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Abstract

In this paper, we establish some distinct exact solutions for a nonlinear evolution
equation. The sin-cosine method and the rational Exp-Function and the rational
hyperbolic function method are used to construct the solitary travelling wave solutions
of the sixth-order Boussinesq equation . These solutions may be important of
significance for the explanation of some practical physical problem.

Keywords: Traveling wave solutions; sin-cosine method; Exponential rational function
method; the rational hyperbolic functions methods, the sixth-order Boussinesq equation

1- Introduction

Nonlinear evolution equations are widely used as models to describe complex
physical phenomena and have a significant role in several scientific and engineering
fields. These equations appear in solid state physics [1], fluid mechanics [2], chemical
kinetics [3], plasma physics [4], population models, nonlinear optics, propagation of
fluxons in Josephson junctions and etc... Analytical exact solutions to nonlinear partial
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differential equation play an important role in nonlinear science, since they can provide
us much physical information and more inside into the physical aspects of the problem
and thus lead to further applications. In recent years, quite a few methods for obtaining
explicit travelling and solitary wave solutions of nonlinear evolutions equations have
been proposed. A variety of powerful methods, such as inverse scattering method [5,6],
bilinear transformation [7], Backlund and Darboux transformation [7-11], the tanh-sech
method [12,13,14], extended tanh method [15], Exp-function method[16-19], the sine-
cosine method [20-22], the Jacobi elliptic function method [23-25], (G’/G)-expansion
method [26,27], Li group analysis[28], He’s variational iteration method[29], He's
homotopy perturbation method[30-32] and homogeneous balance method [33,34] and
SO on.

The sine-cosine method was developed by Wazwaz [22] and was successfully applied
to nonlinear evolution equations [21,35,36,37], to nonlinear equations systems [38].

In this paper we will apply the sine-cosine method, rational exponential function
method and rational hyperbolic function method to obtain the exact traveling wave
solution of the sixth-order Boussinesq equation

u, —u, —[15uu,, +30u,u,, +15(u,, )? +45u%u,, +90uu,’ +u,,]=0, (1.1)

Which was recently derived by Wazwaz by generalizing the bilinear forms of the
standard Boussinesq equation [39]. Wazwaz obtained the single soliton solutions of the
sixth-order Boussinesq equation using the tanh method and multiple-soliton solutions
using Hirota bilinear method.

2- Sine-cosine method

Wazwaz has summarized the main steps introduced for using sine-cosine method, as
following:

1- We introduce the wave variables & = x—ct into the PDE, we get

#(u,u,,u,, U, U U, U, ...)=0. (2.1)
where u(x, t) is travelling wave solution. This enables us to use the following changes:
u(x,t) =U(%), (2.2)

0 d 0° , d?

- = _C_H _2 =C 21

ot d& ot d&

) ) (2.3)
o_4d o _4d
ox d&’ ox? o dgrr

And so on for the other derivates. Using (2.3) and(2.1) ,the nonlinear PDE (2.1))changes
to a nonlinear ODE:

w(U,—cU’ U’ cU"U"—cU’uU"..) =0, (2.4)
2-1f all terms of the resulting ODE contain derivatives in £, then by integrating this

equation, by considering the constant of integration to be zero, we obtain a simplified
ODE.
3- By virtue of the technique of solution, we introduce the anstaz:

U@ =uxt=2sin’ (), [ug[<7 (25)
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Or
T
U (&) =u(x,t) = Acos” (u&), |ﬂ§|<ﬂ (2.6)

Where A, uand g are parameters are to be determined later, x andc are the wave

number and the wave speed, respectively, we use:

U(&) = 4sin” (ug),
U" (&) =A"sin" (ug),

. (2.7)
U"), =nuBA" cos(ug)sin™ (ug),
(U™ =N B0 Sin" () + a2 (0 ~T)sin (uf),
(U™ =n2"* B(nB2 —3 +2)sin" " (u&) cos® (&)
+ A" pnB (30— 2)sin™ (ug) cos(us),
and the derivatives of Eq. (2.6) becomes:
U (&) = Acos” (1),
U"(&) =" cos™ (us), 2.8)

U"), = -nupA" sin(u&) cos™ ™ (ué),
U") =-n*u’B2A" cos” (ug) +nu’ A" (nf —1) cos™ ™ (u),
U") e =nA"w’B(-n* B +3np - 2) cos” 7 (u&) sin® (ug)

+ A" 1*n (30 — 2)sin™ (u&) sin(ué),

and so on for the other derivatives.

4- We substitute Eq. (2.7) or (2.8) into the reduced equation obtained above in (2.4),
balance the terms of the cosine functions when (2.8) is used, or balance the terms of the
sine functions when (2.7) is used, and solving the resulting system of algebraic
equations by using the computerized symbolic calculations. We next collect all terms
with same power in cos*(u&) or sin*(ué)and set to zero their coefficients to get a
system of algebraic equations among the unknownsu, fandA. We obtained all
possible value of the parameters ¢, f and 4.

3. The rational function in exp (§) method

The exp-function method was first proposed by He and Wu in 2006[17] and
systematically studied in [18,19], and was successfully applied to KdV equation with
variable coefficients [40], to high-dimensional nonlinear evolution equation [41], to
burgers and combine KdV-mKdV (extended KdV) [42] equations, etc. In this section, we
shall seek a rational function type of solution for a given partial equation, in terms of
exp (&), of the following form [43]:

m

_ 8y
U _Z(1+e§)k ’ (3.1)

k=0
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Where a,,a,,...,a,are some constants to be determined from the solution of (2.4).
Differentiating (3.1) with respect to &, introducing the result into Eq. (2.4), and setting

the coefficients of the same power of e°equal to zero, we obtain algebraic equations.
The rational function solution of the equation (2.1) can be solved by obtaining
ay,a,,...,a, from this system.
4. The rational hyperbolic functions methods
The rational hyperbolic functions methods [44, 45] can be expressed in the form

U (&) = % +bofnn (1) ,
1+af " (u5)
Where f (1&) takes anyone of the hyperbolic functions and a,,a,,b,,¢c and x are

§:X—Ct ) n::LZ, (41)

parameters that will be determined. The rational hyperbolic functions methods can be
applied directly as assumed before. We then collect the coefficients of the resulting
hyperbolic functions and setting it equal to zero, and solving the resulting equations to
determine the parameters a,, a,, b,,c and x.

5. Exact travelling solutions for the sixth-order Boussinesq equation
5.1. Application of Sine-cosine method
As described in Section 2, we make the transformation:

u(x,t)=U(<é), E=x-ct, (5.1)
Substituting Eq. (5.1) into (1.1) yields an ODE:
c’U”"-U"-150U® -300U " -15U"* —450°U" -90UU"* —U ©® =0, (5.2)
Integrating (5.2) twice and using the constants of integration to be zero, we find:
c’U -U -15UU"-150° -U ¥ =0, (5.3)

Substituting Eq. (2.6) and Eq. (2.8) into (3.3) and rewriting the equation in terms of the
sine function gives:

(—AB* 1" — A+ c?A)sin? (u&) +152% B2 p1? sin®” (uE) —152° sin®” (u&)

+(-AAB* +BABP ' —6AB p* +22° *)sin” 2 (uE) (54)
+(648u" =B u* —11AB% 't +628° u*)sin~* (ug)

+ (1547 Bu® =157 B% 1) sin®’ 7 (ué) =0

Balancing the terms of the sine functions, we have:
BB-D)(B-2)(5-3)=0, (5.5a)
p—-4=3p =>p=-2, (5.5b)
Substituting Eq. (5.5b) into Eq.(5.4) and Equating the exponents and the coefficients of
each pair of the cosine function, we obtain a system of algebraic equations:

sin®(ué): —904%u? —1204u* —152° =0, (5.6a)

sin™(u&): 60442 (A+2u2) =0, (5.6b)
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sin™ (uf): A(-16u* +c® 1) =0, (5.6¢)

Solving (5.6a)-(5.6¢) with the aid of Maple, we obtain:

A=-24", c=+1+164"° (5.7)

The results in Eq. (5.7) can be easily obtained if we also use the sine method (2.5).

Combining (5.7) with (2.6),the following solutions will be obtained:
2

u, (x,t) = — 24 , (5.8)
cos® (u(x—+1+164°t))
Eq.(4.8) will satisfy Eq.(1.1).
5.2. Application of rational exponential function method

Now we shall seek a rational function type of solution to the sixth-order Boussinesq
equation, in terms of exp (&) in the form :

u=U(s), c=a(x-A), (5.9)
Substituting Eq. (5.9) into Eq. (1.1) yields an ODE:
LU -U"-15¢°UU @ —30a’UU" —-15a°U"* —450°U" -90UU"* —a*U©® =0, (5.10)

Integrating (5.10) twice and using the constants of integration to be zero, we find:

F°U —-U -152°UU"-18U° —a'U @ =0, (5.11)
By use of the exp-function method, we may choose the solution of (5.11) in the form:
a a
U=a,+——+—=%—,
T 1tet (1+e9)’ (5.12)

Differentiating (5.12) with respect to &, introducing the result into Eq. (5.11), and setting

the coefficients of the same power of e¢ equal to zero, we obtain these algebraic
equations:

—90a,a,a, —45a,°a, + f%a, —15a,° —a, + f*a, —45a,°a, —15a," —45a, a, —a,

—15a,’ —45a,a,” + #°a, —45a,a,” —45a,a,” =0

—90a,’a, —90a,’a, —90a,’ +15a°a,a, + 30a’a,a, —5a, + 45:°a,a, +30a°a,”
—225a,a,” +43%a, -180a,a,” — 270a,a,a, +15a%a,” — 45a,a,” +5%a, —180a,’a,

—45a° + a'a, —6a, —4a, + 2a*a, +64%a, =0

15a%a,” —10a, —60a’a.”+154°a, — 270a,"a, — 45a,’a, —15a, — 270a,a,” — 64,
+10p%a, — 225a,° +6/3%a, —45a,"a, —30cr’a,a, —36a*a, —10a*a, — 450a,a,’ (5.13)

—270a,a,a, —45a,° +30a%a,a, =0

203%a, — 20a, —180a,a, —450a,a,” —10a, — 75«°a,a, —15a°a,” —90a,a,a,

+66a‘a, —180a,a,” —15a, —300a,” —90a’a,a, +45%a, +108%a, —4a, =0
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15a%a,” +5p%a, - 60a%a,a, +154%a, + fa, —a, —15a, —5a, — 45a,a,” —30c%a,a,

+10a*a, —45a,°a, — 225a,a,” —225a,° =0
6/°a, —6a, —a, —a‘a, —90a,” —45a,a,” —15a°a,a, =0
Ba,-15a," —a, =0

With the aid of Maple, the solutions of these algebraic equations are found to be:
a, =0, a, =2a?,

(5.14a)
a,=-2a’, p=l+a*,
And
a,=|——+—=+105a", a =2a",
4 60
(5.14Db)

2 2 4

Substituting Eq. (5.14a) and Eq. (5.143b) in Eq. (5.12) ,we obtain two exact solutions for
Eq. (1.1) of the form:

2a? 2a?

a, =-2a’, ﬂ:\/l—ioz4 —E(—EJré\/lOSja“,

u, = - y
i 1+ e(a(k lHZAtD (1-}-9(“(“ l+a4t))]2 (5.15a)

And

2
u, =(—l+i\/ﬁja2+ 2a

4 60 [a(x—\/l—la4—g(—l+i 105}/%]]
lee 2 27470
2a°

- 7 (5.15b)

a| X— LL}:‘LE(*E+i 105ja4t
2 2\ 4 60

1+e

5.3.Application of rational hyperbolic functions methods

We next substitute the rational hyperbolic method (4.1) for n=1and f (&) =sinh(z&)

into Eq.(5.3) and Collect the coefficients of the same power of resulting hyperbolic
function equal to zero, the following algebraic system will be obtained:
c’a, —a, —304°a,"a,’ ~15a," +24b,u'a’ + 30 abya, — 248, i'a; —8a,” 118,
+8b,4'a, =0
2434 2

—4aga, —b, — 45,0, +20a,’u'a, + 304, 8, +4c a., —304°a,"a
-30a,°a, +¢ %, — 200, "2 +a,u'a, —15uap, —b,u* +15u%a,%a, =0
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—11a’u'a, —45ab,” —20a,* 1*a, + 4c b3, + 30408, —30u’b %,
~908,°h,8, —6a,"a, + 6c “a,"a, —154°b,” —4bea, +15uaha, +11b,u,
+20b,'a,* —15a,%a,° =
(5.16)
-15u%a%a,” —11b, u'a’” +6c’ba,” + 4c’a @’ — 453, b a,> —150,°
+11a° 18, —90a.b,’a, —4a,8,” —Bbya,” +154°b.a,a, =0

bou‘a’ —a’u'a, —4bja’ —30b,’a, ~154°b.a,’a, +154°D, ;"
-aa" +4cha’ +c’aa’ —45ap,’a° =0

—a," +¢’ba,” ~150,°a,” =
Solving the above system, we the following results will be obtained:

a, =, a =l

(5.17a)
b, =0, c =«/,u4 +1,

And
———\/10 , =1,
(4 60 j” %
5.17b
1|,u( 1 ’_10) ( )
b 2 4 60 15 ,(3 1J_ A
0= 3 1 —2,u 4%105+7,u,

Substituting Eq. (5.17a) and Eq. (5.17b) in Eq. (4.1) along with n=2,and
f (u&) =sinh(u&) , we obtain two exact solutions of Eq. (1.1):

2

y - Iz
5 (1+Isinh(u(x— ,u4+1t)))’ (5-18a)
And
] (36008
e_1+| sinh[ L \/—125 4(4_60\/17)4_7#%]}
;Iﬂ]_:gflj%ﬁ}smh[ﬂ[x —\/1_125 4( 1Mj+7ﬂ4tJJ (5.18b)

. 15 3 1
1+1 sinh — == pt| S —-4105 |+ 7'
i) ol i (3 v |
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If we choose n=2 and f (&) =sinh(x&),and consider the rational of hyperbolic

method solution of the form (4.1) and insert them into Eq.(5.3), and Collect the
coefficients of the same power of resulting hyperbolic function equal to zero, the
following algebraic system will be resulted:

—24a° u*a, +c’a, +30u’aa,” —15a,> — 30 ah, —8b, i’ +24b e
+8a,4°a, —8, =0

60.°a,8,” +c b, +240a°u'a, +90°ab,a, — 4aa, — 452,70, —b, +200b, 1 a,
—30a,°a,—240b,u*a,* —30u%,” —60u*ab, +4c’a,a, — 2008, 1 a, — 6018, %a,
+16a,u'a, —16b,u* =0

440a,°u*a, —90a,%0,3, —604°b,> — 45ap,” + 6¢°a,%a, + 60uab,a, —120a, 1'a,

—4ba, —90°a,°a,” —6a,°a, —176a,° 1*a, + 60, a, +176b, e, +4c’b 2, (5-19)
—440b,4.%a* +120b, 1 *a,* —15a,°a,” +30u°b,a,°a, =0
-4a,a,° —90u°b 3 %a, +176a° u'*a, —45a,’ba,” + 6¢ b a,> —150,° + 4c a8,
—-60u%a,°a,” +904°b,’a,° —6b,a,° —176b,1*a,” —90a,b,a, + 604038,
-120a,* u*a, +120b,'a* = 0
c’aa,’ —4b,a’ +16b,u'a’ —45ap,%a,” —60u°b 3, %, —16a,* u'a,
+60u%b,’a +4c’p,a° —aa,* —30b,%a, =0
—ba* +c’a* -1, =0
With the aid of Maple, the solutions of these algebraic equations are found to be:
a, = 2;12, a, =1,
(5.20a)
b, =0, ¢ =164 +1,
And
= 2(3—i\/105j 2, a =1
2 30" ) BT
2 fioE (5.20b)
b, = i#‘l&, c= \/1—60;14 (l—i\/105j+52,u4,
15 > J105 2 30

Substituting Eq. (5.20a) and Eq. (5.20b) in Eq. (4.1) along with n=2,and
f (1) =sinh(x&) ,we obtain another two exact solutions of Eq. (1.1):
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2

2u
u, = ,
141 sinhz(y(x _Jiex +11)) (5.21a)
And
11 )
ol 2_ 1 105
L (2 30 j“ N
-
1+sinh2(y(x —\/1—60ﬂ4 (;—310\/105}52”% B
) o= (5.21b)
i'ui:l'OS)sinhz Ul X — 1—60y4(1—1\/105j+52,u4t
151_1\/10—5 2 30
2

1+sinh2£,u£x —\/1—6O,u4 @—310\/105}52;14”

We now consider the rational hyperbolic function of the form (4.1) with n =2and

f (u€) = tanh(us) :

U ()= a10 +b, tanr; (ué)
+a, tanh” (&)

(5.22)

Substituting Eq.(5.22) into Eq.(4.1) and Collecting the coefficients of the same power of
resulting hyperbolic function equal to zero, the following algebraic system will be
resulted:

—24a’u'a, —a, —15a,° —30°ap, +c’a, +304°a,a,” —16a,1'a,
+16b, " +24b,u'a, =0

c’b, +136a,u'a, —120°aa,” +120u*a b, —604°a,%a,” +90u’ab 3,
-30u%0," —b, —240a,° "0, —30a,°a, —4a,a, — 45a,°b, + 2408, 1i"a,
+4caja, —136b,u* +400a,° 1*a, — 4000, '8, =0

6c’a,’a, —6a,°a, —4b,a, —1016a,° 1*a, —90u’a b, —45a.b,” +120a° 1,

+30°b,a,°a, —90a,°b,a, —880a,°1*a, +120u°h,> —120a,* 11*a, + 601°b, %8,

+4c’b,a, —240a, 1*a, —15a,°a” +90%a,a,” +1016b,1'a, —904%a, %,

+880a u'b, —1204%ah,a, + 2400, 4" =0

60.4°ba,’a,” —904°b 3, °a, +6¢°b,a,” —1204°b 3 %8, +1016a,°1’a, — 453,703,

—15b,° +30u%a b3, +240a,* 1'a, +90u°b,%a,” —120b, 1* —6a,’b, +880a,° 1, (5.23)
—4a’a, +4c’aa’ —90ab,’a, +120%a, %, +120a, u'a, — 240a,° u'b, —901%b '

—880b,..*a, —1016a,°ub, =0
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4¢’ba,° +90u°ba%a, —136a,* 1'a, —60u°b,%a, +136a,°1'b, — 4a, D,
-1204°b,’a” — 45a,b,’a,” — 240a,* 1i*a, — 400a,° u'a, +c2a,a,* —30b,’°a,
+120°b 3%, +400a,° ', —30u%a°a,” —a,"a, =0

30ﬂ2b02a12 _boa14 _30,“2boalsaﬂ _16a13,u4b0 - 24aizﬂ4bo _15boaa12

+16a° 1*a, +24a°u'a, +cha’ =0

With the aid of Maple, the solutions of these algebraic equations are found to be:
8, =24", a=0,

(5.24a)
b, =244, € =+164" +1,
And
1 1 )
a, =2(--—~V105)u°, a =0,
2 30
(5.24b)

b, =242, ¢ = \/1—60;14(%—%\/105”52#4,

Substituting Eq. (5.24a) and Eq. (5.24b) in Eq. (5.22),we obtain another two exact
solutions of Eq. (1.1):

U, = 2" — 247 tanh® (u(x — 164" +1t)), (5.25a)
And
u, - 2(%—%\/105);12 _ 24 tanh? (u(x — \/1—60,114(%—%\/105)+52,u4t)), (5.25b)

5- Conclusions

In summary, we have applied the sin-cosine method along with rational exponential
function and rational hyperbolic function method to obtain travelling wave solution for the
sixth-order Boussinesq equation . In fact, the present methods are readily applicable to a large
variety of such nonlinear equations. It is shown that The hyperbolic ansatze handled Gardner
equation effectively and the sin-cosine method and the rational exponential function method
are powerful and straightforward solution method to find closed-form, periodic and non-
periodic analytical expressions for travelling waves of nonlinear wave and evolution equations.
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