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Allee effect in a Ricker type predator-prey model
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Abstract

The stability of the predator-prey model subject to the Allee effect is an interesting topic in recent times. The impact of
a weak Allee effect on the stability of a discrete-time predator-prey model is investigated in this paper. Equilibrium analysis,
stability analysis, and bifurcation theory are used to examine the mathematical properties of the proposed model. By using the
Allee parameter as the bifurcation parameter, we provide sufficient conditions for the flip bifurcation. Numerical simulations
are used to demonstrate our analytical conclusions.
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1. Introduction

Theoretical ecologists and mathematical biologists have become more interested in mathematical mod-
elling of population dynamics in recent years [10, 13, 16, 27]. Continuous and discrete models are two
types of mathematical models often used to model population dynamics. Continuous-time models de-
fined by differential equations and discrete-time models represented by difference equations. Discrete-
time population models have gotten a lot of attention in recent years. The following are the reasons
for this. When populations have non-overlapping generations or the number of populations is minimal,
discrete-time models are more appropriate than continuous-time models. Second, discrete-time mod-
els provide more accurate numerical simulation results. Furthermore, discretization is used to produce
numerical simulations of continuous-time models. Finally, discrete-time models feature complicated dy-
namical behaviors; single-species discrete-time models, for example, have bifurcations, chaos, and more
complex dynamical behaviors [12, 14, 20, 28, 29]. The Lotka-Volterra model of predator-prey interactions
is the first and most basic. Lotka [25] and Volterra [30] developed the model independently. The Lotka-
Volterra model assumes that a predator’s prey consumption rate is directly proportional to the abundance
of prey. This indicates that predator feeding is only limited by the availability of prey. While this may be
plausible at low prey densities, it is impractical at large prey densities, when predators are constrained
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by time and digestion. Researchers have proposed a number of improvements to the model, including
Holling type functional responses and density-dependent prey growth. The Allee effect can be used to
alter the Lotka-Volterra model in another way. It is generally recognized that introducing the Allee effect
into the system makes modelling the prey-predator interaction more realistic. Allee first described the
Allee effect in 1931 [1]. It describes a positive correlation between any measure of species fitness and
population numbers. The difficulty in finding mates, inbreeding depression, social dysfunction in small
populations, predator avoidance, and food exploitation are the main drivers of the Allee effect [4, 8, 15].
Many natural species have shown evidence of the Allee effect, including plants, insects, marine inverte-
brates, birds and mammals [6]. According to recent research, the Allee effect has significant dynamical
impacts on population model stability analyses. The Allee effect causes either instability or stabilization
in the system. A positive fixed point’s local stability can be altered from stable to unstable or vice versa.
The Allee effect can cause complex dynamics in predator-prey systems by changing the dynamics of the
system in unexpected ways. However, few publications investigate the dynamical behaviors of predator-
prey models with the Allee effect, such as bifurcations and chaos occurrences for discrete-time models.
Celik and Duman examined a discrete-time predator-prey model with the Allee effect on the prey popu-
lation and discovered that it stabilizes the population [4]. In a discrete-time predator-prey model, Wang
et al. investigated the Allee effect on both populations [31]. Chen et al. investigated a discrete-time
predator-prey model with the Allee effect and discovered that as the Allee parameter is increased, the
model may transition from complex unstable states to stable ones [5].

In [18], the author has modified the density-dependent prey growth to follow Ricker model. Ricker
introduced his model in the context of stock and recruitment in fisheries in 1954 [26]. In this paper, we
consider that the density of prey follows the Ricker model. In addition, we suppose that the predator eats
the prey in accordance with the Holling type-I functional response. Moreover, we will subject weak Allee
effect to that prey growth function as follows:

7exn)

Xnil =Xn +Txnel ¥ (1—e —XXnYn, Ynil =Yn+ XXnYn —dYn, (1.1)

where x,, and yn, are the densities of prey and predator populations; 1, €, x and & are positive parameters.
The following is the interpretation of the the components of the model (1.1):

* X, el represents the rate of the increase of the prey population in the absence of predator, and
1—e~¢* is the term for mate-finding Allee effect.

¢ The term ax,yn stands for the rate of decrease due to predation. It also stands for predator density
variation as a function of prey population.

¢ The drop in predator population due to natural death is represented by dyn.

The main goal of this research is to investigate the impact of subject Allee effect to Ricker model. The
structure of this paper is as follows. The existence and local stability of equilibria in model (1.1) are
discussed in Section 2. In Section 3, we examine flip bifurcation and Neimark-Sacker bifurcation for
model (1.1) by using € as a bifurcation parameter. We give numerical simulations in Section 4, which not
only demonstrate our theoretical results, but also show sophisticated dynamical behaviors such as the
cascade of period-doubling bifurcation in periods 2, 4, and 8, as well as quasi-periodic orbits and chaotic
sets. The discussion is presented in Section 5.

2. Fixed points: existence and stability

In this section, we investigate the existence and stability of equilibrium points of the model (1.1) in
R2. We begin by discussing the existence of model (1.1) equilibria. Clearly, Ey = (0,0) is a model (1.1)
equilibria. The other equilibria of model (1.1) satisfy

*

rel ™ (1—e ) —ay* =0, ax*—5 =0, (2.1)
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by solving the system (2.1) for x* and y*, we obtain

ed

5 re"s" (1 — e*W)
0 (2 )
o o
which always exists for positive parameter values. The biological meaning of these two fixed points is as
follows. The fixed point Eg refers to a situation in which there is no prey and no predators. The fixed
point E; denotes the coexistence of a fixed nonzero number of predators and prey.
After finding the equilibrium points, we need to investigate their stability. In order to do that, we have
to find the variation matrix. J(x,y) is the Jacobian matrix of the model (1.1) at the fixed point (x,y), which
is given by

e+ 1)x—1)e ¥ —x+1)el ¥ —ay+1 —ax
](x,y)—( oy ocx—5+1>’

the Jacobian matrix has the following characteristic equation:

P> —p(x,y)p+q(xy) =0, (2.2)

where
pxy) =71(((e+1)x—1)e X—x+1)e! ™ —ay+2+ax—3,

g y) =71 (((e+1)x—1)e ™ —x+1) (ax — 5+ 1)e' ™ + ax+ (§ — 1) (ocy — 1).
Proposition 2.1. The equilibrium point Eo(0,0) of model (1.1) is a non-hyperbolic equilibrium point.

Proof. 1t is clear that the eigenvalues of ] (E;) are p; =1 and p, = 1— 9, as a result, the proof is completed.
O]

The following proposition demonstrates the local dynamics of the equilibrium point E;.

Proposition 2.2. If the following requirements are met, the equilibrium point €1 of model (1.1) is locally asymptot-
ically stable:

x—(e+1)d

(1) ré((oc—Z)e“Tfé—(oc—Ze—ﬁe x >+4oc>0;

(i) (x—e—1)e" % > a—1.

Proof. Evaluating the characteristic equation (2.2) of the Jacobian matrix ] of the linearized system of
model (1.1) about E; we get:

_ 1d(e +1)e ™ w — e o 4 2« -0 ((06— e—Tle v +1— oc) re’s 4«

plx,y) = " , qxy) = " ,

the positive fixed point E; is locally asymptotically stable, using [11, Theorem 4.4 p.200], if

p(x,y)l<14+q(x,y) <2

the criterion 1 —p(x,y) + q(x,y) > 0 is satistied when

o ax—(e+1)8

ré(e%—e « ) >0,

that easily seen to be equivalent to
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clearly, this condition is always satisfied. Next, the criterion 1 +p(x,y) + q(x,y) > 0 is

a—(e+1)d6

rf)((oc—Z)e‘foB —(x—2e—2)e = > + 4o,

x

>0

which is the same as
a—(e+1)d

r6((o¢—2)e“775 —(x—2e—2)e « >—i—4oc>0.

The criterion 1 — q(x,y) > 0 translates as

_es as
6((a—e—1)e a+1—oc>re 0

which is positive when

O

The case of the nonhyperbolic fixed point is more complicated. There are various possibilities based
on eigenvalues of 1 or -1. When one eigenvalue is on the unit circle and the other is inside the unit circle,
center manifold theory is commonly used to establish the stability of this fixed point [11, 22, 32].

Proposition 2.3. E; loses stability:

(i) via a period doubling bifurcation if the conditions listed below are met:
(a) = e ;
) <(oc72)e‘xT75 —(x—2e—2)e e ;1)5 >
ax—(e+1)8 a—58
(b) vé(e+1)e” «  —71de « +2a<0;
(ii) via a Neimark-Sacker bifurcation if the conditions listed below are met:

slet+1)e™ 50 rse%a® 42
T € e 23 —Toe « X
(a) } m ‘ 1<

75((oc7e71)e*%?+1fcx)remTfé+oc

X 4

ox—1 o

(b) 5= _ (et

€

Proof. By using [11, Theorem 4.5 p.203], the period doubling bifurcation conditions are 1+ p(x,y) +
q(x,y) = 0 and q(x,y) > 0. The condition 1+ p(x,y) + q(x,y) = 0 is satisfied, using Proposition (2.2),
when

a—(e+1)d

1’23((oc—2)e“7723 — (oc—2e—2)eT> + 4

x

=0.

Solving for r, we get
4o

5<(“—2)e“7_6 —(x—2e —2)ew>’

T =

the other condition is met when

ot (—e—1)8

rd(e+1)e — e T+ 20

<0,
0.8

that easily seen to be equivalent to

o+ (—e—1)8

rdle+1)e =« — "% 61+ 2a < 0.

Part (ii) can be proved in a similar way. O

We may conclude from the above considerations that the Allee parameter e influences the stability of
the system’s inner equilibrium points.
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3. Analysis of bifurcation

3.1. Neimark-Sacker bifurcation about 4
Consider the parameter € in a vicinity of €*, i.e., € = €* + p in which p <« 1, then the discrete model
(1.1) becomes

Xni1=Xn +Txn el ¥ (1—e (%) _ox 4, Ynit = Yn + X0 Yn — 8Yn, (3.1)

_ (e*+pn)s
Te zx 1—e™ x

X

the characteristic equation of J(E ) about E = (&' ) ) of the model (3.1) is

o> —p(Wp+4q(p) =0,

where

ro((e* + ) —Fl)eoﬂi(e ;u)mé e 5T+ 2« -0 <(<x— e~ e
P(H) = o ’ q(li) = o ’

the roots of characteristic equation of J(E,) are

_ P £ w/4q(w) —p?(1)

P12 = > ’
oa—((e*+pn)+1)s a5
rdo((e*+u)+1)e = — e 5T + 20
- 2u
<r6(u+€+1]zew —2rd(u+e+1)e (7;176;2)“20( +e2m&26 <Sr—4eO(T7é oc2+4ew oc2> o
L
Zl:i — o2 4
ax—((e +u +1)6 x—8
(e*+u)+1e —e « Or+2x
P12l =V q \/ " ,
and
o+ (—e—1)8
dlp12l _ (+ (—1+ax—€)d)e S =0
o 20(3/2\/—r6(—1 ta—ele T a

+ dre’s (cx 1)+«

additionally, we required that when pu =0, pf‘z #1,m =1,2,3,4, which corresponds to p(0) # —2,0,1,2.
This can be shown by calculation. If un, = xn —x*, v = yn —y*, then the fixed point E; of model (1.1) is
transformed into O(0,0). After manipulation, one obtains

Unil = Un +r(un —|—X*) el—X*—un (1 _e—(e*+u)(un+x*)) - oc(un —|—X*) (Vn _|_y*),
Vnil =Vn + & (un +x%) (v +y*) =0 (vn +y7),

rezx(le(e*zu)é>

where x* = %, y* = m . The normal form of model (3.2) is investigated further when
u = 0. Up to fourth order, (3.2) is expanded about (un,vn) = (0,0). We obtain from the Taylor series

(3.2)

_ 2 3 4
Un41 = Wiiln + W12Vn + Wi3U5 + WiglnVn + wisuy, + O(lunl®), }

Vn41 = W21ln + W2Vn + W23URVn,
:r(((e +1)x —1) Ry ) 1= _oy* 41, wip = —ax*,
%[re (e —|—1)x*—2)(e*+1)e*€*"*—X*+2)}, Wi = —a,
— %[re ((e +1)2(e*x*+x*—3)e*€*"*—x*+3>},

*

wy1 =oy*, wyy=ox*—0+1, w3 =«

where
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Now, let
. oa—((e*+p)+1)8 b
_rd((e*+p)+1)e x —e & dr+2a
T] - 20 7
(—2p—2e—2)5+2 (—pu—e—2)5+2 _ _5 +(—e—p—1)5
, (ré(u+e+1)%¥—2r6(u+e+1)e R (X—O—ezoccxz"3 5r—4e‘be a2+4e% ocz>r6
C =3\ — o2 s

in addition to, the invertible matrix T defined by

T:( w0 )
n—wi; —(C

e )=(ae, S ()
v/ \n—wn —C Yn )’

Using the next translation:

(3.2) gives
X — X O (Xn, Y.
Cen)= (29 o) (o))
where
@ (Xn, Yn) = M1 Xn? + TT2X0 Yo + TT3X3 + O(IXn[4),
Y (Xn, Yn) = T Xn? + Moo X Yo + T3 X3 + O([Xn ),
and

M = wpwiz + wig (N —wiy),

T = —Cwiy,

M3 = wisw?,,

Ty = 1= [wig (w13 — wo3) + wia (N — wi1)],
My = wipwas — wig (N — w1y,

My = % (N — wi)wisw,) .

In addition,
Ox, xnl(00) =21, Px.valioo) =Th2,  Pvavalie =0
Ox, X Xnl(00) =013, OxuXnYnli00) = CxnYnYal(00) = PYaYavalio0 =0
and
Yx xnl00) =2M21,  ¥xovuloo) = T2, ¥v,valigo) =0
WX X Xnl(00) = 61123, ¥xxuYul00) = ¥Xu¥uYul(00) = ¥¥aYavalioo) =0

In order for (3.3) to undergo a Neimark-Sacker bifurcation, it is mandatory that the following discrimina-
tory quantity, i.e., & # 0 (see [11, 22, 24]),

1—2p)p? 1
E’ — _Re (1_p)pT11T20] — E ||T]1”2 — ||T02H2 + Re (pTZl) 7
where
1
To2 = é [®ann - (DYnYn + Zl‘yann + L(WX“X“ _WYnYn + Z(DXnYn )] !
(0,0)
1
T11 = [(DXan + CDYnYn +t (WX“X“ +WY“Y")] !
4 (0,0)
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1
20 =3 [Dxuxn = Py v, +2¥x, v, + U (WX, — Py, y, =20,y )] ’
(0,0)
1
1= 7¢ [@x X Xn + PX Yo Yn + X Xn Ve ¥y va v,

F (WYX XX+ X Yo Vi — Oxo X Yo — Py vy ) (0,0 /

after calculating, we get

1 1
Tz = 4 (11 + TTop + ¢ (TTyg 4+ TT12)], ™ =5 (Mg + T2,
1 3
T0 = 4 (11 + Ty + ¢ (T —TTy2)], T =g (M3 + ¢ (Mp3)].

Based on this study and the Neimark-Sacker bifurcation theorem (explained in [7, 17, 19, 22, 23]), we
obtain the following Proposition.

Proposition 3.1. If & # 0, then the discrete model (1.1) experiences a Neimark-Sacker bifurcation at Eq as the
parameters satisfy (ii) from Proposition (2.3). Moreover, an attracting (resp. repelling) closed curve bifurcates from
Ey if £ < O( resp. & > 0).

Remark 3.2. Based on the bifurcation theory presented in [23], if the discriminatory quantity & is negative,
the bifurcation is called a super-critical Neimark-Sacker bifurcation.

3.2. Period-doubling bifurcation about E;

The flip bifurcation of a system (1.1) is discussed in this section. According to [17], implementing the
center manifold theorem, which allows us to focus our attention on the center manifold, is an excellent
strategy for bifurcation analysis. Because the center manifold theorem is dependent on the normal form
of the map, we must first utilize co-ordinate transformations to simplify the system’s analytic expressions
in normal form before applying center manifold theory. In order to achieve flip bifurcation, the linearized
system’s Jacobian matrix must have one eigenvalue p; = —1 and the modulus of another eigenvalue
Ip2| # 1. To examine the flip bifurcation of the equilibrium point E; of system, we use the Allee parameter
€ as a bifurcation parameter. The equilibrium point is neither stable nor unstable at the bifurcation point,
but when the flip bifurcation occurs, the equilibrium point loses its stability and the system transitions to
a new behavior with period-2. We take €* to be a new dependent variable, and we obtain

—(e+e*)xn)

Xni1 :xn+rxne1_x“ (1—e — & XnYn, Yntl =Yn + XXnYn —OYn.- (3.4)

Let un, = xn —x*,vn = Yyn —y*, then, model (3.4)’s equilibrium E; transforms to O(0,0). Calculating
yields

— — — 2 — — * — 3 — %12 — 2 %
Un41 = Wity + W12VR + W13US, + W14lnVn + O15UR €T + Wiely, + Wi7Un (€7) + wiguy €

+ 0 (Junl, le*)?, (3.5)

Vi1 = W21ln + W22Vn + W3UnVn,

where
@i =7 (((e+ V¥ = e ™+ 157 '™ —ay” 41, @ = —a”,
vl (e DX —2)(e+1)e X —x* +2)
(U13 - — 2 , w14 e —oc/
1—x* 2 * —ex* *
O . +1 1)x* —3 43
G = —r* (e + 1x* —2)el (¥ e = 1© (e +1)*((e+ ;X Je X+ ),
__ r(xPlle+Dxr —=3)e! (X p(24 (e + 1P (x*)P —4(e + 1)xF)el (eF DX
e 2 ;s = > :

Wy =ay”*, Wp=ox*—8+1, wy=ca
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Now, construct an invertible matrix T

T = w12 w12
—1—-wy pp—wy )’

(o) =(%m 5% ) (%)
Vn —1—wy p2—wqg Yn )’

and use the translation

(3.5) gives
Xn+1 ) ( -1 0 ) < Xn > (/Is(unzvn/ 6*)
= + | ~ , 3.6
<Yn+1 0 p2 Yn Y (Up, Vi, €%) (3.6)
where
& (v ) FB (02— TT) o | D (o2~ O11) ~T@B | T2 =)
e Wi (1+p2) ™ w12 (14 p2) T @ (l4p)

Wig (P2 —W11) 5 Wie(p2—11) 3 . Wi7 (P2 — W11)
n

18 16 7 un(€)2 4+ 0 ([unl, lunl, le*))*,
w12 (14 p2) Wp(1+p) ™ Wp(l+pe) T B

(v ) = SBUE ) o O+ O0) + O OROF ),
. w2 (14p2) w1z (1+p2) T On(4p) T

= —ufe =2 — un(€*)°+ O (Junl, vnl, l€*))*,
wip(14+p2) ™ W (l+p2) ™ wpp(l+p) e

W2 = @732 (x%L 42X Y + Yi) )
Unvn = —W12 (14 @17) X5, + (012 (p2 — @11) — @12 (1 + ©11)) Xn Y + D12 (p2 — @11) Yau,
Une* = WpXne® + WpYne,
W2 et = wpp2 (xie* +2Xn Yne* +Y$le*) .

n

Following this, we identify the center manifold W¢(0,0) of (3.6) at (0,0) in a small neighborhood of €*
[3, 22, 23, 33]. According to the center manifold theorem, a center manifold W€(0,0) can be expressed as
follows:

We(0,0) = { (X, Yn) : Yo = coe” + e1X + caXne” +ca(€7)2+ 0 ((1Xal le*)°) },

where O ((IXnI + |e*|)3> is a function with order at least three in their variables (X;,, €*), and

_ (14 @) (W17 4+ D1y — (W13 — W23)W13) s (1+wq) _
co=0, ¢ = 5 , g=——"——, c3=0.
p2—1 (1+p2)

Consequently, the map (3.6) is restricted to W¢(0, 0) as follows:

f(Xn) = —Xn + X3 + hoXne* + haXie* +hyXn(e*)2+hsX3 +0 <(|xn| , |e*|)4> , (3.7)
where
i = 1o (1170 + (5~ O5)@T — Gt (o2 — 1) @i + 020 + 5) 1 — pactia,
hz:lj—mm(pz—aﬁn,
s = s AT — (GO (L + @1i) + GH@m (@1~ 1)e} +4(1+ @)
(22 298 a5, + a(am + ) aos — D208 o2 4 (=3 (— (@ — 03 (@i + 1)o7
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.3 e _ e
+w11w14(w11+1))(1+w11)w15+w12w18(w11—1))p2+(1+w11)(((wz3—w13)w11
N\
+ wzs)wlz + w1y w14) w15 + wnwlzwls} ,

(p2 — @11) (@17(p2 + 1)2 — @152 (1 + @11))

hy = /
(p2+1)°
hs = ! (2007 — ©5)°@1 + (— 03 @15 + (301,05 — 2073 — T o2 + 20003°
(p2 +1)%(p2 —1)

P D 33— P P R, S

— 5313 +3W23" + W1) W11 + P W16 + (3W13W03 — 213~ — Wp3~ — W1g) P2 — o3 (W13
\ —02 Y, | _ _ _ N — . 2

—wzs))wlz —(4(w13—w23)w11 + (423 — 5W13)p2 + 3W13 — 4o3) W17 + (W13 — W3)P5

%

+ (20535 — 313)p2 — @33 ) (1 + @11) D174 + @13 (1 + @11 (p2 — @11 (P2 — 2071 — 1))

The following discriminating quantities must be nonzero for the map (3.7) to experience a period-doubling
bifurcation:
. < 10t 62f> © 163f+(162f)2
1= ;o W2 = | Z3v3 SAYY
(0,0) 6 0X3, 20X%

dXnde* ' 2de* 0X2
1 2
w1 =hy+ 5113 and wy =hs+hi.

(0,0)
After calculating we obtain

From the above analysis in [21] and theorem in [7, 17, 19, 22, 23], we have next Proposition.

Proposition 3.3. If w, # 0, map (3.4) experiences a period-doubling bifurcation about the unique positive equi-
librium £, when €* varies in a small vicinity of O(0,0). Moreover, if wy > 0( resp .wo < 0), then the period-2
points that bifurcate from 1 are stable (resp. unstable).

4. Numerical simulation

In this section, we give some numerical simulations for model (1.1) to support our theoretical results.
The bifurcation parameters are explored in the following two cases.

Case 1: Varying € in range 0.07 < e < 0.25 and fixing the other parameters at r = 12, = 0.5,5 = 0.9.
When 0.115082 < e < 0.25 model (1.1) has a unique stable equilibrium point E;, see Figure 1 (a)-(b). Eq
loses its stability via a Neimark-Sacker bifurcation when e = 0.115082 with

ot (=e-1)8
(x4 (—1+a—e)d)e = dr — 04226760790 < 0.

x+(—e—1)8

20(3/2\/—r6(—1+oc—e)e a4 ore T (a—1) 4+
Moreover, the eigenvalues of Jg, about E; are

P12 = 0.54602388448 + 0.8377693009, 4.1)

after performing some computations in Maple,
Tor = —0.06207127131, t17 = —0.1387147809 — 0.33358486801, To9 = —0.1357567981, Tp1 = 0. (4.2)

The value of the discriminatory quantity is & = 0.01289064811 > 0 in light of (4.1) and (4.2). As a result, if
€ < 0.115082, the discrete-time model (1.1) undergoes a subcritical Neimark-Sacker bifurcation, resulting
in an unstable invariant close curve, as shown in Figure 1 (c)-(f). The stable fixed point E; becomes
unstable, allowing preys and predators to coexist by a persistent positive periodic oscillation as time
passes.

Case 2: Varying € in range 0.35 < € < 5.2 and fixing r = 12, = 0.5,6 = 0.9. Figure 2 shows that
equilibrium E; is stable for e < 0.430471, and loses its stability when e = 0.430471 via a period doubling
bifurcation. Further, when e > 0.430471 a chaotic set is emerged with the increasing of r.
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Figure 1: Phase portraits of fixed point E; and its bifurcation curve.
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Figure 2: Phase portraits of fixed point E; and its bifurcation curve.
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5. Conclusions

Allee effect is considered as an important ecological phenomenon. It might cause a sudden and
unexpected extinction. In this work, we investigated the impact of the Allee effect on the stability of a
predator-prey model. The local stability and bifurcation diagrams of the model (1.1) have been studied by
combining stability analysis, phase-plane analysis, and bifurcation diagram analysis. The stability of the
equilibrium point could be changed from stable to unstable or vice versa according to the values of the
parameters. Furthermore, the solution will spend less time to reach the stable state when it is stable. It is
also worth noting that the Allee effect can help to eliminate the chaos. Because of the natural systems are
more complex than models, the Allee effect should not be neglected [9]. The global qualitative analysis
of model (1.1) has not been obtained yet, we will leave it for our future work.
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