗
+ µ)

[
(A1 −

βS∗

1 + kU∗
) +

kβS∗U∗

(1 + kU∗)2 +A3

]

+
kβS∗U∗(A3)

2

(1 + kU∗)2 +A3(A1A3 − ηA2 −
βS∗A3

1 + kU∗
).

It is crucial to note that
A1A3 − ηA2 −

βS∗A3

1 + kU∗
= 0. (5.4)

Thus, we have

det(H2) =

[
kβS∗U∗

(1 + kU∗)2 + (A1 −
βS∗

1 + kU∗
)

]
(b2) + (

βU∗

1 + kU∗
+ µ)

×

{
(
βU∗

1 + kU∗
+ µ)[(A1 −

βS∗

1 + kU∗
) +

kβS∗U∗

(1 + kU∗)2 +A3] +
β2S∗U∗

(1 + kU∗)3

}

+A3

{
(
βU∗

1 + kU∗
+ µ)[(A1 −

βS∗

1 + kU∗
) +

kβS∗U∗

(1 + kU∗)2 +A3] +
kβS∗U∗A3

(1 + kU∗)2

}
.

Based on inequality (5.3), we can conclude that det(H2) > 0 if and only if b2 has a positive sign and
R0 > 1(U∗ > 0). According to inequality (5.3) and equation (5.4), we obtain

b2 = (
βU∗

1 + kU∗
+ µ)[(A1 −

βS∗

1 + kU∗
) +

kβS∗U∗

(1 + kU∗)2 +A3] +
kβS∗U∗A3

(1 + kU∗)2 +
β2S∗U∗

(1 + kU∗)3 > 0. (5.5)

Therefore, based on inequalities (5.3) and (5.5), if R0 > 1(U∗ > 0), then we have

det(H2) > 0.

Finally, the determinant of the last Hurwitz matrix is

det(H3) =

∣∣∣∣∣∣
b1 b3 0
1 b2 0
0 b1 b3

∣∣∣∣∣∣ = det(H2)

{
(
βU∗

1 + kU∗
+ µ)[(A1A3 − ηA2 −

βS∗A3

1 + kU∗
) +

kβS∗U∗A3

(1 + kU∗)2 ] +
β2S∗U∗A3

(1 + kU∗)3

}
.

Based on equation (5.4), we obtain

det(H3) = det(H2)

{
(
βU∗

1 + kU∗
+ µ)[

kβS∗U∗A3

(1 + kU∗)2 ] +
β2S∗U∗A3

(1 + kU∗)3

}
.

If R0 > 1 (U∗ > 0 and det(H2) > 0), then we have

det(H3) > 0.

Therefore, the determinants of the Hurwitz matrices H1, H2, and H3 are greater than zero when R0 > 1
(U∗ > 0). This implies all the eigenvalues of the Jacobian evaluated at E∗ = (S∗,U∗,Q∗) have negative real
parts. As a result, the drug persistent equilibrium E∗ = (S∗,U∗,Q∗) is locally asymptotically stable when
R0 > 1.

6. Global stability analysis

Based on the results of local stability analysis, it seems that the periodic orbit does not exist for model
(2.1)-(2.3). Thus, the non-existence of periodic orbit will be proved by performing the global stability
analysis. Particularly, Liapunov’s direct method [8] is employed to establish the conditions of global
asymptotic stability of drug-free and drug persistent equilibria of model (2.1)-(2.3).
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6.1. Drug-free equilibrium

Theorem 6.1. If R0 6 1, then the drug-free equilibrium E0 =
(
Λ
µ , 0, 0

)
of model (2.1)-(2.3) is globally asymptoti-

cally stable.

Proof. Given a combination of Volterra-type and linear Liapunov function as

V = A3

(
S− S0 − S0ln

S

S0

)
+A3U+ ηQ, (6.1)

where S0 = Λ/µ, the time derivative of equation (6.1) is

V ′ = A3

(
1 −

S0

S

)(
Λ−

βSU

1 + kU
− µS

)
+A3

(
βSU

1 + kU
−A1U+ ηQ

)
+ η(A2U−A3Q)

= A3

(
1 −

S0

S

)(
µS0 −

βSU

1 + kU
− µS

)
+
A3βSU

1 + kU
−A1A3U+ ηA2U

= A3

(
1 −

S0

S

)[
−
βSU

1 + kU
− µ(S− S0)

]
+
A3βSU

1 + kU
−U(A1A3 − ηA2)

= −
A3µS(S− S0)

S
+
A3µS0(S− S0)

S
+
βS0A3U

1 + kU
−
A3βSU

1 + kU
+
A3βSU

1 + kU
−U(A1A3 − ηA2)

= −A3µ
(S− S0)

2

S
+
βS0A3U

1 + kU
−U(A1A3 − ηA2)

= −A3µ
(S− S0)

2

S
+U

[
βΛA3

µ(1 + kU)
− (A1A3 − ηA2)

]
6 −A3µ

(S− S0)
2

S
+U

[
βΛA3

µ
− (A1A3 − ηA2)

]
= −A3µ

(S− S0)
2

S
−U(A1A3 − ηA2)

[
1 −

βΛA3

µ(A1A3 − ηA2)

]
= −A3µ

(S− S0)
2

S
−U[µA2 +A3(σ+ µ)]

{
1 −

βΛA3

µ[µA2 +A3(σ+ µ)]

}
= −A3µ

(S− S0)
2

S
−U[µA2 +A3(σ+ µ)](1 − R0).

Thus, we obtain V ′ 6 0 when R0 6 1. Note that V ′ = 0 if and only if S = S0 = Λ/µ and U = U0 = 0.
Accordingly, if R0 6 1, then V ′ < 0 for S 6= S0 = Λ/µ, U 6= U0 = 0, and Q 6= Q0 = 0. Therefore, the drug-
free equilibrium E0 = (Λ/µ, 0, 0) is said to be globally asymptotically stable when R0 6 1. As a result,
if R0 6 1, then each solution x = (S,U,Q) of model (2.1)-(2.3) which starts in region ω will approach
E0 = (Λ/µ, 0, 0) as t→∞.

6.2. Drug persistent equilibrium

Theorem 6.2. If R0 > 1, then the drug persistent equilibrium E∗ = (S∗,U∗,Q∗) of model (2.1)-(2.3) is globally
asymptotically stable.

Proof. A Volterra-type of Liapunov function is proposed:

V̂ = (1 + kU∗)

(
S− S∗ − S∗ln

S

S∗

)
+

(
U−U∗ −U∗ln

U

U∗

)
+
ηQ∗

A2U∗

(
Q−Q∗ −Q∗ln

Q

Q∗

)
. (6.2)
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The time derivative of equation (6.2) is

V̂ ′ = (1 + kU∗)

(
S− S∗

S

)(
Λ−

βSU

1 + kU
− µS

)
+

(
U−U∗

U

)(
βSU

1 + kU
−A1U+ ηQ

)
+
ηQ∗

A2U∗

(
Q−Q∗

Q

)
(A2U−A3Q).

(6.3)

From model (2.1)-(2.3), we have

Λ =
βS∗U∗

1 + kU∗
+ µS∗, A1 =

βS∗

1 + kU∗
+ η

Q∗

U∗
, A3 = A2

U∗

Q∗
. (6.4)

Substituting (6.4) into equation (6.3), we obtain

V̂ ′ = (1 + kU∗)

(
S− S∗

S

)[(
βS∗U∗

1 + kU∗
+ µS∗

)
−

βSU

1 + kU
− µS

]
+

(
U−U∗

U

)[
βSU

1 + kU
−

(
βS∗

1 + kU∗
+ η

Q∗

U∗

)
U+ ηQ

]
+
ηQ∗

A2U∗

(
Q−Q∗

Q

)[
A2U−

(
A2
U∗

Q∗

)
Q

]
= −(1 + kU∗)

(
S− S∗

S

){
β

[
(SU− S∗U∗) + kUU∗(S− S∗)

(1 + kU)(1 + kU∗)

]
+ µ(S− S∗)

}
+

(
U−U∗

U

)
×
{
βU[

(S− S∗) + k(SU∗ − S∗U)

(1 + kU)(1 + kU∗)
] + η

(
Q−Q∗

U

U∗

)}
+
ηQ∗

U∗

(
Q−Q∗

Q

)(
U−U∗

Q

Q∗

)
= −(1 + kU∗)

(
S− S∗

S

){
β

[
S(U−U∗) +U∗(S− S∗) + kUU∗(S− S∗)

(1 + kU)(1 + kU∗)

]
+ µ(S− S∗)

}
+

(
U−U∗

U

)
×
{
βU

[
(S− S∗) + k[U∗(S− S∗) − S∗(U−U∗)]

(1 + kU)(1 + kU∗)

]
+ η

(
Q−Q∗

U

U∗

)}
+
ηQ∗

U∗

(
Q−Q∗

Q

)(
U−U∗

Q

Q∗

)
= −(S− S∗)β

(
U−U∗

1 + kU

)
−

(S− S∗)2

S
[βU∗ + µ(1 + kU∗)]

+ (U−U∗)

{
β

[
S− S∗

1 + kU
−

kS∗(U−U∗)

(1 + kU)(1 + kU∗)

]
+ η

(
Q

U
−
Q∗

U∗

)}
+ ηQ∗

(
1 −

Q∗

Q

)(
U

U∗
−
Q

Q∗

)
= −(S− S∗)β

(
U−U∗

1 + kU

)
−

(S− S∗)2

S
[βU∗ + µ(1 + kU∗)] + (U−U∗)β

(
S− S∗

1 + kU

)
−

βkS∗(U−U∗)2

(1 + kU)(1 + kU∗)

+ ηQ∗
(
Q

Q∗
−
U

U∗
−
U∗Q

UQ∗
+ 1
)
+ ηQ∗

(
U

U∗
−
Q

Q∗
−
UQ∗

U∗Q
+ 1
)

= −
(S− S∗)2

S
[βU∗ + µ(1 + kU∗)] −

βkS∗(U−U∗)2

(1 + kU)(1 + kU∗)
− ηQ∗

(
U∗Q

UQ∗
+
UQ∗

U∗Q
− 2
)

= −
[βU∗ + µ(1 + kU∗)](S− S∗)2

S
−

βkS∗(U−U∗)2

(1 + kU)(1 + kU∗)
− ηQ∗

(√
U∗Q

UQ∗
−

√
UQ∗

U∗Q

)2

.

Hence, we have V̂ ′ 6 0 when R0 > 1 (U∗ > 0). Note that V̂ ′ = 0 if and only if S = S∗, U = U∗, and
Q = Q∗. Accordingly, if R0 > 1, then V̂ ′ < 0 for S 6= S∗, U 6= U∗, and Q 6= Q∗. Thus, the drug persistent
equilibrium E∗ = (S∗,U∗,Q∗) is globally asymptotically stable when R0 > 1. As a result, if R0 > 1, then
every solution x = (S,U,Q) of model (2.1)-(2.3) which starts in region ω will approach E∗ = (S∗,U∗,Q∗)
as t→∞.

7. Sensitivity analysis

In this section, the differential sensitivity analysis [4] is adopted for determining the sensitivity of the
basic reproduction number R0 to the model parameters. Note that the outcomes of differential sensitivity
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analysis are called the normalized forward sensitivity indices (NFSIs) when the quotients which normalize
the sensitivity indices are introduced to remove the effects of units. The NFSI of a variable to a parameter
is the ratio of the relative change in that variable to the relative change in that parameter [2]. If a variable
is the differentiable function of a parameter, then the NFSI can be found by partial differentiation. Note
that R0 is chosen as the variable in this study as it is directly related to the initial spread of drug use.
Therefore, we can determine the parameter to be targeted and so some effective control measures can be
devised to control or eradicate the drug epidemics. The NFSIs of R0 to the model parameters are listed in
Table 2 where the computations are shown in Appendix 2.

Table 2: NFSIs of R0 to the model parameters.
No. Parameter Sign of NFSI |NFSI|

1 µ - >1

2
Λ + 1
β + 1

4

α - <1
γ - <1
σ - <1
η + <1

Based on Table 2, the three parameters with a positive sign are Λ, β, and η. Thus, the increase
(decrease) in these parameters will lead to the increase (decrease) in the value of R0. In contrast, the four
parameters with a negative sign are µ, α, γ, and σ. Hence, the increase (decrease) in these parameters
will lead to the decrease (increase) in the value of R0. It is worth noting that the NFSI of R0 to the measure
of psychological or inhibitory effect k is zero, without involving any computation. This is because the
expression of R0 is independent of the parameter k. Recall that that the magnitude of NFSI indicates the
relative change of R0 when a parameter varies. For instance, R0 will increase 30% when the parameter Λ
increases 30% and R0 will increase less than 50% when parameter η increases 50%. According to Table 2,
we can conclude that the most sensitive parameter on R0 is the natural death rate µ, which has an absolute
value of NFSI greater than unity. However, it is unethical and impractical to increase the natural death
rate µ in practice. Consequently, we should put our attention on the recruitment rate Λ and effective
contact rate β = cβ̂. Similar to parameter µ, the former is also unethical and impractical to be increased
its value. Therefore, the effective contact rate β = cβ̂ turns out to be the most significant parameter on R0.
As a result, the average number of contacts per unit time c and the probability that a contact results in a
new drug user β̂ should be targeted to reduce the value of β. In the last section, several effective control
measures will be suggested and discussed.

8. Numerical simulations

The numerical simulations will be provided here for illustrating the analytical results in Section 6.
With the help of MATLAB, the fourth-order Runge-Kutta method is adopted to obtain the time-series
plots and phase portraits. Three examples which represent the cases of R0 < 1, R0 = 1, and R0 > 1 are
provided in the following.

Example 8.1. Given Λ = 2, µ = 0.02, β = 0.003, σ = 0.28, α = 0.15, γ = 0.65, η = 0.3, k = 0.1, and
initial conditions: (20, 40, 40), (40, 30, 30), (60, 20, 20), and (80, 10, 10), hence, we have R0 ≈ 0.8571 < 1 and
E0 = (100, 0, 0). According to Theorem 6.1, drug-free equilibrium E0 = (100, 0, 0) of model (2.1)-(2.3) is
globally asymptotically stable. The corresponding time series plots and phase portrait are illustrated in
Figures 3 and 4, respectively.
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Figure 3: Time Series Plots of Variable S, U, and Q, for different initial conditions when R0 < 1.

Figure 4: Phase Portrait for R0 < 1.

From Figure 3, we can observe that the variable S with initial values S(0) = 20, 40, 60, 80, approaches
Λ/µ = 100 as t → ∞. Besides, the variable U with initial values U(0) = 10, 20, 30, 40, approaches U0 = 0
as t → ∞ and variable Q with initial values Q(0) = 10, 20, 30, 40, approaches Q0 = 0 as t → ∞. On the
other hand, the phase portrait in Figure 4 shows that the trajectories which start at (20, 40, 40), (40, 30, 30),
(60, 20, 20), and (80, 10, 10) will approach the drug-free equilibrium E0 = (100, 0, 0) as t → ∞. Thus, if
R0 < 1, then the solutions of model (2.1)-(2.3) with any non-negative initial conditions (S(0),U(0),Q(0))
will approach E0 = (Λ/µ, 0, 0) as t→∞. As a result, the drug-free equilibrium E0 = (Λ/µ, 0, 0) of model
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(2.1)-(2.3) is said to be globally asymptotically stable when R0 < 1.

Example 8.2. Given Λ = 2, µ = 0.02, β = 0.0105, σ = 0.48, α = 0.4, γ = 0.7, η = 0.02, k = 0.1,
and initial conditions: (20, 40, 40), (40, 30, 30), (60, 20, 20), and (80, 10, 10), So, we have R0 = 1 and E0 =
(100, 0, 0). Based on Theorem 6.1, the drug-free equilibrium E0 = (100, 0, 0) of model (2.1)-(2.3) is globally
asymptotically stable. The corresponding time series plots and phase portrait are illustrated in Figures 5
and 6, respectively.

Figure 5: Time Series Plots of Variable S, U and Q, for different initial conditions when R0 = 1.

Figure 6: Phase Portrait for R0 = 1.
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From Figure 5, we can observe that variable Swith initial values S(0) = 10, 30, 50, 70 approachesΛ/µ = 100
as t→∞. Additionally, the variableUwith initial valuesU(0) = 10, 30, 50, 70 approachesU0 = 0 as t→∞
and variable Q with initial values Q(0) = 10, 30, 50, 70 approaches Q0 = 0 as t → ∞. On the other hand,
the phase portrait in Figure 6 shows that the trajectories which start at (20, 40, 40), (40, 30, 30), (60, 20, 20),
and (80, 10, 10) will approach the drug-free equilibrium E0 = (100, 0, 0) as t→∞. Therefore, the drug-free
equilibrium E0 = (Λ/µ, 0, 0) of model (2.1)-(2.3) is said to be globally asymptotically stable if R0 = 1. Note
that R0 = 1 indicates a drug user will influence a susceptible individual to start taking drugs in a fully
susceptible population. So intuitively, the drug epidemic will eventually become endemic. However, the
analytical result and numerical simulations give a counter-intuitive result where a drug epidemic will die
out even though R0 = 1. This is probably owing to the natural and drug-related death rates, and recovery
rates through abstinence and treatment.

Example 8.3. Given Λ = 2, µ = 0.02, β = 0.01, η = 0.3, σ = 0.28, α = 0.15, γ = 0.65, k = 0.1, and
initial conditions: (20, 40, 40), (40, 30, 30), (60, 20, 20), and (80, 10, 10), hence, we have R0 ≈ 2.8571 > 1
and E∗ ≈ (46, 3, 8). According to Theorem 6.2, the drug persistent equilibrium E∗ ≈ (46, 3, 8) of model
(2.1)-(2.3) is globally asymptotically stable. The corresponding time series plots and phase portrait are
illustrated in Figures 7 and 8, respectively.

Figure 7: Time series plots of variable S, U, and Q, for different initial conditions when R0 > 1.

From Figure 7, we can observe that variable S with initial value S(0) = 20, 40, 60, 80 approaches S∗ = 46
as t → ∞. Moreover, variables U and Q with initial values U(0) = Q(0) = 20, 40, 60, 80 approach U∗ = 3
and Q∗ = 8, respectively, as t → ∞. On the other hand, the phase portrait in Figure 8 shows that
the trajectories which start at (20, 40, 40), (40, 30, 30), (60, 20, 20), and (80, 10, 10) will approach the drug
persistent equilibrium E∗ = (46, 3, 8) as t → ∞. Thus, if R0 > 1, then every solution (S,U,Q) of model
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Figure 8: Phase portrait for R0 > 1.

(2.1)-(2.3) with any non-negative initial condition (S(0),U(0),Q(0)) will approach the drug persistent
equilibrium E∗ = (S∗,U∗,Q∗) as t→∞. As a result, the drug persistent equilibrium E∗ = (S∗,U∗,Q∗) of
model (2.1)-(2.3) is said to be globally asymptotically stable when R0 > 1.

From equation (4.3), we found that the number of drug users at drug persistent state U∗ is inversely
proportional to the measure of psychological or inhibitory effect k. However, no conclusion can be drawn
on the number of drug users U for t > 0, when parameter k is varied. Thus, the numerical simulations
are performed to investigate the relationship between the measure of psychological or inhibitory effect k
and the number of drug users U.

Example 8.4. Given Λ = 50, µ = 0.02, β = 0.2, σ = 0.48, α = 0.35, γ = 0.6, η = 0.02, and initial condition
U(0) = 5, the solution curves of variable U for k = 0.05, 0.5, 5, and 50 are illustrated in Figure 9.

Figure 9: Solution curves of variable U for different values of k.

From Figure 9, we can observe that the higher the measure of psychological or inhibitory effect k, the
lower the number of drug users U, given the same initial condition U(0) = 5. Thus, the prevalence of
drug use is lower when the value of k is higher. Accordingly, a drug epidemic is easier to be controlled
when the measure of psychological or inhibitory effect k, is higher. Based on Figure 9, it is evident that
the difference in the curves of the number of drug users U for k = 0.05 and k = 0.5 is inconsiderable.
However, it is worth noting that the curve of the number of drug users U for k = 0.05 initially soars to a
peak, that is, about 60 drug users. Then, the number of drug users U starts lessening and then approaches
the steady-state value U∗ ≈ 50. The drastic increase in the number of drug users U should be avoided
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as it may cause the prisons and rehabilitation centres to become overcrowded. Accordingly, the polices
and rehabilitation team will be stressed to cope with this catastrophic situation. Therefore, it is extremely
crucial to have a higher measure of psychological or inhibitory effect k, as this measure plays some role
in the occurrence of an outbreak of drug use, besides the prevalence of drug use.

9. Conclusion

In this paper, an illicit drugs model with the saturated incidence rate and relapse of individuals
who quit using drugs is proposed. It is crucial to note that the basic reproduction number R0 of the
proposed model is independent of the measure of psychological or inhibitory effect k, and hence the
psychological or inhibitory effect has no impact on the initial spread of drug use. Besides, it is found
that the proposed model does not have multiple drug persistent equilibria even though it has complex
dynamics. Furthermore, R0 6 1 is found to be a sufficient condition for eradicating the drug epidemics.
Moreover, the results of sensitivity analysis show that some effective control measures should be put
in place to diminish the average number of contacts per unit time c, or the probability that a contact
results in a new drug user β̂. For the former, the policymakers and anti-drug agencies should urge
the public not to have any contact with relatives or friends who use drugs. Rather, the public should
send them to rehabilitation centres for receiving treatment. As a result, the susceptible individuals will
have a lower chance to contact the drug users per unit time. For the latter, more anti-drug campaigns
and advertisements should be introduced and stricter laws on drug use are also should be imposed.
Thus, the public is aware of the adverse effect of drug use, and afraid of the punishment for drug use.
Consequently, the probability that a contact results in a new drug user will become lower. Finally, the
numerical simulations show that it is crucial to have a higher measure of psychological or inhibitory effect
k, so that the drug epidemic is easier to be controlled.

Note that the proposed illicit drugs model is not comprehensive, since several ideal assumptions have
been made. For future work, the proposed model may be extended to contain more subpopulations
for describing the dynamics of illicit drugs use better. Additionally, the population can be structured
in terms of age or gender, since individuals with different characteristics may have different drug use
patterns. Notwithstanding the imperfection, our study provides some useful insights into the dynamics
of drug epidemics. In addition, our study also gives a conclusion on the control measures that should be
devised to control or eradicate the drug epidemics effectively.
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Appendices

Appendix 1: Derivation of basic reproduction number R0

Since the compartments of model (2.1)-(2.3) involve drug use are the classes of drug users U and individ-
uals who quit using drugs Q, model (2.1)-(2.3) is first rearranged as

dU

dt
=

βSU

1 + kU
−A1U+ ηQ,

dQ

dt
= A2U−A3Q,

dS

dt
= Λ−

βSU

1 + kU
− µS.

Let x = (S,U,Q), then the matrices for the new drug use terms and the other transition terms are

F(x) =

 βSU
1+kU

0
0

 and Υ(x) =

 A1U− ηQ
−A2U+A3Q

−Λ+ βSU
1+kU + µS

 ,

respectively. Hence, model (2.1)-(2.3) can be denoted as

dx
dt

= F(x) −Υ(x).
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We then differentiate the first and second rows of matrices F(x) and Υ(x) with respect to U and Q.
Accordingly, the Jacobian of matrices F(x) and Υ(x) that evaluated at equation (3.1) are

F(E0) =

(
βΛ
µ 0
0 0

)
and V(E0) =

(
A1 −η
−A2 A3

)
,

respectively. Thus, the next-generation matrix is found to be

FV−1 =
βΛ

µ(A1A3 − ηA2)

(
A3 η

0 0

)
.

As a result, the basic reproduction number is given by

R0 = ρ(FV−1) =
βΛA3

µ(A1A3 − ηA2)
,

where ρ(FV−1) is the spectral radius of next-generation matrix FV−1.

Appendix 2: Computations of sensitivity analysis

1. β :

ΥR0
β =

∂R0

∂β
× β

R0
=

Λ(η+ µ)

µ[µ(α+ γ) + (η+ µ)(σ+ µ)]
× µ[µ(α+ γ) + (η+ µ)(σ+ µ)]

Λ(η+ µ)
= +1 > 0,∣∣∣ΥR0

β

∣∣∣ = 1.

2. Λ :

ΥR0
Λ =

∂R0

∂Λ
× Λ

R0
=

β(η+ µ)

µ[µ(α+ γ) + (η+ µ)(σ+ µ)]
× µ[µ(α+ γ) + (η+ µ)(σ+ µ)]

β(η+ µ)
= +1 > 0,∣∣∣ΥR0

Λ

∣∣∣ = 1.

3. η :

ΥR0
η =

∂R0

∂η
× η

R0
=

βΛµ(α+ γ)

µ[µ(α+ γ) + (η+ µ)(σ+ µ)]2
× ηµ[µ(α+ γ) + (η+ µ)(σ+ µ)]

βΛ(η+ µ)

=
ηµ(α+ γ)

(η+ µ)[µ(α+ γ) + (η+ µ)(σ+ µ)]
> 0,∣∣ΥR0

η

∣∣ < 1.

4. µ :

ΥR0
µ =

∂R0

∂µ
× µ

R0
= −βΛ

µ(α+ γ)(2η+ µ) + (η+ µ)2(σ+ 2µ)
{µ[µ(α+ γ) + (η+ µ)(σ+ µ)]}2

× µ
2[µ(α+ γ) + (η+ µ)(σ+ µ)]

βΛ(η+ µ)

= −
µ(α+ γ)(2η+ µ) + (η+ µ)2(σ+ 2µ)
µ(α+ γ)(η+ µ) + (η+ µ)2(σ+ µ)

< 0,∣∣ΥR0
µ

∣∣ > 1.

5. α :

ΥR0
α =

∂R0

∂α
× α

R0
= −

βΛ(η+ µ)

[µ(α+ γ) + (η+ µ)(σ+ µ)]2
× αµ[µ(α+ γ) + (η+ µ)(σ+ µ)]

βΛ(η+ µ)

= −
αµ

µ(α+ γ) + (η+ µ)(σ+ µ)
< 0,∣∣ΥR0

α

∣∣ < 1.
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6. γ :

ΥR0
γ =

∂R0

∂γ
× γ

R0
= −

βΛ(η+ µ)

[µ(α+ γ) + (η+ µ)(σ+ µ)]2
× γµ[µ(α+ γ) + (η+ µ)(σ+ µ)]

βΛ(η+ µ)

= −
γµ

µ(α+ γ) + (η+ µ)(σ+ µ)
< 0,∣∣ΥR0

γ

∣∣ < 1.

7. σ :

ΥR0
σ =

∂R0

∂σ
× σ

R0
= −

βΛ(η+ µ)2

µ[µ(α+ γ) + (η+ µ)(σ+ µ)]2
× σµ[µ(α+ γ) + (η+ µ)(σ+ µ)]

βΛ(η+ µ)

= −
(η+ µ)σ

µ(α+ γ) + (η+ µ)(σ+ µ)
< 0,∣∣ΥR0

σ

∣∣ < 1.
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