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Abstract

The differential transform method is used to find numerical approximations of the solution to a class of certain nonlinear
three-point singular boundary value problems. The method is based on Taylor’s theorem. Coefficients of the Taylor series are
determined by constructing a recurrence relation. To deal with the nonlinearity of the problems, the Faà di Bruno’s formula
containing the partial ordinary Bell polynomials is applied within the differential transform. The error estimation results are
also presented. Four concrete problems are studied to show efficiency and reliability of the method. The obtained results are
compared to other methods, e.g., reproducing kernel Hilbert space method.
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1. Introduction

The aim of the paper is to apply the differential transform method (DTM) on certain three-point
singular boundary value problems (SBVPs) given in the following form

α (v)w′′ (v) +β (v)w′ (v) + γ (v)w (v) = u (v,w) , 0 6 v 6 1, (1.1)

with boundary conditions
w (0) = 0,w (1) = aw (b) + c, (1.2)

where b ∈ (0, 1), a and c are finite real constants, α ∈ C2[0, 1], β ∈ C1[0, 1], γ ∈ C[0, 1], α(0) = 0 or
α(1) = 0, α(v) 6= 0 in (0, 1), β(0) 6= 0, γ(0) 6= 0, β(1) 6= 0, γ(1) 6= 0 and β(1) − α′(1) 6= 0. Singularity may
occur when v = 0 or v = 1.
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Three-point boundary value problems have applications in modelling of physics and engineering
problems such as dynamical systems with three degrees of freedom where three states are observed at
three different times, in models of elasticity of three-layered equally loaded beam, in optimal control,
beam deflection, heat flow, draining and coating flows [4, 9, 24].

Researchers have applied different analytical and numerical techniques to study singular two point
linear and nonlinear boundary value problems, see for example [1, 7]. The approaches include different
numerical techniques such as spline techniques [6, 14, 21] and finite differences methods [22, 23] to handle
such problems. These techniques are popular among researchers, but large computational work associated
with root-finding makes them less preferred to solve nonlinear SBVPs. Semi-analytical methods are also
convenient for finding solutions to differential equations. However, the calculation and results sometimes
look complicated.

Papers [5, 8, 10, 11, 27, 28, 30, 31, 34] are devoted to the study of existence and uniqueness of solutions
for singular three-point boundary value problems. The motivation for the present work are the research
work of Thomson and Tisdell [28], Geng [5], and Dehghan and Shakeri [4] who studied three-point
boundary value problems. Further, we did not find any suitable routine in Mathematica and Matlab
software to handle problems discussed in this paper.

We propose a simple approach involving the differential transform in this paper. The differential
transform has been introduced by Pukhov as the “Taylor transform” in 1976 and applied to the study
of electrical circuits [13]. The differential transform has close relation with the Taylor expansion of real
analytic functions. It has applications in solving different types of problems for all classes of differential
equations (ordinary, partial, delayed, fractional, fuzzy etc). The recent developments and applications of
DTM are discussed in [15, 17–19] and references therein.

In the present paper, the differential transform is used to solve singular boundary value problems.
The nonlinearity in the problems is addressed by using the partial ordinary Bell polynomials in the Faà di
Bruno’s formula. The results obtained by this technique are compared to other methods. Detailed error
analysis is provided. However, to the best of our knowledge, no researcher has applied the DTM using
Bell polynomials on the practical problems discussed in Section 5.

The paper is organized as follows. In Section 2, we introduce the main idea and basic formulae of the
differential transform and provide necessary results for the nonlinearities involving partial ordinary Bell
polynomials. In Section 3 we introduce the convergence result and in section 4 the error estimate result
is discussed. Numerical results and discussion are presented in Section 5. A conclusion is discussed in
Section 6.

2. Preliminaries

In this section we discuss the main idea and basic formulae of the differential transform as well as
notation and results related to the transformation of general nonlinear terms.

2.1. The differential transform
Let w(v) be a real analytical function in a domain D and v = v0 be an arbitrary point in D. Then, w(v)

can be expanded in a Taylor series in a neighbourhood of the point v = v0.

Definition 2.1 ([19]). The differential transform of a real function w(v) at a point v0 ∈ R is defined as

W(k)[v0] =
1
k!

[
dkw(v)

dvk

]
v=v0

,

where W(k)[v0], the differential transform of the k-th derivative of the function w(v) at v0.

Definition 2.2 ([19]). The inverse differential transform is given by

w(v) =

∞∑
k=0

W(k)[v0](v− v0)
k. (2.1)
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Combining Definitions 2.1 and 2.2 gives an expression of the function w in the form of the Taylor
series:

w(v) =

∞∑
k=0

1
k!

[
dkw(v)

dvk

]
v=v0

(v− v0)
k =

∞∑
k=0

W (k) [v0] (v− v0)
k.

In the real-life applications, we often express the function w (v) as a finite sum

w(v) =

N∑
k=0

W(k)[v0](v− v0)
k. (2.2)

The formulae that will be used in the applications presented in Section 5 are collected in the following
theorem. Although it is not difficult to prove the formulae, we did not find the proofs of most of the
formulae in related literature. As we do not want to rely on assertions without proofs, we prefer to
include the proofs in the paper.

Theorem 2.3. Assume that W (k) [v0] is the differential transform of the function w (v) at v = v0.

(a) If w(v) = w ′1(v), then for any v0

W(k)[v0] = (k+ 1)W1(k+ 1)[v0] for k = 0, 1, 2, . . . . (2.3)

(b) If w(v) = w(n)
1 (v), then for any v0

W(k)[v0] = (k+ 1)(k+ 2). . .(k+n)W1(k+n))[v0] for k = 0, 1, 2, . . . .

(c) If w(v) = w1(v) ·w2(v), then for any v0

W(k)[v0] =

k∑
l=0

W1(l)[v0]W2(k− l)[v0] for k = 0, 1, 2, . . . . (2.4)

(d) If w(v) = w1(v) ·w2(v) . . . ·wn(v), then for any v0

W(k)[v0] =

k∑
l1=0

k−l1∑
l2=0

· · ·
k−l1−l2−···−ln−2∑

ln−1=0

W1(l1)[v0]W2(l2)[v0] · · ·Wn−1(ln−1)[v0]

×Wn(k− l1 − l2 − · · ·− ln−1)[v0]

for k = 0, 1, 2, . . ..
(e) If w(v) = eαv then for all v0 ∈ R

W(k)[v0] =
eαv0αk

k!
for k = 0, 1, 2, . . . .

(f) If w(v) = vr, r ∈ R then for any v such that |v− v0| < |v0|,

W(k)[v0] =

(
r

k

)
vr−k0 for k = 0, 1, 2, . . . ,

where
(
r

k

)
=
r(r− 1) . . . (r− k+ 1)

k!
=

(r)k
k!

, and (r)k represents the Pochhammer symbol.

(g) If w(v) = vn, n ∈N0, then for v0 = 0,

W(k)[v0] = δ(k−n) for k = 0, 1, 2, . . . ,

where δ(k−n) = δkn is the Kronecker delta.
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Proof. Proofs of the formulae will be derived directly from the Definitions 2.1 and 2.2, respectively.

(a) Proof of this formula can be found in [12].

(b) We proceed by induction. The first step is to prove the formula for n = 1, that is, the formula (2.3)
that was proved above. Now suppose that the formula is valid for n, and we will prove it for n+ 1. We
suppose that if w(v) = w(n)

1 (v), then for any v0 we have W(k)[v0] = (k+ 1)(k+ 2)· · ·(k+n)W1(k+n))[v0]
for k = 0, 1, 2, . . .. It means that

w
(n)
1 (v) = w(v) =

∞∑
k=0

W(k)[v0](v− v0)
k =

∞∑
k=0

(k+ 1)(k+ 2)· · ·(k+n)W1(k+n))[v0](v− v0)
k.

Then for n+ 1, we have

w
(n+1)
1 (v) = w ′(v) =

d

dv

∞∑
k=0

W(k)[v0](v− v0)
k =

∞∑
k=1

kW(k)[v0](v− v0)
k−1

=

∞∑
k=1

k(k+ 1)(k+ 2)· · ·(k+n)W1(k+n))[v0](v− v0)
k−1.

By changing the limits of the last sum, we obtain

w
(n+1)
1 (v) =

∞∑
k=0

(k+ 1)(k+ 2)· · ·(k+n)(k+n+ 1)W1(k+n+ 1))[v0](v− v0)
k.

This implies that if w(v) = w(n+1)
1 (v), then for any v0 we have W(k)[v0] = (k+ 1)(k+ 2)· · ·(k+n)(k+n+

1)W1(k+n+ 1))[v0] for k = 0, 1, 2, . . ., which proves the formula.

(c) Suppose that w1(v) =
∞∑
l=0

W1(l)[v0](v− v0)
l and w2(v) =

∞∑
m=0

W2(m)[v0](v− v0)
m. Then

w(v) = w1(v) ·w2(v) =

∞∑
l=0

W1(l)[v0](v− v0)
l ·

∞∑
m=0

W2(m)[v0](v− v0)
m

=

∞∑
l=0

∞∑
m=0

W1(l)[v0]W2(m)[v0](v− v0)
l+m.

If we substitute k = l+m, we obtain

w(v) =

∞∑
l=0

∞∑
k−l=0

W1(l)[v0]W2(k− l)[v0](v− v0)
k =

∞∑
l=0

∞∑
k=l

W1(l)[v0]W2(k− l)[v0](v− v0)
k.

By changing the order of summation in the last sum, we get

w(v) =

∞∑
k=0

k∑
l=0

W1(l)[v0]W2(k− l)[v0](v− v0)
k,

which implies that W(k)[v0] =
k∑
l=0

W1(l)[v0]W2(k− l)[v0] for k = 0, 1, 2, . . ..

(d) We proceed by induction. The first step is to prove the formula for n = 2, that is, the formula (2.4) that
was proved above. Next we prove validity of the formula for n+ 1 under the assumption that the formula
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holds for a product of n functions. In other words, we suppose that if u(v) = w2(v) ·w3(v) · · · · ·wn+1(v),
then for any v0,

W(k)[v0] =

k∑
l2=0

k−l2∑
l3=0

· · ·
k−l2−l3−···−ln−1∑

ln=0

W2(l2)[v0]W3(l3)[v0] · · ·Wn(ln)[v0]Wn+1(k− l2 − l3 − · · ·− ln)[v0]

for k = 0, 1, 2, . . .. Put w(v)=w1(v) ·u(v). Then, according to (2.4), we have W(k)[v0]=
k∑
l1=0

W1(l1)[v0]U(k−

l1)[v0] for k = 0, 1, 2, . . ., that is,

W(k)[v0] =

k∑
l1=0

W1(l1)[v0]

k−l1∑
l2=0

k−l1−l2∑
l3=0

· · ·
k−l1−l2−l3−···−ln−1∑

ln=0

W2(l2)[v0]W3(l3)[v0]

· · ·Wn(ln)[v0]Wn+1(k− l1 − l2 − l3 − · · ·− ln)[v0]

for k = 0, 1, 2, . . ., which proves the formula.

(e) For any v0 ∈ R, we can expand the function w(v) = eαv into Taylor series as

w(v) = eαv =

∞∑
k=0

αkeαv0

k!
(v− v0)

k.

Comparison with the Definition 2.2 yields

W(k)[v0] =
eαv0αk

k!
, for k = 0, 1, 2, . . . .

(f) A proof of the formula can be found in [18].

(g) For v0 = 0, we can expand the function w(v) = vn, where n ∈N0, into Taylor series as

w(v) = vn =

∞∑
k=0

δ(k−n)vk,

where δ(k−n) = δkn is the Kronecker delta. We compare it with the Definition 2.2 and conclude that

W(k)[0] = δ(k−n)

for k = 0, 1, 2, . . ., which proves the formula.

For the reader’s convenience, the formulae that will be used in the applications are listed in Table 1.

2.2. Faà di Bruno’s formula and Bell polynomials
One of the principal disadvantages of most papers based on applications of differential transform is

that the differential transform is not directly applied to nonlinear terms likewn,n ∈N or ew. The authors
of [20] used Adomian polynomials to compute the differential transform of nonlinear terms. However,
we can determine the differential transform of nonlinear terms without the necessity to calculate and
evaluate symbolic derivatives. We can do it by applying Faà di Bruno’s formula to nonlinear terms.

Here we present some necessary notations and results obtained in [16]. The proofs are not included
since they can be found in the cited paper.

Definition 2.4 ([2]). The partial ordinary Bell polynomials are the polynomials P̌k,l (v̌1, . . . , v̌k−l+1) in an
infinite number of variables v̌1, v̌2, . . . defined by the series expansion

∑
k>l

P̌k,l (v̌1, . . . , v̌k−l+1)t
k =

∑
m>1

v̌mt
m

l, l = 0, 1, 2, . . .
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Table 1: Formulae of the differential transform method.
Original function Transformed function

1
dnw(v)

dvn
(k+ 1)(k+ 2)(k+ 3). . .(k+n)W(k+n)

2 w1(v)w2(v)
∑k
l=0W1(l)W2(k− l)

3 eαv, v0 = 0
αk

k!
4 w(v) = vn, v0 = 0 δ(k−n), where δ (k−n) =

{
1, k = n,
0, k 6= n,

5 sin (αv+β)
αk

k!
sin
(
kπ

2
+β

)
6 cos (αv+β)

αk

k!
cos
(
kπ

2
+β

)

Lemma 2.5 ([16]). The partial ordinary Bell polynomials P̌k,l (v̌1, . . . , v̌k−l+1) , l = 0, 1, 2, . . . ,k > l satisfy the
recurrence relation

P̌k,l (v̌1, . . . , v̌k−l+1) =

k−l+1∑
i=1

i.l
k
v̌iP̌k−i,l−1 (v̂1, . . . , v̌k−i−l+2) ,

where P̌0,0 = 1 and P̌k,0 = 0 for k > 1.

Theorem 2.6 ([16]). Let g and f be real functions analytic near v0 and g(v0), respectively, and let h be the
composition h (v) = f (g (v)). Differential transforms of functions g, f, and h are represented by G (k), F (k), and
H (k), respectively. Then H(k) satisfies the relations

H(0) = F (0) , H (k) =

k∑
l=1

F (l) .P̌k,l (G (1) , . . . ,G (k− l+ 1)) for k > 1.

2.3. Implementation of method for solving (1.1)-(1.2)
Equations (1.1) and (1.2) can be rewritten as

v (v− 1)w′′ (v) + pw′ (v) + qw (v) + f (v) = N (w (v)) , 0 6< v 6 1, (2.5)

with boundary conditions
w (0) = 0,w (1) = aw (b) + c, (2.6)

where p,q ∈ R , f (v) is a known function and N (w (v)) represents nonlinear terms.
Let F (k) be the differential transform of f (v), now applying differential transform on equation (2.5)

and (2.6), we obtain

k (k+ 1)W (k+ 1) − k (k− 1)W (k) + p (k+ 1)W (k+ 1) + qW (k) + F (k) = H (k) ,
W (0) = 0,

(2.7)

where H (k) is obtained by Theorem 2.6. Now, we have

W (k+ 1) =
1

(k+ 1) (k+ p)
[
H (k) − F (k) +

(
k2 − k− q

)
W (k)

]
. (2.8)

Replacing k with k− 1 in equation (2.8) and using equation (2.7), we obtain recurrence relation given by

W (0) = 0, W (k) =
1

k (k+ p− 1)
[
H (k− 1) − F (k− 1) +

(
k2 − 3k− q+ 2

)
W (k− 1)

]
,k > 1.

The implementation of the differential transform algorithm is shown through flowchart in Figure 1.
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No 

Figure 1: Flow chart of the differential transform algorithm.

3. Convergence analysis

Let C [0, 1] be a Banach space with the norm

‖w‖ = max
06v61

|w (v)|, w ∈ C [0, 1] ,

and write equation (2.1) in operator form as

w = v0 + T (w) ,

where

T (w) = T

( ∞∑
k=0

W (k) vk

)
=

1
k (k+ p− 1)

[
H (k− 1) − F (k− 1) +

(
k2 − 3k− q+ 2

)
W (k− 1)

]
vk, (3.1)

where T is a non-linear operator from a Banach space C [0, 1] to C [0, 1].
To obtain n term approximate solution of problem (1.1) and (1.2), equation (2.2) can be represented as

the nth partial sum

ϕn (v) =

n∑
k=0

W (k) vk. (3.2)

Equation (3.2) can be written as

ϕn (v) = v0 +

n−1∑
k=1

W (k) vk. (3.3)
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Equation (3.3) can be written in operator form as

ϕn (v) = v0 + T (ϕn−1) ,n > 1. (3.4)

Now we show that the sequence {ϕn} of the nth partial sum represented by (3.3) converges to the exact
solution w using the following therorem. The idea of the proof is taken from [25, 26, 29].

Theorem 3.1. Consider T (w) be the nonlinear operator expressed by equation (3.1) and satisfying the Lipschitz
condition ‖T (ϕ) − T (χ)‖ 6 γ‖ϕ− χ‖, for all ϕ, χ ∈ C [0, 1] with Lipschitz constant γ, 0 6 γ < 1. If ‖v0‖ <∞,
then the sequence ϕn (v) = v0 + T (ϕn−1) converges to the exact solution w.

Proof. Assuming ϕn be the sequence of n-terms of the series
∑∞
k=0W (k) vk represented by ϕn = v0 +

T (ϕn−1), we prove that
‖ϕn+1 −ϕn‖ 6 γn‖v0‖. (3.5)

For the proof of this, we use principle of mathematical induction. Indeed, suppose that (3.5) is true for
n = 1, using equation (3.4) and Lipschitz condition, we obtain

‖ϕ2 −ϕ1‖ = ‖T (ϕ1) − T (ϕ0)‖ 6 γ‖ϕ1 −ϕ0‖ = γ‖v0‖.

Now, we suppose that (3.5) is true for n = k,

‖ϕk+1 −ϕk‖ = ‖T (ϕk) − T (ϕk−1)‖ 6 γk‖ϕk −ϕk−1‖ = γk‖v0‖.

Finally, we have to show that the result is appropriate for n = k+ 1,

‖ϕk+2 −ϕk+1‖ = ‖T (ϕk+1) − T (ϕk)‖ 6 γk+1‖ϕk+1 −ϕk‖ = γk+1‖v0‖.

Then the result is appropriate for all vaules of n. For this, we prove that the sequence {ϕn} is a Cauchy
sequence in the Banach space C [0, 1]. Indeed, for every n,m ∈N,n > m, we have

‖ϕn −ϕm‖ = ‖(ϕn −ϕn−1) + (ϕn−1 −ϕn−2) + · · ·+ (ϕm+1 −ϕm)‖
6 ‖(ϕn −ϕn−1)‖+ ‖(ϕn−1 −ϕn−2)‖+ · · ·+ ‖(ϕm+1 −ϕm)‖
6 γn−1‖v0‖+ γn−2‖v0‖+ · · ·+ γm+1‖v0‖+ γm‖v0‖

6 γm
(
1 + γ+ γ2 + · · ·+ γn−m−1) ‖v0‖ 6 γm

(
1 − γn−m

1 − γ

)
‖v0‖.

(3.6)

Since 0 6 γ < 1, it is 1 − γn−m < 1, and equation (3.6) becomes

‖ϕn −ϕm‖ 6
γm

1 − γ
‖v0‖. (3.7)

Taking asm→∞ in equation (3.7), we obtain ‖ϕn−ϕm‖ → 0, since ‖v0‖ <∞. The fact that the sequence
{ϕn} is a Cauchy sequence in the Banach space C [0, 1], it indicates that there exists a ϕ such that

lim
n→∞ϕn = ϕ,

while we have

w =

∞∑
k=0

W (k) vk = lim
n→∞ϕn.

From this, we conclude that w = ϕ, which is the solution of equation (1.1). Hence ϕn converges to w.

4. Error estimation

For comparison, absolute error and maximum absolute error are computed and defined as

EN(v) := |w (v) −wN (v) |, EN,∞ := max
06v61

EN(v),

where w (v) is the analytical solution of the problem (1.1)-(1.2) and wN (v) is the truncated series solution
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with degree N. Furthermore, the relative error between exact and approximate solution is defined by

RN(v) :=
EN(v)

|w(v)|
.

In the presented Tables, the following notations have also been used.
1. wN(v) := approximate solution obtained by present technique;
2. wN(v) := approximate solution obtained by RKHSM, [5];
3. RN(v) := relative error between exact and present solution;
4. RN(v) := relative error between exact and RKHSM, [5].

In Lemma 4.1 we discuss an upper bound for the calculation of absolute errors of the present method.
The idea of the proof is taken from [3, 32, 33].

Lemma 4.1. Letw (v) ∈ CN+1[0, 1] be the analytical solution of the problem (1.1)-(1.2) andwN (v) =

N∑
k=0

W(k)vk

the corresponding approximate solution of degree N. Then ‖w (v) −wN (v)‖∞ 6
M

(N+ 1)!
+ max

06k6N
|ck|, where

M = max
06v61

|wN+1 (v) |, ck =

N∑
k=0

(
w(k) (0)
k!

−W (k)

)
.

Proof. Clearly, we have

‖w (v) −wN (v)‖∞ 6 ‖w (v) −wN (v)‖∞ + ‖wN −wN (v)‖∞, (4.1)

where wN =

N∑
k=0

w(k) (0)
k!

vk is the Taylor polynomial of w(v) at v = 0. Since w (v) ∈ C(N+1) [0, 1], we have

w (v) = wN(v) +
w(N+1) (v0)

(N+ 1)!
vN+1, v0 ∈ (0, 1) ,

|w (v) −wN (v) | =

∣∣∣∣w(N+1) (v0)

(N+ 1)!
vN+1

∣∣∣∣ 6 1
(N+ 1)!

max
0<v0<1

|w(N+1) (v0) |.
(4.2)

For the calculation of the value of ‖wN (v) −wN (v)‖∞, let C = (c0, c1, . . . , cn) and Λ =
(
v0, v1, ..., vN

)T ,

where ck =
w(k) (0)
k!

−W(k), k = 0, 1, . . . ,N. Then

|wN (v) −wN (v) | =

∣∣∣∣∣
N∑
k=0

w(k) (0)
k!

vk −

N∑
k=0

W(k)vk

∣∣∣∣∣ =
∣∣∣∣∣
N∑
k=0

(
w(k) (0)
k!

−W(k)

)
vk

∣∣∣∣∣ 6 |C|.|Λ|,

|wN (v) −wN (v) | 6 ‖C‖∞.‖Λ‖∞.

(4.3)

From equations (4.1), (4.2), (4.3), we have

‖w (v) −wN (v)‖∞ 6
1

(N+ 1)!
max

0<v0<1

∣∣∣w(N+1) (v0)
∣∣∣+ ‖C‖∞.‖Λ‖∞,

‖w (v) −wN (v)‖∞ 6
M

(N+ 1)!
+ max

06k6N
|ck| ,

which proves the theorem.

5. Applications

Four examples are discussed to show the reliability and effectiveness of the present method. The
numerical results are compared with other existing results. The MATHEMATICA software version 11.1
has been used for plotting the graphs and for numerical computations.
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Example 5.1. Consider the following linear singular three point boundary value problem [5],

vw” (v) + 2w ′ (v) = π (2 cos (πv) − πv sin (πv)) , 0 < v 6 1, w (0) = 0,w (1) =
1
2
w

(
1
2

)
−

1
2

.

The exact solution is given by
w (v) = sin (πv) .

Table 2: Numerical results for Example 5.1 (N = 10).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.248690 0.24869 0.247643 2.5E-14 4.2E-03
0.16 0.481754 0.481754 0.480385 2.6E-11 2.8E-03
0.24 0.684547 0.684547 0.682673 1.6E-09 2.7E-03
0.32 0.844328 0.844328 0.841789 3.1E-08 3.0E-03
0.40 0.951057 0.951057 0.947664 3.2E-07 3.5E-03
0.48 0.998027 0.998029 0.994087 2.2E-06 3.9E-03
0.56 0.982287 0.982300 0.978457 1.2E-05 3.8E-03
0.64 0.904827 0.904880 0.901389 5.8E-05 3.7E-03
0.72 0.770513 0.770706 0.767705 2.4E-04 3.6E-03
0.80 0.587785 0.588393 0.586084 1.0E-03 2.8E-03
0.88 0.368125 0.369846 0.367952 4.6E-03 4.6E-04
0.96 0.125333 0.129775 0.126626 3.5E-02 1.0E-02

Table 3: Numerical results for Example 5.1 (N = 20).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.248690 0.248690 0.248680 3.2E-16 4.1E-05
0.16 0.481754 0.481754 0.481718 1.1E-16 7.3E-05
0.24 0.684547 0.684547 0.684479 1.6E-16 9.8E-05
0.32 0.844328 0.844328 0.844227 1.3E-16 1.1E-04
0.40 0.951057 0.951057 0.950927 2.1E-16 1.3E-04
0.48 0.998027 0.998027 0.997878 3.1E-16 1.4E-04
0.56 0.982287 0.982287 0.982136 2.7E-15 1.5E-04
0.64 0.904827 0.904827 0.904690 5.0E-14 1.5E-04
0.72 0.770513 0.770513 0.770404 6.9E-13 1.4E-04
0.80 0.587785 0.587785 0.587718 8.3E-12 1.4E-04
0.88 0.368125 0.368125 0.368110 9.8E-11 4.0E-05
0.96 0.125333 0.125333 0.125378 1.7E-09 3.5E-04
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Figure 2: Absolute error of DTM for N=5, 10, 15, and 20
of Example 5.1.
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Figure 3: Comparison of Relative error for N=10 of Exam-
ple 5.1.
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Table 4: Maximum absolute errors for w in Example 5.1.
N EN,∞
5 3.9E-01
10 4.4E-03
15 1.1E-05
20 2.2E-10

Tables 2 and 3 compare the analytical solution, approximate solutions, and relative errors for the
present technique to the method discussed in [5] forN = 10 and 20, whereN denotes the number of series
components. It should be emphasized that when considering ten series terms with the present method,
the attained accuracy is of order 10−2 up to 10−14, whereas the accuracy achieved by the RKHSM [5] when
eleven terms were considered is of order 10−3. Moreover, when twenty series terms are considered with
the present method, the accuracy is increased and becomes of order 10−9 up to 10−16. It should be noted
that the achieved accuracy by the [5] even when fifty-one terms were considered was of order 10−4 or
10−5. Figure 3 shows a comparison of the relative error obtained by the present approach with RKHSM
[5]. It is obvious, that in comparison to [5], the numerical results show that the present method achieves
a better approximate solution.

Figure 2 and Table 4 show the absolute errors and maximum absolute errors for the present approach
for various values of N. The tables and graph show that as the number of components increases, the
absolute error, relative error, and maximum absolute error all decrease. As a result, adding more terms
improves the method’s accuracy.

Example 5.2. Consider the following linear singular three point boundary value problem [5],

v (1 − v)w ′′ (v) + (1 − v)w ′ (v) +w (v) = (1 − v) cosh v+ sinh v+ (1 − v) v sinh v, 0 < v 6 1,

w (0) = 0,w (1) +
1
2
w

(
4
5

)
=

sinh 4
5

2
+ sinh 1.

The exact solution is given by

w (v) = sinh v.

Table 5: Numerical results for Example 5.2 (N = 6).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.080085 0.080085 0.080056 5.9E-11 3.6E-04
0.16 0.160684 0.160684 0.160650 3.3E-09 2.0E-04
0.24 0.242311 0.242311 0.244227 3.7E-08 1.4E-04
0.32 0.325489 0.325489 0.325451 2.0E-07 1.1E-04
0.40 0.410752 0.410752 0.410713 7.9E-07 9.5E-05
0.48 0.498646 0.498644 0.498608 2.3E-06 7.5E-05
0.56 0.589732 0.589728 0.589699 5.8E-06 5.5E-05
0.64 0.684594 0.684585 0.684569 1.2E-05 3.6E-05
0.72 0.783840 0.783820 0.783825 2.5E-05 1.9E-05
0.80 0.888106 0.888064 0.888106 4.7E-05 1.8E-05
0.88 0.998058 0.997976 0.998484 2.1E-05 4.2E-04
0.96 1.114400 1.11425 1.114990 1.3E-04 5.2E-04
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Table 6: Numerical results for Example 5.2 (N = 8).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.080085 0.080085 0.080084 4.5E-15 6.0E-06
0.16 0.160684 0.160684 0.160683 1.1E-12 4.6E-06
0.24 0.242311 0.242311 0.242310 3.0E-11 4.0E-06
0.32 0.325489 0.325489 0.325488 2.9E-10 3.4E-06
0.40 0.410752 0.410752 0.410751 1.7E-09 3.0E-06
0.48 0.498646 0.498646 0.498644 7.4E-09 2.4E-06
0.56 0.589732 0.589732 0.589731 2.5E-08 2.0E-06
0.64 0.684594 0.684594 0.684593 7.2E-08 1.3E-06
0.72 0.783840 0.783840 0.783840 1.8E-07 6.8E-07
0.80 0.888106 0.888106 0.888106 4.1E-07 1.7E-13
0.88 0.998058 0.998058 0.998074 8.8E-07 1.5E-05
0.96 1.114400 1.114400 1.114430 1.7E-06 2.7E-05
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Figure 4: Absolute error of DTM for N=6, 8, 10, and 12 of
Example 5.2.
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Figure 5: Comparison of Relative error for N=6 of Exam-
ple 5.2.

Table 7: Maximum absolute errors for w in Example 5.2.
N EN,∞
6 1.5E-04
8 1.9E-06
10 4.1E-13
12 9.4E-11

Tables 5 and 6 compare the analytical solution, approximate solutions, and relative errors for the
present technique to the method discussed in [5] for N = 6 and 8, where N denotes the number of series
components. It should be emphasized that when considering six series terms with the present method,
the attained accuracy is of order 10−4 up to 10−11, whereas the accuracy achieved by the RKHSM [5] when
eleven terms were considered is of order 10−4. Moreover, when eight series terms are considered with the
present method, the accuracy is increased and becomes of order 10−6 up to 10−15. It should be noted that
the achieved accuracy by the [5] even when fifty-one terms were considered was of order 10−5 or 10−6.
Figure 5 shows a comparison of the relative error obtained by the present approach with RKHSM [5]. It is
obvious, that in comparison to [5], the numerical results show that the present method achieves a better
approximate solution.

Figure 4 and Table 7 show the absolute errors and maximum absolute errors for the present approach
for various values of N. The tables and graph show that as the number of components increases, the
absolute error, relative error, and maximum absolute error all decrease. As a result, adding more terms
improves the method’s accuracy.

Example 5.3. Consider the following nonlinear singular boundary value problem [5],
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v (1 − v)w” (v) + 6w ′ (v) + 2w (v) +w2 (v) = 6 cosh v+ sinh v
(
2 + v− v2 + sinh v

)
, 0 6 v 6 1,

w (0) = 0,w (1) +
1
2
w

(
5
6

)
=

sinh 5
6

2
+ sinh 1.

The exact solution is given by

w (v) = sinh v.

Table 8: Numerical results for Example 5.3 (N = 6).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.080085 0.080085 0.080085 5.9E-11 3.4E-07
0.16 0.160684 0.160684 0.160683 3.3E-09 1.0E-06
0.24 0.242311 0.242311 0.242310 3.7E-08 1.1E-06
0.32 0.325489 0.325489 0.325489 2.0E-07 9.5E-07
0.40 0.410752 0.410752 0.410752 7.9E-07 1.3E-06
0.48 0.498646 0.498644 0.498645 2.3E-06 1.8E-06
0.56 0.589732 0.589728 0.589731 5.8E-06 1.7E-06
0.64 0.684594 0.684585 0.684593 1.2E-05 2.0E-06
0.72 0.783840 0.783820 0.783843 2.5E-05 3.0E-06
0.80 0.888106 0.888064 0.888119 4.7E-05 1.5E-05
0.88 0.998058 0.997976 0.997949 2.1E-05 1.5E-05
0.96 1.114400 1.11425 1.114860 1.3E-04 4.1E-04

Table 9: Numerical results for Example 5.3 (N = 8).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.080085 0.080085 0.080085 4.5E-15 3.0E-08
0.16 0.160684 0.160684 0.160684 1.1E-12 6.7E-08
0.24 0.242311 0.242311 0.242311 3.0E-11 2.6E-07
0.32 0.325489 0.325489 0.325489 2.9E-10 2.8E-07
0.40 0.410752 0.410752 0.410752 1.7E-09 3.1E-07
0.48 0.498646 0.498646 0.498645 7.4E-09 4.0E-07
0.56 0.589732 0.589732 0.589732 2.5E-08 3.0E-07
0.64 0.684594 0.684594 0.684594 7.2E-08 3.0E-07
0.72 0.783840 0.783840 0.783840 1.8E-07 5.2E-09
0.80 0.888106 0.888106 0.888108 4.1E-07 1.8E-06
0.88 0.998058 0.998058 0.998061 8.8E-07 2.7E-06
0.96 1.114400 1.114400 1.114430 1.7E-06 2.2E-05
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Figure 6: Absolute error of DTM for N=6, 8, 10, and 12 of
Example 5.3.
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Table 10: Maximum absolute errors for w in Example 5.3.
N EN,∞
6 1.5E-04
8 1.9E-06
10 4.1E-13
12 9.4E-11

Tables 8 and 9 compare the analytical solution, approximate solutions, and relative errors for the
present technique to the method discussed in [5] for N = 6 and 8, where N denotes the number of series
components. It should be emphasized that when considering six series terms with the present method,
the attained accuracy is of order 10−4 up to 10−11, whereas the accuracy achieved by the RKHSM [5]
when eleven terms were considered is of order 10−4 up to 10−7. Moreover, when eight series terms are
considered with the present method, the accuracy is increased and becomes of order 10−6 up to 10−15.
It should be noted that the achieved accuracy by the [5] even when twenty-one terms were considered
was of order 10−5 up to 10−8. Figure 7 shows a comparison of the relative error obtained by the present
approach with RKHSM [5]. It is obvious, that in comparison to [5], the numerical results show that the
present method achieves a better approximate solution.

Figure 6 and Table 10 show the absolute errors and maximum absolute errors for the present approach
for various values of N. The tables and graph show that as the number of components increases, the
absolute error, relative error, and maximum absolute error all decrease. As a result, adding more terms
improves the method’s accuracy.

Example 5.4. Consider the following nonlinear singular three point boundary value problem, [5],

v (1 − v)w” (v) + 10w ′ (v) + 2w (v) +w5 (v) = sin5 v− (1 − v) v sin v+ 2 sin v+ 10 cos v, 0 < v 6 1,

w (0) = 0,w (1) +
1
2
w

(
5
6

)
=

sin 5
6

2
+ sin 1.

The exact solution is given by

w (v) = sin v.

Table 11: Numerical results for Example 5.4 (N = 8).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.079914 0.079914 0.079914 4.8E-15 1.3E-07
0.16 0.159318 0.159318 0.159318 1.1E-12 5.6E-07
0.24 0.237703 0.237703 0.237702 3.0E-11 5.6E-07
0.32 0.314567 0.314567 0.314567 3.0E-10 3.5E-07
0.40 0.389418 0.389418 0.389418 1.8E-09 4.6E-07
0.48 0.461779 0.461779 0.461779 8.0E-09 8.0E-07
0.56 0.531186 0.531186 0.531186 2.8E-08 9.2E-07
0.64 0.597195 0.597195 0.597195 8.2E-08 2.2E-07
0.72 0.659385 0.659385 0.659384 2.1E-07 7.5E-07
0.80 0.717356 0.717356 0.717355 5.1E-07 1.9E-06
0.88 0.770739 0.770738 0.770787 1.1E-06 6.2E-05
0.96 0.819192 0.819190 0.818854 2.3E-06 4.1E-04
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Table 12: Numerical results for Example 5.4 (N = 10).
v w(v) wN(v) wN(v) [5] RN(v) RN(v) [5]

0.08 0.079914 0.079914 0.079914 1.7E-16 4.0E-08
0.16 0.159318 0.159318 0.159318 1.7E-16 3.4E-08
0.24 0.237703 0.237703 0.237703 1.5E-14 1.0E-07
0.32 0.314567 0.314567 0.314567 2.8E-13 1.0E-07
0.40 0.389418 0.389418 0.389418 2.6E-12 1.2E-07
0.48 0.461779 0.461779 0.461779 1.6E-11 1.6E-07
0.56 0.531186 0.531186 0.531186 7.9E-11 1.1E-07
0.64 0.597195 0.597195 0.597195 3.0E-10 1.3E-07
0.72 0.659385 0.659385 0.659385 1.0E-09 8.4E-08
0.80 0.717356 0.717356 0.717356 2.9E-09 1.7E-08
0.88 0.770739 0.770739 0.770735 7.2E-09 5.2E-06
0.96 0.819192 0.819192 0.819168 1.9E-08 2.8E-05

0.0 0.2 0.4 0.6 0.8
0

2.×10-9

4.×10-9

6.×10-9

8.×10-9

v

A
bs
ol
ut
e
E
rr
or

N=8

N=10

N=12

N=14

Figure 8: Absolute error of DTM for N=8, 10, 12, and 14
of Example 5.4.
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Figure 9: Comparison of Relative error for N=8 of Exam-
ple 5.4.

Table 13: Maximum absolute errors for w in Example 5.4.
N EN,∞
8 1.8E-06
10 1.5E-08
12 9.4E-11
14 4.1E-13

Tables 11 and 12 compare the analytical solution, approximate solutions, and relative errors for the
present technique to the method discussed in [5] for N = 8 and 10, where N denotes the number of series
components. It should be emphasized that when considering eight series terms with the present method,
the attained accuracy is of order 10−6 up to 10−15, whereas the accuracy achieved by the RKHSM [5] when
eleven terms were considered is of order 10−4 up to 10−7. Moreover, when ten series terms are considered
with the present method, the accuracy is increased and becomes of order 10−8 up to 10−16. It should be
noted that the achieved accuracy by the [5] even when twenty-one terms were considered was of order
10−5 up to 10−8. Figure 9 shows a comparison of the relative error obtained by the present approach with
RKHSM [5]. It is obvious, that in comparison to [5], the numerical results show that the present method
achieves a better approximate solution.

Figure 8 and Table 13 show the absolute errors and maximum absolute errors for the present approach
for various values of N. The tables and graph show that as the number of components increases, the
absolute error, relative error, and maximum absolute error all decrease. As a result, adding more terms
improves the method’s accuracy.
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6. Conclusion

In this paper, certain three-point singular boundary value problems are solved by differential trans-
form method. The numerical solutions are in good agreement with other methods. The nonlinear term
in the differential equation is transformed by a convenient modification of the Faà di Bruno’s formula.
Relative errors, absolute errors and maximum absolute errors are illustrated in tables and figures in de-
tail. The method is convenient for implementation and provides results with high accuracy and without
complicated calculations. The method discussed in the paper is expected to work for delay differential
equations or differential algebraic equations.
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