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Abstract
This study demonstrates how to construct the solutions of a more general form of population dynamics models via a

blend of variational iterative method with Sumudu transform. Evolution of population growth models are presented and new
models which are more general, are proposed in form of delay differential equations of pantograph type. This study presents
suitable reformulation and reconstruction for some existing population growth models in terms of delay differential equations
of pantograph type. Also, presentation is given on innovative ways to obtain the solutions of population growth models where
other analytic methods fail. Stimulating procedures for finding patterns and regularities in seemingly chaotic processes are
elucidated in this paper. Some single and interacting species population models are illustrated graphically and analyzed. How,
when and why the changes in population sizes occur can be deduced through this study.
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1. Introduction

There is a growing need to understand the dynamics that affect populations of organisms over time.
The study of population dynamics can help to understand what influences the abundance of organisms at
a particular time. It can also help to find answer to why the abundance of a species of organisms changes
over time. Finding patterns and regularities in seemingly chaotic processes is through the studies on
population dynamics. Prediction on certain species of animals or plants which are under the danger
of extinction is as a result of studies on population dynamics. How a deadly virus spreads can only be
understood and explained through population dynamics. There are several reports on using mathematical
models to analyze the population dynamics [10, 13, 14, 16, 25, 28]. Mathematical modeling of physical
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situations involves differential equations. Differential equations are indispensable for the description of
many real-world phenomena. Differential equations are generally known as powerful tools for the study,
analysis and prediction of essential real-world occurrences.

Let x(t) denote the population size at time t and let r be the population growth rate (birth rate minus
death rate). In 1798, the studies of Malthus on population growth was summarized by the model [24],

x ′(t) = rx(t), x(0) = x0. (1.1)

Malthus was a British demographer and came up with the model which is given by (1.1). The model was
as a result of studies of demographic data which were more than a hundred years. Solving the initial
value problem (1.1) by separating the variables yields

x(t) = x0e
rt.

Obviously, it is an exponential model. It speculates exponential growth if r > 0 and represents the
traditional decay if r < 0. Such a model may be valid for only a short period or only when the population
is scarce and resources are abundant. It is a common knowledge that at a certain level of growth of a
population, certain negative factors do set in which hinder further growth. Instances of such negative
factors include poor agricultural yields which could cause starvation due to food shortages, air pollution
as well as emergence of virus and diseases that could affect the lifespans of the organisms. Indeed,
prediction of the model by Malthus is unrealistic in nature. In 1838, Verhulst considered the fact that
resources are limited and proposed the logistic growth model [30],

x ′(t) = rx(t)

(
1 −

x(t)

K

)
, (1.2)

where r(> 0) is the intrinsic growth rate and K(> 0) is the carrying capacity of the population. Given an
initial condition x0, the solution for the logistic growth model is obtained as

x(t) =
x0K

x0 + (K− x0)e−rt
. (1.3)

Competition occurs as x(t) gets large and x(t) approaches K as t→∞. The logistic growth model predicts
a rapid growth when x(t) is smaller than K and it stipulates decrease of growth when x(t) approaches K. If
x0 = K, the population remains in time at x(t) = K, which is an equilibrium point. Naturally, occurrences
of processes are not instantaneous. Delays are constituted in the dynamical systems (see, e.g., [2, 15]).
Behavioral responses of organisms to environmental changes takes a unit of time before it is feasible.
Recovery of grasses after grazing takes a unit of time. Ordinary differential equations are not enough
to model these kinds of scenarios. The growth rate x ′(t) at time t depends on both x(t) and x(t− τ),
where x(t− τ) is the population size in some period in the past (t− τ) and τ > 0 is a constant. In 1948,
Hutchinson proposed a more logistic growth model that involves delay [21],

x ′(t) = rx(t)

(
1 −

x(t− τ)

K

)
, x(0) = x0. (1.4)

However, the analytic solutions to equations of the form (1.4) are not possible in general. Numerical
approximations have been applied to gain an insight into the behavior of such models. Research efforts
over the years have been on the construction of solutions, reformulations, improvements, and applications
of (1.4) [11, 12, 14, 17, 28]. Recently, the research focus has been on delay differential equations with multi-
proportional delays. Generally, they are being referred to as delay differential equations of pantograph
type [5, 20, 22, 27]. Delay differential equations of pantograph type have received much attention because
many models with proportional delays produce significant results. The results which they produce are
found to be accurate and stable. Also, they are suitable for studying several models which include the
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case where the delay is a fraction of the time unit. Consequently, several existing models and various
classes of differential equations are being reformulated and reconstructed in terms of delay differential
equations of pantograph type.

The studies on population dynamics are of crucial importance as all of the processes on the earth,
directly or indirectly affect the human life. The goal of this study is to present suitable reformulation
and reconstruction for some existing population growth models in terms of delay differential equations
of pantograph type. An innovative method is displayed for constructing the solutions of the models
where other analytic methods fail. This study shows how to find patterns and regularities in seemingly
chaotic processes. Some single and interacting species population models are illustrated graphically and
analyzed.

2. Description of the method

The method is presented in this section to make this study a complete paper. The account of the
method which is being presented has been discussed in [3, 23, 29].

2.1. Variational iterative method
Due to its flexibility, consistency and effectiveness, variational iterative method is more preferred when

compared to other well-known methods (see, e.g., [32, 33] and references there in). The elevation which is
a blend of variational iterative method with Laplace transform (see, e.g., [32, 33]) and Sumudu transform
(see, e.g., [29]) has also been considered. The Sumudu transform can be described as a mutation of
Laplace transform. Sumudu transform has been proved to be a simple, effective and universal way for
obtaining Lagrange multiplier. For a given property of Laplace transform, a corresponding property can
be obtained for Sumudu transform and vice versa (see, e.g., [8, 9, 31]). Sumudu transform can be applied
to a given function f(t) which satisfies the following Dirichlet conditions:

(i) it is single valued function which may have a finite number of isolated discontinues for t > 0;
(ii) it remains less than be−a0t as t approaches∞, where b is a positive constant and a0 is a real positive

number.

Sumudu transform has been employed to obtain the solutions of differential equations which are of
several forms [4, 6, 18, 26].

2.2. Presentation of Sumudu transform
The concept was proposed by Watugala [31]. It is an integral transform and it is suitable for solving

several problems which are modeled by differential equations. Let F(u) denote the Sumudu transform of
a function f(t). For all real numbers t > 0,

F(u) = S [f(t)] =

∫∞
0
f(ut)e−tdt.

The Sumudu transform for the integer order derivatives is expressed as

S

[
df(t)

dt

]
=

1
u
[F(u) − f(0)] .

For the n-order derivative, the Sumudu transform is given as

S

[
dnf(t)

dtn

]
=

1
un

[
F(u) −

n−1∑
k=0

uk
dkf(t)

dtk
|x=0

]
.

Linearity of Sumudu transform can be easily established and Sumudu transform is also credited for
preserving units and linear functions (see, e.g., [9, 31]). These essential properties make solving problems
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easy by using Sumudu transform without the need to resort to a new frequency domain. The focal points
of the Sumudu transform are exhibited for a broad nonlinear problem

dnx(t)

dtn
+ R [x(t)] +N [x(t)] = g(t), (2.1)

subject to the initial conditions
x(k)(0) = ak,

where x(k)(0) = dkx(0)
dtk

, k = 0, 1, . . . ,n− 1, R is a linear operator, N is a nonlinear operator, g(t) is a given
continuous function, and the highest order derivative is d

nx(t)
dtn .

Let X(u) = S[x(t)], by taking the Sumudu transform of (2.1), its linear part is transformed into an
algebraic equation of the form

1
un
X(u) −

n−1∑
k=0

1
un−k

y(k)(0) = S [g(t) − R [x] −N [x]] .

The sequence of iteration is deduced as

Xn+1(u) = Xn(u) +ϕ(u)

(
1
un
Xn(u) −

n−1∑
k=0

1
un−k

x(k)(0) − S [g(t) − R [x] −N [x]]

)
, (2.2)

where ϕ(u) is the Lagrange multiplier. The classical variation operator is taken on both sides of (2.2)
while S [R [x] +N [x]] is considered as restricted term. This gives

δXn+1(u) = δXn(u) +ϕ(u)
1
un
δXn(u),

from which it is obtained that
ϕ(u) = −un. (2.3)

Substitute (2.3) into (2.2) and take the inverse-Sumudu transform S−1 of (2.2) to obtain

xn+1(t) = xn(t) + S
−1

[
−un

(
1
un
X(u) −

n−1∑
k=0

1
un−k

x(k)(0) − S [g(t) − R [x] −N [x]]

)]
,

= x1(t) + S
−1 [un (S [g(t) − R [x(t)] −N [x(t)]])] ,

where

x1(x) = S
−1

[
n−1∑
k=0

ukx(k)(0)

]
= x(0) + x ′(0)t+ · · ·+ x

n−1(0)tn−1

(n− 1)!
.

2.3. Variable coefficient nonlinear equation
Suppose the broad nonlinear problem (2.1) contains variable coefficients which makes it to become

dnx(t)

dtn
+αR1[x(t)] +β(t)R2[x(t)] +N [x(t)] = g(t), (2.4)

where α is a constant and β(t) is a variable coefficient, R1 and R2 are linear operators and other terms
remain as defined in (2.1). The Sumudu transform of (2.4) is taken to get as

Xn+1(u) = Xn(u) +ϕ(u)(
1
un
Xn(u) −

n−1∑
k=0

1
un−k

x(k)(0) − S [g(t) −αR1[x] −β(t)R2[x] −N [x]]).

Here, the restricted term is S [β(t)R2[x] +N [x]] . Obtain the Lagrange multiplier ϕ(u). The rest of compu-
tation processes are the same with the presentations in Section 2.2.
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3. Main results

3.1. Modified Hutchinson’s model

We consider the reconstruction of the model of Hutchinson (1948) in terms of delay differential equa-
tions of pantograph type to gain insight into situation which include the case where the delay is a fraction
of the time unit. A suitable reformulation is presented to the Hutchinson’s model (1.4). Consider

x ′(t) = rx(t)

(
1 −

x(αt)

K

)
, t > 0, x(0) = x0, (3.1)

where r and K have the same meaning as in the previous equations and α ∈ [0, 1].
Here, three cases will be considered for the values of α which are 0, 1, and (0, 1).

Case one: α = 0. For α = 0, equation (3.1) becomes

x ′(t) = rx(t)
(

1 −
x0

K

)
, x(0) = x0. (3.2)

Equation (3.2) is a modified form that involves the carrying capacity of the population for the model of
Malthus (1798). The solution of (3.2) is given by

x(t) = x0e
r(1− x0

K )t,

which is a modified exponential growth model. Figure 1 displays the solution for modified Hutchinson’s
model when α = 0.

Figure 1: Graph of x(t) for x0 = 1,K = 3000 & r = 0.125.

Case Two: α = 1. Taking α = 1 in (3.1) gives the logistic growth model (1.2) and its solution is given by
(1.3). Figure 2 displays the solution for the logistic growth model where x(t), which is the population size
converges to K, which is the carrying capacity of the population.
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Figure 2: Graph of x(t) for x0 = 1,K = 3000 & r = 0.125.

Case Three: α ∈ (0, 1). The solution is constructed by using a blend of Variational Iterative Method (VIM)
with Sumudu Transform (ST). Taking the ST of (3.1) gives

X(u)

u
−
x(0)
u

= S

[
rx(t)

(
1 −

x(αt)

K

)]
. (3.3)

Since x(0) = x0, equation (3.3) becomes

X(u)

u
−
x0

u
= S

[
rx(t)

(
1 −

x(αt)

K

)]
.

Thus for n ∈N, the variational iteration formula is given by

Xn+1(u) = Xn(u) +ϕ(u)

(
Xn(u)

u
−
x0

u
− S

[
rxn(t)

(
1 −

xn(αt)

K

)])
. (3.4)

The classical variation operator on both sides of (3.4) is taken and the term rxn(t)
(

1 −
xn(αt)
K

)
is consid-

ered as the restricted variation. The Lagrange multiplier is then obtained as

ϕ(u) = −u.

The inverse-Sumudu transform, S−1 of (3.4) is taken which gives the explicit iteration formula

xn+1(t) = xn(t) + S
−1
[
−u

(
Xn(u)

u
−
x0

u
− S

[
rxn(t)

(
1 −

xn(αt)

K

)])]
= x0 + S

−1
[
ru

(
S [xn(t)] −

1
K
S [xn(t)xn(αt)]

)]
,

where the initial approximation is given by x1(t) = x(0) = x0. Recall the decomposition of a nonlinear
term ′N(x) ′ as

N(x) =

∞∑
i=0

Ai =
1
i!

[
di

dθi
f

( ∞∑
n=0

θnvn

)] ∣∣∣∣
θ=0

,
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where Ai is the Adomian polynomial [1]. Let xn =

n∑
i=0

vi, the Adomian series of the nonlinear term

′xn(t)xn(αt)
′ reads 

A0 = v2
0,

A1 = 2v0v1,
A2 = 2v0v2 + v

2
1,

A3 = 2v0v3 + 2v1v2,
...

Therefore, this yields the successive formula

{
v0(t) = v(0) = x0,
vn+1(t) = S

−1
[
ru
(
S [vn] −

1
KS [An]

)]
,

which produces the iteration



v0 = x0,
v1 = x0

(
1 − x0

K

)
rt,

v2 =
[
x0
(
1 − x0

K

)2
−
x2

0
K

(
1 − x0

K

)]
r2t2

2! ,

v3 =

[
x0
(
1 − x0

K

)3
−

4x2
0
K

(
1 − x0

K

)2
+
x3

0
K

(
1 − x0

K

) ]
r3t3

3! ,

...

The solution is therefore given by

x(t) = lim
n→∞ xn = lim

n→∞
n∑
i=0

vi

= x0 + x0

(
1 −

x0

K

)
rt+

[
x0

(
1 −

x0

K

)2
−
x2

0
K

(
1 −

x0

K

)] r2t2

2!

+

[
x0

(
1 −

x0

K

)3
−

4x2
0
K

(
1 −

x0

K

)2
+
x3

0
K

(
1 −

x0

K

)]r3t3

3!
+ · · ·

= x0

(
1 +

(
1 −

x0

K

)
rt+

r2
(
1 − x0

K

)2
t2

2!
+
r3
(
1 − x0

K

)3
t3

3!
+ · · ·

)

−
x2

0
K

(
1 −

x0

K

) r2t2

2!
−

[
4x2

0
K

(
1 −

x0

K

)2
−
x3

0
K

(
1 −

x0

K

)]r3t3

3!
− · · ·

= x0e
(1− x0

K )rt −
x2

0
K

(
1 −

x0

K

) r2t2

2!
−

[
4x2

0
K

(
1 −

x0

K

)2
−
x3

0
K

(
1 −

x0

K

)]r3t3

3!
− · · · .

Figure 3 displays the solution for the modified Hutchinsons model when α ∈ (0, 1).
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Figure 3: Graph of x(t) for x0 = 1,K = 3000 & r = 0.125.

3.2. Blowflies model

The blowfly model was proposed in 1954 by Nicholson (see, e.g., [7]). Gurney et al. (1980) [19] intro-
duced the delay into the model to correct the discrepancy which was noted in the Nicholsons blowflies
model. The blowfly model with delay is given by

x ′(t) = Px(t− τ)e

(
−
x(t−τ)
x0

)
− δx(t), t > 0, x(0) = x0,

where P is the maximum per capita daily egg production rate, x0 is the size at which the blowflies
population reproduces at its maximum rate and δ is the per capita daily adult death rate. To gain
insight into situation which include the case where the delay is a fraction of the time unit, we study a
reconstruction of blowfly model in the form of delay differential equations of pantograph type.

Consider a modified blowflies model which is expressed by

x ′(t) = Px(αt)e

(
−
x(αt)
x0

)
− δx(t), t > 0, x(0) = x0, (3.5)

where definitions of P, x0, and δ remain the same while α ∈ [0, 1].

Case One: α = 0. For α = 0, equation (3.5) reduces to

x ′(t) + δx(t) = Px0e
−1, x(0) = x0,

which is a linear ordinary differential equation of degree one. Its solution is given as

x(t) = x0

(
Pe−1 +

1 − Pe−1

eδt

)
. (3.6)

An obvious deduction from (3.6) is that x(t) → Px0e
−1 as t → ∞. Figure 4 displays the solution for the

modified blowflies model in the form of delay differential equations of pantograph type when α = 0.
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Figure 4: Graph of x(t) for x0 = 4,P = 2 & δ = 0.175.

Case Two: α ∈ (0, 1]. When α = 1, observe that it is not easy to obtain by analytical method, the solution
of the nonlinear first order differential equation

x ′(t) −

(
Pe

(
−
x(t)
x0

)
− δ

)
x(t) = 0, x(0) = x0.

Therefore, a blend of VIM with ST will be used to obtain the solution when α ∈ (0, 1].
Solution: By taking the ST of (3.5), we obtain

X(u)

u
−
x(0)
u

= PS

[
x(αt)e

(
−
x(αt)
x0

)]
− δS [x(t)] . (3.7)

Since x(0) = x0, equation (3.7) gives

X(u)

u
−
x0

u
= PS

[
x(αt)e

(
−
x(αt)
x0

)]
− δS [x(t)] .

Thus for n ∈N, the variational iteration formula is given by

Xn+1(u) = Xn(u) +ϕ(u)

(
Xn(u)

u
−
x0

u
− PS

[
xn(αt)e

(
−
xn(αt)
x0

)]
+ δS [xn(t)]

)
. (3.8)

The classical variation operator on both sides of (3.8) is taken and the term Px(αt)e

(
−
x(αt)
x0

)
is considered

as the restricted variation. The Lagrange multiplier is then obtained as

ϕ(u) = −u.

Taking the inverse-Sumudu transform, S−1 of (3.8) gives the explicit iteration formula

xn+1(t) = xn(t) + S
−1
[
−u

(
Xn(u)

u
−
x0

u
− PS

[
xn(αt)e

(
−
xn(αt)
x0

)]
+ δS [xn(t)]

)]
= x0 + S

−1
[
u

(
PS

[
xn(αt)e

(
−
xn(αt)
x0

)]
− δS [x(t)]

)]
,
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where the initial approximation is given by x1(t) = x(0) = x0. Recall the decomposition

N(x) =

∞∑
i=0

Ai =
1
i!

[
di

dθi
f

( ∞∑
n=0

θnvn

)] ∣∣∣∣
θ=0

,

where N(x) is the nonlinear term and Ai is the Adomian polynomial [1]. Let xn =

n∑
i=0

vi, and observe

that the Adomian series of the nonlinear term x(αt)e

(
−
x(αt)
x0

)
reads



A0 = v0e
−1,

A1 = v1e
−1,

A2 = v2e
−1,

A3 = v3e
−1,

...

Therefore, this yields the successive formula

{
v0(t) = v(0) = x0,
vn+1(t) = S

−1 [u (PS [An] − δS [vn(t)])] ,

which produces the iteration 

v0 = x0,
v1 = x0

(
Pe−1 − δ

)
t,

v2 = x0
(Pe−1−δ)

2
t2

2! ,

v3 = x0
(Pe−1−δ)

3
t3

3! ,

v4 = x0
(Pe−1−δ)

4
t4

4! ,
...

The solution is therefore given by

x(t) = lim
n→∞ xn = lim

n→∞
n∑
i=0

vi

= x0

(
1 +

(
Pe−1 − δ

)
t+

(
Pe−1 − δ

)2
t2

2!
+

(
Pe−1 − δ

)3
t3

3!
+ · · ·

)
= x0e

(Pe−1−δ)t

= x0e
−(δ−Pe−1)t

= x0
(
cos
(
δ− Pe−1) t− sin

(
δ− Pe−1) t) .

Figure 5 displays the solution for the modified blowflies model in the form of delay differential equations
of pantograph type when α ∈ (0, 1]. The solution is in agreement with the results of Gurney et al. [19].
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Figure 5: Graph of x(t) for x0 = 4,P = 2 & δ = 0.175.

4. Conclusion

This study presents the evolution of population growth models and reasons for the need of models
which are in the form of delay differential equations of pantograph type. Suitable transformation for the
existing models have been proposed in this paper. It is generally difficult to obtain the analytic solutions
of the population growth models which involve the delays. This paper shows innovative ways by which
one can obtain the solution where other analytic methods fail. The solutions are presented in this paper
to both the existing and modified models. The modified models which have been presented in this
paper are generalized forms for some existing models which were obtained by taking cases. Stimulating
procedures for finding patterns and regularities in seemingly chaotic processes have been elucidated.
Population growth models for some of single and interacting species have been analyzed and illustrated
by graphs. How, when, and why the changes in population sizes occur can be deduced from this study.
This study provides information on effective ways for evaluating the impact of the physical environment
on the species of organism and it can help to make accurate prediction on the population growth. This
study can assist the conservation practitioners to evaluate the impact of the physical environment on a
species and to determine whether the population in a given area will increase or decrease.
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