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Abstract
In this paper, we introduce the concept of (inf, sup)-hesitant fuzzy subalgebras, which is a general concept of interval-valued

fuzzy subalgebras, in BCK/BCI-algebras and investigate its properties. We characterize (inf, sup)-hesitant fuzzy subalgebras in
terms of sets, fuzzy sets, hesitant fuzzy sets, interval-valued fuzzy sets, Pythagorean fuzzy sets, negative fuzzy sets and bipolar
fuzzy sets. Furthermore, characterizations of subalgebras, fuzzy subalgebras, anti-fuzzy subalgebras, negative fuzzy subalgebras,
Pythagorean fuzzy subalgebras and bipolar fuzzy subalgebras of BCK/BCI-algebras are given in terms of (inf, sup)-hesitant
fuzzy subalgebras and interval-valued fuzzy subalgebras.
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1. Introduction

Algebraic structures play a prominent role in mathematics with wide applications in many disciplines
such as computer science, information science, engineering, etc. BCK-algebras [11] and BCI-algebras
[12] are important algebraic structures and inspired the creation of logical algebras such as JU-algebras
[2], BRK-algebras [4], BE-algebras [27], IUP-algebras [10], KU-algebras [39], etc. In 1991, Xi [43] ap-
plied the concept of fuzzy sets, introduced by Zadeh [46], to BCK-algebras. Later, many algebraists
around the world applied and studied the concept of fuzzy sets and its extended, related or general
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concepts to BCK/BCI-algebras, for examples, Hong and Jun [8] introduced and discussed anti-types
of fuzzy sets based on subalgebras and ideals of BCK-algebras. Subha and Dhanalakshmi [40] studied
Pythagorean fuzzy sets based on subalgebras and ideals of BCK-algebras. Jun [21] introduced and studied
interval-valued fuzzy subalgebras and ideals of BCK-algebras. Jun et al. [24, 25] introduced notion of N-
subalgebras in BCK/BCI-algebras and investigated its characterizations. Lee [28] introduced the concepts
of bipolar fuzzy subalgebras and ideals of BCK/BCI-algebras, and investigated their related properties.
Jun and Ahn [23] applied the concept of hesitant fuzzy sets to BCK/BCI-algebras, and introduced hesi-
tant fuzzy subalgebras and ideals of BCK/BCI-algebras. Muhiuddin et al. studied and developed hesitant
fuzzy set theory on BCK/BCI-algebras (see [34, 36]).

In 2022, Julatha and Iampan [19] introduced new types of hesitant fuzzy sets on Γ -semigroups re-
lated to the infimum and supremum of its images, which are called an inf-hesitant fuzzy Γ -ideal and an
(sup, inf)-hesitant fuzzy Γ -ideal. The new types of hesitant fuzzy sets are generalizations of the concept
of interval-valued fuzzy Γ -ideals, and characterized in terms of sets, fuzzy sets, intuitionistic fuzzy sets,
interval-valued fuzzy sets and hesitant fuzzy sets. Moreover, characterizations of Γ -ideals of Γ -semigroups
are discussed by inf-hesitant and (sup, inf)-hesitant fuzzy Γ -ideals. In the same year, Julatha and Iampan
[18] introduced an inf-hesitant fuzzy ideal (right ideal, left ideal, lateral ideal) and an (sup, inf)-hesitant
fuzzy ideal (right ideal, left ideal, lateral ideal), which are generalizations of an interval-valued fuzzy
ideal, in a ternary semigroup and given their characterizations in terms of sets, fuzzy sets, Pythagorean
fuzzy sets, interval-valued fuzzy sets and hesitant fuzzy sets. Also, characterizations of an ideal of a
ternary semigroup given by the inf-hesitant and (sup, inf)-hesitant fuzzy ideals. Some related concepts of
hesitant fuzzy sets on algebraic structures, in the meaning of the infimum or supremum of their images,
are studied in [7, 14–17, 20, 26, 30, 31, 38]. The researcher who inspired this kind of study and research
was Muhiuddin, which can be seen in [32, 33, 35, 37].

As previously stated, it motivated us to study hesitant fuzzy sets on BCK/BCI-algebras in the mean-
ing of infimum and supremum. We introduce the concept of (inf, sup)-hesitant fuzzy subalgebras of
BCK/BCI-algebras and investigate its properties. It is showed that every interval-valued fuzzy subalge-
bra of a BCK/BCI-algebra is an (inf, sup)-hesitant fuzzy subalgebra, but the converse is not true. Char-
acterizations of (inf, sup)-hesitant fuzzy subalgebras are investigated in terms of sets, fuzzy sets, hesitant
fuzzy sets, interval-valued fuzzy sets, Pythagorean fuzzy sets, negative fuzzy sets and bipolar fuzzy sets.
Moreover, we characterize subalgebras, fuzzy subalgebras, anti-fuzzy subalgebras, negative fuzzy subal-
gebras, Pythagorean fuzzy subalgebras and bipolar fuzzy subalgebras of BCK/BCI-algebras in terms of
(inf, sup)-hesitant fuzzy subalgebras and interval-valued fuzzy subalgebras.

2. Preliminaries

An algebra (U;~, 0) of type (2, 0) is called a BCI-algebra, where U is a nonempty set, 0 is a fixed
element of U and ~ is a binary operation on U if the following hold:

(I) (∀u, v,w ∈ U)(((u~ v)~ (u~w))~ (w~ v) = 0);
(II) (∀u, v ∈ U)((u~ (u~ v))~ v = 0);

(III) (∀u ∈ U)(u~ u = 0);
(IV) (∀u, v ∈ U)(u~ v = 0 = v~ u⇒ u = v).

By a BCK-algebra we mean a BCI-algebra (U;~, 0) satisfies 0~u = 0 for all u ∈ U. In a BCK/BCI-algebra
(U;~, 0), the following are true:

(∀u ∈ U)(u~ 0 = u), (∀u, v,w ∈ U)((u~ v)~w = (u~w)~ v).

A nonempty subset A of a BCK/BCI-algebra (U;~, 0) is called a subalgebra (SA) of U if u~ v ∈ A for all
u, v ∈ A. Then 0 is in a subalgebra A.

We refer the reader to the books [9, 29] and paper [13] for further information regarding BCK/BCI-
algebras.
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In what follows, let U denote a BCK/BCI-algebra (U,~, 0), R denote the set of all real numbers, and V

denote a nonempty set unless otherwise specified. For an arbitrary element r of R and arbitrary functions
δ and η from V into R, we define

rδ : V→ R,u 7→ rδ(u), r+ δ : V→ R,u 7→ r+ δ(u),
δ− r : V→ R,u 7→ δ(u) − r, δ 6 η⇔ (∀u ∈ V)(δ(u) 6 η(u)).

We denote −δ, r− δ and δ
r for (−1)δ, r+ (−δ) and ( 1

r)δ (when r 6= 0), respectively.
A fuzzy set (FS) [46] in V is an arbitrary function from V into [0, 1]. an FS δ in U is call a fuzzy sub-

algebra (FSA) [43] of U if δ(u~ v) > min{δ(u), δ(v)} for all u, v ∈ U, and called an anti-fuzzy subalgebra
(AFSA) [8] of U if δ(u~ v) 6 max{δ(u), δ(v)} for all u, v ∈ U. Then the following hold:

(1) if δ is an FSA of U, then δ(0) > δ(u) for all u ∈ U;
(2) if δ is an AFSA of U, then δ(0) 6 δ(u) for all u ∈ U;
(3) δ is both an FSA and an AFSA of U if and only if δ is a constant function.

By a negative fuzzy set (NFS)[25], we mean a function from V into [−1, 0]. Then

(1) if δ is an FS of V, then δ− 1 and −δ are NFSs of V;
(2) if δ is a NFS of V, then δ+ 1 and −δ are FSs of V.

A NFS δ in U is called a negative fuzzy subalgebra (NFSA) [25] of U if δ(u~ v) 6 max{δ(u), δ(v)} for all
u, v ∈ U.

A Pythagorean fuzzy set (PFS) [44, 45] on V is an object having the form P = {(u, δ(u),η(u)) |u ∈ V}

when the functions δ : V→ [0, 1] denote the degree of membership and η : V→ [0, 1] denote the degree of
nonmembership, and 0 6 (δ(u))2 + (η(u))2 6 1 for all u ∈ V. We denote (δ,η) for the PFS {(u, δ(u),η(u)) |
u ∈ V}. Then ( δ1+i ,

η
1+i), (

i+δ
1+2j ,

i+η
1+2j) and ( δ1+i ,

δ
1+i) are PFSs in V for each FSs δ and η in V and positive

integers i and j such that i 6 j. Thus the concept of PFSs is an extension of the concept of FSs. A PFS
(δ,η) on U is called a Pythagorean fuzzy subalgebra (PFSA) [40] of U if δ is an FSA and η is an AFSA of
U.

A bipolar fuzzy set (BFS) [48] in V is an object having the form B = {(u, δ(u),η(u)) | u ∈ V}, where
δ is a NFS and η is an FS in V. We denote 〈δ,η〉 for the BFS {(u, δ(u),η(u)) | u ∈ V}. Then we have the
following conditions:

(1) 〈δ− 1, δ〉 is a BFS in V for each FS δ in V;
(2) 〈δ− 1,η〉 and 〈η− 1, δ〉 are BFSs in V for each PFS (δ,η) in V;
(3) ( 1+δ

1+i , η
1+i) and ( η1+i ,

1+δ
1+i ) are PFSs in V for each BFS 〈δ,η〉 in V and positive integer i.

Note that the concept of BFSs is an extension of the concept of FSs.
A BFS B = 〈δ,η〉 in U is called a bipolar fuzzy subalgebra (BFSA) [28] of U if δ is an NFSA of U and

η is an FSA of U.
By an interval number t̆ we mean an interval [t−, t+], where 0 6 t− 6 t+ 6 1. We denote D([0, 1])

for the set of all interval numbers. For each elements s̆ = [s−, s+], t̆ = [t−, t+] ∈ D([0, 1]), define the
operations -, =, ≺ and rmin as follows:

(1) s̆ - t̆⇔ s− 6 t− and s+ 6 t+;
(2) s̆ = t̆⇔ s− = t− and s+ = t+;
(3) s̆ ≺ t̆⇔ s̆ - t̆ and s̆ 6= t̆;
(4) rmin{s̆, t̆} = [min{s−, t−}, min{s+, t+}].

An interval-valued fuzzy set (IvFS) [47] on V is defined to be a function π̆ : V → D([0, 1]), where
π̆(u) = [π̆−(u), π̆+(u)] for all u ∈ V, π̆− and π̆+ are FSs in V such that π̆− 6 π̆+. Thus the concept of
IvFSs is an extension of the concept of FSs. An IvFS π̆ on U is called an interval-valued fuzzy subalgebra
(IvFSA) [21] of U if rmin{π̆(u), π̆(v)} - π̆(u~ v) for all u, v ∈ U.
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Remark 2.1. an IvFS π̆ on U is an IvFSA of U if and only if π̆− and π̆+ are FSAs of U.

A hesitant fuzzy set (HFS) [41, 42] on V is defined to be a function κ̃ : V → ℘([0, 1]) when ℘([0, 1]) is
the set of all subsets of [0, 1]. Then D([0, 1]) ⊆ ℘([0, 1]) and we see that every IvFS on V is a HFS on V.
Thus the concept of HFSs is both a generalization of the concept of IvFSs, and an extension of the concept
of FSs. A HFS κ̃ is a hesitant fuzzy subalgebra (HFSA) [22, 23] of U if κ̃(u) ∩ κ̃(v) ⊆ κ̃(u~ v) for all
u, v ∈ U.

3. (inf, sup)-hesitant fuzzy subalgebras

In this section, we introduce the concept of (inf, sup)-hesitant fuzzy subalgebras of BCK/BCI-algebras,
investigate its properties and give its examples. Later, we show that the concept is a general concept of
interval-valued fuzzy subalgebras. Finally, we investigate characterizations of the concept of (inf, sup)-
hesitant fuzzy subalgebras in terms of sets, fuzzy sets, negative fuzzy sets, Pythagorean fuzzy sets,
interval-valued fuzzy sets, hesitant fuzzy sets and bipolar fuzzy sets.

For each element Θ ∈ ℘([0, 1]) and HFS κ̃ on U, define the elements SUPΘ [14, 20] and INFΘ [15, 16]
of [0, 1] and the subset [U, κ̃,Θ] of U as follows:

SUPΘ =

{
supΘ, if Θ 6= ∅,
0, otherwise, INFΘ =

{
infΘ, if Θ 6= ∅,
0, otherwise,

and
[U, κ̃,Θ] = {u ∈ U | SUP κ̃(u) > SUPΘ, INF κ̃(u) > INFΘ}.

Definition 3.1. A HFS κ̃ on U is said to be an (inf, sup)-hesitant fuzzy subalgebra ((inf, sup)-HFSA) of U
if the set [U, κ̃,Θ] is a SA of U for all Θ ∈ ℘([0, 1]) when [U, κ̃,Θ] 6= ∅.

For any HFS κ̃ on V, define the FSs Fκ̃ and Fκ̃ in V by Fκ̃(u) = SUP κ̃(u), and Fκ̃(u) = INF κ̃(u) for
all u ∈ V. A HFS ε̃ on V is called a supremum complement of κ̃ on V if SUP ε̃(u) = (1 − Fκ̃)(u) for all
u ∈ V and called an infimum complement [15, 19] of κ̃ on V if INF ε̃(u) = (1 − Fκ̃)(u) for all u ∈ V. The
set of all supremum complements of κ̃ is denoted by SC(κ̃) and the set of all infimum complements of κ̃
is denoted by IC(κ̃). Define the HFSs κ̃± and κ̃∓ on V by κ̃±(u) = {(1− Fκ̃)(u)} and κ̃∓(u) = {(1− Fκ̃)(u)}
for all u ∈ V. Then κ̃± ∈ IC(κ̃) and κ̃∓ ∈ SC(κ̃). Moreover, Fκ̃± = Fε̃ = 1 − Fκ̃ for each ε̃ ∈ IC(κ̃) and
Fκ̃
∓

= Fτ̃ = 1 − Fκ̃ for each τ̃ ∈ SC(κ̃). Next, we investigate characterizations of (inf, sup)-HFSAs of
BCK/BCI-algebras in terms of SAs, FSAs, AFSAs and NFSAs.

Lemma 3.2. The following are equivalent for a HFS κ̃ on U.

(1) κ̃ is an (inf, sup)-HFSA of U.
(2) Fκ̃ and Fκ̃ are FSAs of U.
(3) −Fκ̃ and −Fκ̃ are NFSAs of U.
(4) Fκ̃± and Fκ̃

∓
are AFSAs of U.

(5) Fκ̃± − 1 and Fκ̃
∓
− 1 are NFSAs of U.

(6) Fε̃ and Fτ̃ are AFSAs of U for each ε̃ ∈ IC(κ̃) and τ̃ ∈ SC(κ̃).
(7) Fε̃ − 1 and Fτ̃ − 1 are NFSAs of U for each ε̃ ∈ IC(κ̃) and τ̃ ∈ SC(κ̃).
(8) [U, κ̃, t̆] is a SA of U for each t̆ ∈ D([0, 1]) such that [U, κ̃, t̆] 6= ∅.

Proof. (1)⇒(8), (6)⇒(4), (7)⇒(5), and (5)⇔(3). They are clear.

(8)⇒(2). Let u, v ∈ U and choose

t̆ := {m ∈ [0, 1] | min{INF κ̃(u), INF κ̃(v)} 6 m 6 min{SUP κ̃(u), SUP κ̃(v)}}.
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Then t̆ ∈ D([0, 1]) and u, v ∈ [U, κ̃, t̆]. By the assumption (8), we get u~ v ∈ [U, κ̃, t̆]. Thus

Fκ̃(u~ v) = SUP κ̃(u~ v) > t+ = min{SUP κ̃(u), SUP κ̃(v)} = min{Fκ̃(u), Fκ̃(v)},
Fκ̃(u~ v) = INF κ̃(u~ v) > t− = min{INF κ̃(u), INF κ̃(v)} = min{Fκ̃(u), Fκ̃(v)}.

Hence Fκ̃ and Fκ̃ are FSAs of U.

(2)⇒(1). Let Θ ∈ ℘([0, 1]) and u, v ∈ [U, κ̃,Θ]. Then SUP κ̃(u) > SUPΘ, SUP κ̃(v) > SUPΘ, INF κ̃(u) >
INFΘ and INF κ̃(v) > INFΘ. By the assumption (2), we have

SUP κ̃(u~ v) = Fκ̃(u~ v) > min{Fκ̃(u), Fκ̃(v)} = min{SUP κ̃(u), SUP κ̃(v)} > SUPΘ,
INF κ̃(u~ v) = Fκ̃(u~ v) > min{Fκ̃(u), Fκ̃(v)} = min{INF κ̃(u), INF κ̃(v)} > INFΘ.

Hence [U, κ̃,Θ] is a SA of U.

(3)⇒(2). By the assumption (3), we have

−Fκ̃(u~ v) 6 max{−Fκ̃(u),−Fκ̃(v)} and − Fκ̃(u~ v) 6 max{−Fκ̃(u),−Fκ̃(v)}

for all u, v ∈ U. Then, for all u, v ∈ U, we get

Fκ̃(u~ v) = −(−Fκ̃(u~ v)) > −(max{−Fκ̃(u),−Fκ̃(v)}) = min{−(−Fκ̃(u)),−(−Fκ̃(v))} = min{Fκ̃(u), Fκ̃(v)},
Fκ̃(u~ v) = −(−Fκ̃(u~ v)) > −(max{−Fκ̃(u),−Fκ̃(v)}) = min{−(−Fκ̃(u)),−(−Fκ̃(v))} = min{Fκ̃(u), Fκ̃(v)}.

Hence Fκ̃ and Fκ̃ are FSAs of U.

(2)⇒(6). By the assumption (2), we have Fκ̃(u~ v) > min{Fκ̃(u), Fκ̃(v)} and Fκ̃(u~ v) > min{Fκ̃(u), Fκ̃(v)}
for all u, v ∈ U. Then

Fτ̃(u~ v) = 1 − Fκ̃(u~ v) 6 1 − min{Fκ̃(u), Fκ̃(v)} = max{1 − Fκ̃(u), 1 − Fκ̃(v)} = max{Fτ̃(u), Fτ̃(v)},
Fε̃(u~ v) = 1 − Fκ̃(u~ v) 6 1 − min{Fκ̃(u), Fκ̃(v)} = max{1 − Fκ̃(u), 1 − Fκ̃(v)} = max{Fε̃(u), Fε̃(v)},

for all τ̃ ∈ SC(κ̃), ε̃ ∈ IC(κ̃) and u, v ∈ U. Hence Fε̃ and Fτ̃ are AFSAs of U for all ε̃ ∈ IC(κ̃) and τ̃ ∈ SC(κ̃).

(6)⇒(7). By the assumption (6), we have Fτ̃(u~ v) 6 max{Fτ̃(u), Fτ̃(v)} and Fε̃(u~ v) 6 max{Fε̃(u), Fε̃(v)}
for all τ̃ ∈ SC(κ̃), ε̃ ∈ IC(κ̃) and u, v ∈ U. Then

(Fτ̃ − 1)(u~ v) = Fτ̃(u~ v) − 1

6 max{Fτ̃(u), Fτ̃(v)}− 1 = max{Fτ̃(u) − 1, Fτ̃(v) − 1} = max{(Fτ̃ − 1)(u), (Fτ̃ − 1)(v)},
(Fε̃ − 1)(u~ v) = Fε̃(u~ v) − 1

6 max{Fε̃(u), Fε̃(v)}− 1 = max{Fε̃(u) − 1, Fε̃(v) − 1} = max{(Fε̃ − 1)(u), (Fε̃ − 1)(v)}

for all τ̃ ∈ SC(κ̃), ε̃ ∈ IC(κ̃) and u, v ∈ U. Thus Fε̃ − 1 and Fτ̃ − 1 are NFSAs of U for all τ̃ ∈ SC(κ̃) and
ε̃ ∈ IC(κ̃).

(4)⇒(5). It is similar to prove (6)⇒(7) and we omit the details.

Example 3.3. Let U = {0, s, t,u, v} be a BCI-algebra (see [9, 22]) with the following Cayley table:

~ 0 s t u v

0 0 0 t u v

s s 0 t u v

t t t 0 v u

u u u v 0 t

v v v u t 0

We define a HFS κ̃ on U by κ̃(0) = {0.6, 0.9}, κ̃(s) = (0.6, 0.7), κ̃(t) = [0.5, 0.7], κ̃(u) = {0}, κ̃(v) = ∅. Then Fκ̃
and Fκ̃ are FSAs of U and by Lemma 3.2, we obtain that κ̃ is an (inf, sup)-HFSA of U. However, we see that κ̃ is
not a HFSA of U because κ̃(t) ∩ κ̃(t) = [0.5, 0.7] * {0.6, 0.9} = κ̃(t~ t), and κ̃ is not an IvFSA of U because it is
not an IvFS.
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Example 3.4. Let U = {0, t,u, v} be a BCK-algebra (see [22, 29]) with the following Cayley table:

~ 0 t u v

0 0 0 0 0
t t 0 t 0
u u u 0 0
v v u t 0

Define a HFS κ̃ on U by κ̃(0) = [0.7, 1], κ̃(t) = (0.6, 0.7] ∪ {0.9}, κ̃(u) = {0.4, 0.6, 0.8} and κ̃(v) = [0, 0.7]. It is
routine to verify that Fκ̃ and Fκ̃ are FSAs of U. By using Lemma 3.2, we obtain that κ̃ is an (inf, sup)-HFSA of U.
However, we see that κ̃ is not a HFSA of U because κ̃(v) ∩ κ̃(t) = (0.6, 0.7] * {0.4, 0.6, 0.8} = κ̃(v~ t), and κ̃ is
not an IvFSA of U because it is not an IvFS.

Proposition 3.5. Every IvFSA of U is an (inf, sup)-HFSA of U.

Proof. It follows from Remark 2.1 and Lemma 3.2.

The converse of the above proposition is not true, generally, as we see in Example 3.4. Then by
Example 3.4 and Proposition 3.5, we see that an (inf, sup)-HFSA of a BCK/BCI-algebra U is a general
concept of an IvFSA of U.

Theorem 3.6. The following are equivalent for an IvFS π̆ on U.

(1) π̆ is an IvFSA of U.
(2) π̆ is an (inf, sup)-HFSA of U.
(3) [U, π̆, t̆] is a SA of U for each t̆ ∈ D([0, 1]) such that [U, π̆, t̆] 6= ∅.

Proof. It follows from Remark 2.1, Lemma 3.2, and Proposition 3.5.

Theorem 3.7. The following are equivalent for a HFS κ̃ on U.

(1) κ̃ is an (inf, sup)-HFSA of U.
(2) If π̆ is an IvFS on U such that π̆− = Fκ̃ and π̆+ = Fκ̃, then π̆ is an IvFSA of U.
(3) ε̃ is an (inf, sup)-HFSA of U for each HFS ε̃ on U such that Fε̃ = Fκ̃ and Fε̃ = Fκ̃.

Proof. It follows from Lemma 3.2 and Theorem 3.6.

For each HFS κ̃ on V and element Θ of ℘([0, 1]), define the HFS Hκ̃Θ on V as follows:

Hκ̃Θ(u) = {m ∈ Θ | 1+Fκ̃
2 (u) > m >

Fκ̃±
2 (u)} for all u ∈ V.

We denote Hκ̃ for Hκ̃[0,1]. Then Hκ̃(u) 6= ∅ and Hκ̃Θ(u) ⊆ Hκ̃Ψ(u) ⊆ Hκ̃(u) when u ∈ V and Θ ⊆ Ψ ⊆ [0, 1].

Theorem 3.8. The following are equivalent for a HFS κ̃ on U.

(1) κ̃ is an (inf, sup)-HFSA of U.
(2) Hκ̃ is a HFSA of U.
(3) Hκ̃Θ is a HFSA of U for each Θ ∈ ℘([0, 1]).

Proof.

(1)⇒(3). Let u, v ∈ U, Θ ∈ ℘([0, 1]) and m ∈ Hκ̃Θ(u) ∩Hκ̃Θ(v). Then m ∈ Θ, 1+Fκ̃
2 (u) > m >

Fκ̃±
2 (u) and

1+Fκ̃
2 (v) > m >

Fκ̃±
2 (v). By the assumption (1) and Lemma 3.2, we get Fκ̃(u~ v) > min{Fκ̃(u), Fκ̃(v)} and

Fκ̃±(u~ v) 6 max{Fκ̃±(u), Fκ̃±(v)}. Thus

1 + Fκ̃

2
(u~ v) > min{

1 + Fκ̃

2
(u),

1 + Fκ̃

2
(v)} > m > max{

Fκ̃±
2

(u),
Fκ̃±

2
(v)} >

Fκ̃±
2

(u~ v),

which implies that m ∈ Hκ̃Θ(u~ v). Hence Hκ̃Θ(u)∩Hκ̃Θ(v) ⊆ Hκ̃Θ(u~ v). Therefore, we conclude that Hκ̃Θ
is a HFSA of U for each Θ ∈ ℘([0, 1]).
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(3)⇒(2). It is clear.

(2)⇒(1). Let u, v ∈ U. Then max{Fκ̃±
2 (u), Fκ̃±

2 (v)}, min{1+Fκ̃
2 (u), 1+Fκ̃

2 (v)} ∈ Hκ̃(u)∩Hκ̃(v).
By the assumption (2), we have max{Fκ̃±

2 (u), Fκ̃±
2 (v)}, min{1+Fκ̃

2 (u), 1+Fκ̃
2 (v)} ∈ Hκ̃(u~ v). Thus Fκ̃±

2 (u~

v) 6 max{Fκ̃±
2 (u), Fκ̃±

2 (v)} and 1+Fκ̃
2 (u~ v) > min{ 1+Fκ̃

2 (u), 1+Fκ̃
2 (v)}. Since Fκ̃ = 2( 1+Fκ̃

2 ) − 1 and Fκ̃ =

1 − 2(Fκ̃±
2 ), we obtain that

min{Fκ̃(u), Fκ̃(v)} = min{2(
1 + Fκ̃

2
(u)) − 1, 2(

1 + Fκ̃

2
(v)) − 1}

= 2(min{
1 + Fκ̃

2
(u),

1 + Fκ̃

2
(v)}) − 1 6 2(

1 + Fκ̃

2
(u~ v)) − 1 = Fκ̃(u~ v),

and

min{Fκ̃(u), Fκ̃(v)} = min{1 − 2(
Fκ̃±

2
(u)), 1 − 2(

Fκ̃±
2

(v))}

= 1 − 2(max{
Fκ̃±

2
(u),

Fκ̃±
2

(v)}) 6 1 − 2(
Fκ̃±

2
(u~ v)) = Fκ̃(u~ v).

Hence Fκ̃ and Fκ̃ are FSAs of U. By Lemma 3.2, we conclude that κ̃ is an (inf, sup)-HFSA of U.

Lemma 3.9. An FS δ in U is an AFSA of U if and only if 1 − δ is an FSA of U.

Proof. Let δ be an AFSA of U. Then

1 − δ(u~ v) > 1 − max{δ(u), δ(v)} = min{1 − δ(u), 1 − δ(v)}

for all u, v ∈ U. Hence 1 − δ is an FSA of U.
Conversely, assume that 1 − δ is an FSA of U. Then

δ(u~ v) = 1 − (1 − δ)(u~ v) 6 1 − min{(1 − δ)(u), (1 − δ)(v)}

= max{1 − (1 − δ)(u), 1 − (1 − δ)(v)} = max{δ(u), δ(v)}

for all u, v ∈ U. Hence δ is an AFSA of U.

Next, we characterize (inf, sup)-HFSAs of BCK/BCI-algebras in terms of PFSs.

Theorem 3.10. The following are equivalent for a HFS κ̃ on U.

(1) κ̃ is an (inf, sup)-HFSA of U.
(2) (Fκ̃, Fκ̃

∓
) is a PFSA of U.

(3) (Fκ̃, Fτ̃) is a PFSA of U for each τ̃ ∈ SC(κ̃).

(4) ( i+Fκ̃
1+2j , i+Fκ̃±

1+2j ) is a PFSA of U for each positive integers i and j such that i 6 j.

(5) ( i+Fκ̃
1+2j , i+Fε̃

1+2j ) is a PFSA of U for each ε̃ ∈ IC(κ̃) and positive integers i and j such that i 6 j.

Proof.

(1)⇒(3). The proof follows from Lemma 3.2.

(3)⇒(2) and (5)⇒(4). The proofs are clear.

(2)⇒(1). Assume that (2) holds. Then Fκ̃
∓

is an AFSA of U and Fκ̃ is an FSA of U. By Lemma 3.9, we
obtain that Fκ̃ = 1− Fκ̃

∓
is an FSA of U. Thus Fκ̃ and Fκ̃ are FSAs of U. Therefore, it follows from Lemma

3.2 that κ̃ is an (inf, sup)-HFSA of U.
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(1)⇒(5). Assume that (1) holds. Let i and j be positive integers such that i 6 j and ε̃ ∈ IC(κ̃). By Lemma
3.2, we have Fκ̃ is an FSA and Fε̃ is an AFSA of U. Then

i+ Fκ̃(u~ v)
1 + 2j

>
i+ min{Fκ̃(u), Fκ̃(v)}

1 + 2j
= min{

i+ Fκ̃(u)
1 + 2j

,
i+ Fκ̃(v)

1 + 2j
},

i+ Fε̃(u~ v)
1 + 2j

6
i+ max{Fε̃(u), Fε̃(v)}

1 + 2j
= max{

i+ Fε̃(u)
1 + 2j

,
i+ Fε̃(v)

1 + 2j
}

for all u, v ∈ U. Thus i+Fκ̃
1+2j is an FSA and i+Fε̃

1+2j is an AFSA of U. Hence the PFS ( i+Fκ̃
1+2j , i+Fε̃

1+2j ) is a PFSA of
U.

(4)⇒(1) . Assume that (4) holds. We choose i = 1 = j and then the ( 1+Fκ̃
3 , 1+Fκ̃±

3 ) is a PFSA of U. Thus
1+Fκ̃

3 is an FSA and 1+Fκ̃±
3 is an AFSA of U. Since Fκ̃ = 3( 1+Fκ̃

3 ) − 1 and Fκ̃± = 3( 1+Fκ̃±
3 ) − 1, we get

Fκ̃(u~ v) = 3(
1 + Fκ̃(u~ v)

3
) − 1 > 3(

1 + min{Fκ̃(u), Fκ̃(v)}
3

) − 1

= min{3(
1 + Fκ̃(u)

3
) − 1, 3(

1 + Fκ̃(v)
3

) − 1} = min{Fκ̃(u), Fκ̃(v)},

Fκ̃±(u~ v) = 3(
1 + Fκ̃±(u~ v)

3
) − 1 6 3(

1 + max{Fκ̃±(u), Fκ̃±(v)}
3

) − 1

= max{3(
1 + Fκ̃±(u)

3
) − 1, 3(

1 + Fκ̃±(v)
3

) − 1} = max{Fκ̃±(u), Fκ̃±(v)}

for all u, v ∈ U, which imply that Fκ̃ is an FSA and Fκ̃± is an AFSA of U. By Lemma 3.9, we have
Fκ̃ = 1 − Fκ̃± is an FSA of U. It follows from Lemma 3.2 that κ̃ is an (inf, sup)-HFSA of U.

Lemma 3.11. A NFS δ in U is an NFSA of U if and only if −δ is an FSA of U.

Proof. Let δ be an NFSA of U. Then δ(u~ v) 6 max{δ(u), δ(v)} for all u, v ∈ U. Thus

−δ(u~ v) > −(max{δ(u), δ(v)}) = min{−δ(u),−δ(v)}

for all u, v ∈ U. Hence −δ is an FSA of U.
Conversely, assume that −δ is an FSA of U. Then, for all u, v ∈ U, we have

δ(u~ v) = −(−δ(u~ v)) 6 −(min{−δ(u),−δ(v)}) = max{−(−δ(u)),−(−δ(v))} = max{δ(u), δ(v)}.

Hence δ is an NFSA of U.

In the following theorem, we characterize (inf, sup)-HFSAs of BCK/BCI-algebras in terms of BFSs.

Theorem 3.12. The following are equivalent for a HFS κ̃ on U.

(1) κ̃ is an (inf, sup)-HFSA of U.
(2) 〈−Fκ̃, Fκ̃〉 is a BFSA of U.
(3) 〈−Fκ̃, Fκ̃〉 is a BFSA of U.
(4) 〈Fε̃ − 1, Fκ̃〉 is a BFSA of U for each ε̃ ∈ IC(κ̃).
(5) 〈Fτ̃ − 1, Fκ̃〉 is a BFSA of U for each τ̃ ∈ SC(κ̃).

Proof.

(1)⇒(4) and (1)⇒(5). The proofs follow from Lemma 3.2.

(4)⇒(2) and (5)⇒(3). The proofs are obvious.

(2)⇒(1). Assume that (2) holds. Then −Fκ̃ is an NFSA of U and Fκ̃ is an FSA of U. By Lemma 3.11, we
get Fκ̃ = −(−Fκ̃) is an FSA of U. Thus Fκ̃ and Fκ̃ are FSAs of U. Therefore, it follows from Lemma 3.2
that κ̃ is an (inf, sup)-HFSA of U.

(3)⇒(1). It is similar to prove that (2)⇒(1) and we omit the details.
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4. Characterizing SAs, FSAs, AFSAs, NFSAs, PFSAs, and BFSAs by (inf, sup)-HFSAs and IvFSAs

In this section, we characterize SAs, FSAs, AFSAs, NFSAs, PFSAs, and BFSAs of BCK/BCI-algebras
by (inf, sup)-HFSAs and IvFSAs.

For any subset A of V and Θ,Ψ ∈ ℘([0, 1]), define a map C(A,Θ,Ψ) [18, 19] as follows:

C(A,Θ,Ψ) : V→ ℘([0, 1]),u 7→
{
Ψ, if u ∈ A,
Θ, otherwise.

We denote CI(A) for C(A, [0, 0], [1, 1]) and is called the characteristic interval-valued fuzzy set of A on U,
and denote CH(A) for C(A, ∅, [0, 1]) and is called the characteristic hesitant fuzzy set of A on U. In the
following theorem, we give the equivalent condition that a nonempty subset of a BCK/BCI-algebra is a
SA in terms of (inf, sup)-HFSAs.

Theorem 4.1. Let A be a nonempty subset of U and Θ,Ψ ∈ ℘([0, 1]) such that INFΘ 6 INFΨ, SUPΘ < SUPΨ
or INFΘ < INFΨ, SUPΘ 6 SUPΨ. Then A is a SA of U if and only if C(A,Θ,Ψ) is an (inf, sup)-HFSA of U.

Proof.

(⇒). Let A be a SA of U and u, v ∈ U. If u /∈ A or v /∈ A, then

FC(A,Θ,Ψ)(u~ v) > SUPΘ = min{FC(A,Θ,Ψ)(u), FC(A,Θ,Ψ)(v)},
FC(A,Θ,Ψ)(u~ v) > INFΘ = min{FC(A,Θ,Ψ)(u), FC(A,Θ,Ψ)(v)}.

On the other hand, let u, v ∈ A. Since A is a SA of U, we get u~ v ∈ A. Then

FC(A,Θ,Ψ)(u~ v) = SUPΨ = min{FC(A,Θ,Ψ)(u), FC(A,Θ,Ψ)(v)},
FC(A,Θ,Ψ)(u~ v) = INFΨ = min{FC(A,Θ,Ψ)(u), FC(A,Θ,Ψ)(v)}.

Therefore, we conclude that FC(A,Θ,Ψ) and FC(A,Θ,Ψ) are FSAs of U. It follows from Lemma 3.2 that
C(A,Θ,Ψ) is an (inf, sup)-HFSA of U.

(⇐). Let u, v ∈ A. Then C(A,Θ,Ψ)(u) = Ψ = C(A,Θ,Ψ)(v). In the case where INFΘ 6 INFΨ and
SUPΘ < SUPΨ, then by using Lemma 3.2, we get

FC(A,Θ,Ψ)(u~ v) > min{FC(A,Θ,Ψ)(u), FC(A,Θ,Ψ)(v)} = SUPΨ > SUPΘ.

Thus C(A,Θ,Ψ)(u~ v) = Ψ which implies that u~ v ∈ A. In the case where INFΘ < INFΨ and SUPΘ 6
SUPΨ, then by using Lemma 3.2, we have

FC(A,Θ,Ψ)(u~ v) > min{FC(A,Θ,Ψ)(u), FC(A,Θ,Ψ)(v)} = INFΨ > INFΘ.

Thus C(A,Θ,Ψ)(u~ v) = Ψ which implies that u~ v ∈ A. Hence A is a SA of U.

Theorem 4.2. The following are equivalent for a nonempty subset A of U.

(1) A is a SA of U.
(2) CI(A) is an IvFSA of U.
(3) CI(A) is an (inf, sup)-HFSA of U.
(4) CH(A) is an (inf, sup)-HFSA of U.
(5) C(A, s̆, t̆) is an IvFSA of U when s̆, t̆ ∈ D([0, 1]) and s̆ ≺ t̆.

Proof. It follows from Theorems 3.6 and 4.1.
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For each positive integer i and FS δ in V, we define the HFS H(δ, i) and the IvFS I(δ, i) on V by:

H(δ, i) : V→ ℘([0, 1]),u 7→ {
δ

1 + i
(u),

i+ δ

1 + i
(u)}

and
I(δ, i) : V→ D([0, 1]),u 7→ {m ∈ [0, 1] |

δ

1 + i
(u) 6 m 6

i+ δ

1 + i
(u)}.

Then the following are true.

(1) H(δ, i)(u) ⊆ I(δ, i)(u) for all u ∈ V.
(2) FH(δ,i) = i+δ

1+i = FI(δ,i) and FH(δ,i) =
δ

1+i = FI(δ,i).
(3) If δ is a NFS in V, then H(−δ, i) is a HFS on V and I(−δ, i) is an IvFS on V.

Next, we characterize FSAs (in Theorem 4.3), AFSAs (in Theorem 4.4) and NFSAs (in Theorem 4.5) of
U in terms of (inf, sup)-HFSAs and IvFSAs of U.

Theorem 4.3. The following are equivalent for an FS δ in U.

(1) δ is an FSA of U.
(2) I(δ, i) is an IvFSA of U for each positive integer i.
(3) I(δ, i) is an (inf, sup)-HFSA of U for each positive integer i.
(4) H(δ, i) is an (inf, sup)-HFSA of U for each positive integer i.
(5) κ̃ is an (inf, sup)-HFSA of U for each HFS κ̃ on U and positive integer i such that Fκ̃ = δ

1+i and Fκ̃ = i+δ
1+i .

Proof. By Theorems 3.6 and 3.7, the conditions (2)-(5) are equivalent. We will prove that the conditions (1)
and (5) are equivalent.

Assume that (1) is true. Let i be a positive integer and κ̃ be a HFS on U such that Fκ̃ = δ
1+i and

Fκ̃ = i+δ
1+i . Then δ(u~ v) > min{δ(u), δ(v)} for all u, v ∈ U. Thus

Fκ̃(u~ v) =
δ(u~ v)

1 + i
>

min{δ(u), δ(v)}
1 + i

= min{
δ(u)

1 + i
,
δ(v)

1 + i
} = min{Fκ̃(u), Fκ̃(v)},

Fκ̃(u~ v) =
i+ δ(u~ v)

1 + i
>
i+ min{δ(u), δ(v)}

1 + i
= min{

i+ δ(u)

1 + i
,
i+ δ(v)

1 + i
} = min{Fκ̃(u), Fκ̃(v)}

for all u, v ∈ U, which imply that Fκ̃ and Fκ̃ are FSAs of U. It follows from Lemma 3.2 that κ̃ is an
(inf, sup)-HFSA of U.

Conversely, assume that (5) is true. Let i be a positive integer and κ̃ be a HFS on U such that Fκ̃ = δ
1+i

and Fκ̃ = i+δ
1+i . By Lemma 3.2, we have that Fκ̃ = δ

1+i is an FSA of U. Since δ = (1 + i)( δ1+i), we have

δ(u~ v) = (1 + i)(
δ

1 + i
(u~ v)) > (1 + i)(min{

δ

1 + i
(u),

δ

1 + i
(v)}) = min{δ(u), δ(v)}

for all u, v ∈ U. Hence δ is a SA of U.

Theorem 4.4. The following are equivalent for a FS δ in U.

(1) δ is an AFSA of U.
(2) I(1 − δ, i) is an IvFSA of U for each positive integer i.
(3) I(1 − δ, i) is an (inf, sup)-HFSA of U for each positive integer i.
(4) H(1 − δ, i) is an (inf, sup)-HFSA of U for each positive integer i.
(5) κ̃ is an (inf, sup)-HFSA of U for each HFS κ̃ on U and positive integer i such that Fκ̃ = 1−δ

1+i and Fκ̃ = 1+ −δ
1+i .

Proof. It follows from Lemma 3.9 and Theorem 4.3.
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Theorem 4.5. The following are equivalent for a NFS δ in U.

(1) δ is an NFSA of U.
(2) I(−δ, i) is an IvFSA of U for each positive integer i.
(3) I(−δ, i) is an (inf, sup)-HFSA of U for each positive integer i.
(4) H(−δ, i) is an (inf, sup)-HFSA of U for each positive integer i.
(5) κ̃ is an (inf, sup)-HFSA of U for each HFS κ̃ on U and positive integer i such that Fκ̃ = −δ

1+i and Fκ̃ = i−δ
1+i .

Proof. It follows from Lemma 3.11 and Theorem 4.3.

For each positive integer i and PFS P = (δ,η) in V, define the HFS H(P, i) and the IvFS I(P, i) on V as
follows:

H(P, i)(u) = {
δ

1 + i
(u), 1 −

η

1 + i
(u)}, I(P, i)(u) = {m ∈ [0, 1] |

δ

1 + i
(u) 6 m 6 1 −

η

1 + i
(u)}

for all u ∈ V. Note that FH(P,i) = 1 − η
1+i = FI(P,i) and FH(P,i) =

δ
1+i = FI(P,i). In the following theorem,

we characterize PFSAs of U by (inf, sup)-HFSAs and IvFSAs of U.

Theorem 4.6. The following are equivalent for a PFS P = (δ,η) in U.

(1) P is a PFSA of U.
(2) I(P, i) is an IvFSA of U for each positive integer i.
(3) I(P, i) is an (inf, sup)-HFSA of U for each positive integer i.
(4) H(P, i) is an (inf, sup)-HFSA of U for each positive integer i.
(5) κ̃ is an (inf, sup)-HFSA of U for each HFS κ̃ on U and positive integer i such that Fκ̃ = δ

1+i and Fκ̃ = 1− η
1+i .

Proof. By Theorem 3.7, the conditions (2)-(5) are equivalent. We will prove that the conditions (1) and (4)
are equivalent. Now, assume that (1) holds. Then δ is an FSA and η is an AFSA of U. By Lemma 3.9, we
get 1 − η is an FSA of U. Thus

δ(u~ v)
1 + i

>
min{δ(u), δ(v)}

1 + i
= min{

δ(u)

1 + i
,
δ(v)

1 + i
},

1 −
η(u~ v)

1 + i
=
i+ (1 − η)(u~ v)

1 + i

>
i+ min{(1 − η)(u), (1 − η)(v)}

1 + i

= min{
i+ (1 − η)(u)

1 + i
,
i+ (1 − η)(v)

1 + i
} = min{1 −

η(u)

1 + i
, 1 −

η(v)

1 + i
}

for each u, v ∈ U and positive integer i. Hence FH(P,i) =
δ

1+i and FH(P,i) = 1− η
1+i are FSAs of U for each

positive integer i. Therefore, it follows from Lemma 3.2 that H(P, i) is an (inf, sup)-HFSA of U for each
positive integer i.

Conversely, assume that (4) holds. Then H(P, 1) is an (inf, sup)-HFSA of U. By Lemma 3.2, we get
δ
2 = FH(P,1) and 2−η

2 = FH(P,1) are FSAs of U. Since δ = 2(δ2 ) and η = 2 − 2( 2−η
2 ), we have

δ(u~ v) = 2(
δ(u~ v)

2
) > 2(

min{δ(u), δ(v)}
2

) = min{δ(u), δ(v)},

η(u~ v) = 2 − 2(
2 − η

2
(u~ v))

6 2 − 2(min{
2 − η

2
(u),

2 − η

2
(v)}) = max{2 − 2(

2 − η

2
(u)), 2 − 2(

2 − η

2
(v))} = max{η(u),η(v)}

for each u, v ∈ U. Thus δ is an FSA and η is an AFSA of U, which imply that P is a PFSA of U.
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For each positive integer i and BFS B = 〈δ,η〉 on V, define the HFS H〈B, i〉 and the IvFS I〈B, i〉 on V as
follows:

H〈B, i〉(u) = {
−δ

1 + i
(u),

i+ η

1 + i
(u)}, I〈B, i〉(u) = {m ∈ [0, 1] |

−δ

1 + i
(u) 6 m 6

i+ η

1 + i
(u)}

for all u ∈ V. Note that FH〈B,i〉 = i+η
1+i = FI〈B,i〉 and FH〈B,i〉 =

−δ
1+i = FI〈B,i〉. In the following theorem,

characterizations of BFSAs of U are given in terms of (inf, sup)-HFSAs and IvFSAs of U.

Theorem 4.7. The following are equivalent for a BFS B = 〈δ,η〉 in U.

(1) B is a BFSA of U.
(2) I〈B, i〉 is an IvFSA of U for each positive integer i.
(3) I〈B, i〉 is an (inf, sup)-HFSA of U for each positive integer i.
(4) H〈B, i〉 is an (inf, sup)-HFSA of U for each positive integer i.
(5) κ̃ is an (inf, sup)-HFSA of U for each HFS κ̃ on U and positive integer i such that Fκ̃ = −δ

1+i and Fκ̃ = i+η
1+i .

Proof. By Theorem 3.7, the conditions (2)-(5) are equivalent. We will prove that the conditions (1) and (4)
are equivalent. Assume that (1) holds. Then δ is an NFSA and η is an FSA of U. By Lemma 3.11, we have
−δ is an FSA of U. Thus, for each elements u, v ∈ U and positive integer i, we get

FH〈B,i〉(u~ v) =
−δ

1 + i
(u~ v) > min{

−δ

1 + i
(u),

−δ

1 + i
(v)} = min{FH〈B,i〉(u), FH〈B,i〉(v)},

FH〈B,i〉(u~ v) =
i+ η

1 + i
(u~ v) > min{

i+ η

1 + i
(u),

i+ η

1 + i
(v)} = min{FH〈B,i〉(u), FH〈B,i〉(v)}.

Hence FH〈B,i〉 and FH〈B,i〉 are FSAs of U for each positive integer i. It follows from Lemma 3.2 that H〈B, i〉
is an (inf, sup)-HFSA of U for each positive integer i.

Conversely, assume that (4) holds. Then H〈B, 1〉 is an (inf, sup)-HFSA of U and thus δ2 = −FH〈B,i〉 is
an NFSA and 1+η

2 = FH〈B,i〉 is an FSA of U because of Lemma 3.2. Hence

δ(u~ v) = 2(
δ

2
(u~ v)) 6 2(max{

δ

2
(u),

δ

2
(v)}) = max{δ(u), δ(v)},

η(u~ v) = 2(
1 + η

2
(u~ v)) − 1 > min{2(

1 + η

2
(u)) − 1, 2(

1 + η

2
(v)) − 1} = min{η(u),η(v)}

for each u, v ∈ U, which imply that δ is an NFSA and η is an FSA of U. Therefore B is a BFSA of U.

5. Conclusions

In present paper, we have introduced the concept of (inf, sup)-HFSAs, which is a general concept of
IvFSAs, in BCK/BCI-algebras, and discussed some of its properties. As important study results, (inf, sup)-
HFSAs have been characterized in terms of sets, FSs, HFSs, IvFSs, NFSs, PFSs and BFSs. Furthermore,
we use concepts of (inf, sup)-HFSAs and IvFSAs to investigate characterizations of SAs, FSAs, AFSAs,
PFSAs, NFSAs and BFSAs.

The following are objectives for study and research in BCK/BCI-algebras and other algebras:

1. to introduce and study (inf, sup)-type of HFSs based on H-ideals and p-ideals of BCK/BCI-algebras;
2. to introduce and study (inf, sup)-type of HFSs based on ideals, interior ideals and bi-ideals of semi-

groups, ternary semigroups, Γ -semigroups and LA-semigroups;
3. to introduce and study (inf, sup)-type of HFSs based on substructures of BE-algebras, KU-algebras,

JU-algebras and IUP-algebras [2, 10, 27, 39];
4. to extend this study to GE-algebras, G-algebras and BRK-algebras defined by Bandaru [4–6];
5. to apply this study to the concept of rough sets according to Ansari’s study [1, 3].
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