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Abstract

Various function theorists have successfully defined and investigated different kinds of analytic functions. The applications
of such functions have played significant roles in geometry function theory as a field of complex analysis. In this work, therefore,
a certain subclass of univalent analytic functions is defined using a generalized differential operator and we have discussed a
subclass TS 05?6 (9,1, 8) of univalent functions with negative coefficients related to differential operator in the unit disk U =
{z € C:|z| <1}. We obtain basic properties like coefficient inequality, distortion and covering theorem, radii of starlikeness,
convexity and close-to-convexity, extreme points, Hadamard product, and closure theorems for functions belonging to our
class.
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1. Introduction

Let A denote the class of all functions u(z) of the form
u(z) =z+ Z anz"
n=2

in the open unit disc U = {z € C : |z| < 1}. Let S be the subclass of A consisting of univalent functions and
satisfy the following usual normalization condition u(0) = u’(0) —1 = 0. We denote by S the subclass of
A consisting of functions u(z) which are all univalent in U. A function u € A is a starlike function of the

order m,0 < m < 1, if it satisfies
/
R zw(z) >m,z € U.
u(z)

We denote this class with S*(m).
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A function u € A is a convex function of the order m,0 < m < 1, if it satisfies

m{1 L 2wlz) } >m,z e U.
u’(z)

We denote this class with K(m).

Note that $S*(0) = S$* and K(0) = K are the usual classes of starlike and convex functions in U,
respectively.

Let T denote the class of functions analytic in U that are of the form

u(z) =z— Z anz", an =0, zcU (1.1
n=2

and let T*(m) = TN S*(m), C(m) = TNK(m). The class T*(m) and allied classes possess some interesting
properties and have been extensively studied by Silverman [17].

Differential operators in a complex domain play a significant role in functions theory and its informa-
tion. They have used to describe the geometric interpolation of analytic functions in a complex domain.
Also, they have utilized to generate new formulas of holomorphic functions. Lately, Lupas [11] presented
a amalgamation of two well-known differential operators prearranged by Ruscheweyh [14] and Salagean
[15]. Later, these operators are investigated by researchers considering different classes and formulas of
analytic functions [8, 127 , 13].

The theory of special functions in one variable has a long and ironic past; the rising importance
in special functions of several variables is moderately contemporary. Currently, there has been quick
progress specifically in the area of special functions with the consideration of symmetries and harmonic
analysis connected with root systems. The drive for this work comes from some generalizations of the
theory of symmetric spaces, whose functions can be written as special functions depending on definite
sets of parameters. A key implementation in the study of special functions with reflection symmetries
is Dunkl operators, which are known as a class of differential-difference operators. In this effort, we
present a Dunkl differential-difference operator of the first type in a complex domain, under a special
class of analytic functions, called a class of normalized analytic functions. This class plays an important
role in the field of geometric function theory. Based on this connection between the Dunkl operator and
geometric function theory, we impose a major class of geometric presentations called the starlike class of
analytic functions. A significant motivation to study Dunkl operators is created by their application in the
analysis of quantum many-body systems of a special type. These operators describe integrated systems
in one dimension and have seen considerable increased attention in mathematical physics, especially in
conformal field theory (see [1-3, 5, 6, 9, 10, 16]).

Let u € A, then the Ruscheweyh formula is indicated by the structure formula

o0
¢ fu(z) =z+ Z Clin1anz™

n=2

While, the Salagean operator admits the construction

o0
P Pu(z) =z+ Z n¥fanz™.

n=2
Lupas operator is formulated by the structure

A =z+ Z (on®+(1— O')Cp&nfl) anz", ze€WU,,o€l01].

n=2
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Newly, Ibrahim and Darus [7] considered the next differential operator

@%u(z) =u(z),

Olu(z) = zu/(z) + g(u(z) —u(—z)—2z), § R,
OLfu(z) =05 (@g’_lu(z)) =z+ Z (n + g(l + (—1)““)) ’ anz™.
n=2

When 6 = 0, we have ) fu(z). In addition, it is a modified formula of the well-known Dunkl operator
[4], where & is known as the Dunkl order. Proceeding, we define ¢ (;‘j s is a generalized formula of A ¥ as
follows:

JEsulz) = (1-0)9 Pu(z) + 00Fu(z) =z+ ) d(n, p,0,8)anz",
n=2 (1.2)
5 0 F
where ¢(n, p,0,0) = ((1 —0)Cfn1+0 (n—i— 5(1 +(=1)o* )) > )
Clearly, the operator #¥;u(z) € S. And this operator is a mixed operator involving Ruscheweyh deriva-

tive and Salagean operator.
The operator 7 ¥ unifies several previously studied operators. Namely as

o 7dcu(z) =ulz);
. /GOu = Au(z);

* Jfsulz) = ¢ Pulz);
e Jfsulz) = 08u(z);
o Jfulz) =¥ Pu(z).

In this study, we shall define a new differential operator of complex coefficients and study its behaviors
based on the properties of the theory of geometric functions. The new operator will be formulated in
generalized sub-classes of starlike functions. Therefore, a certain subclass of univalent analytic functions
is defined using a generalized differential operator. Furthermore, some geometric properties for the class
were established.

Now, by making use of the linear operator _# g su, we define a new subclass of functions belonging to

the class A.

Definition 1.1. For0 <34 <1,0<h <1,0<0<1,6 20,0 € [0,1] and p € N, we let TSG{’é(S,h,B) be the
subclass of u consisting of functions of the form (1.1) and its geometrical condition satisfies

8 ((FEulz)) — ZE22)
h(/é’iau(z) +(1—9)Leaz)

<t zel,

where #¥5u(z), is given by (1.2).

2. Coefficient inequality

In the following theorem, we obtain a necessary and sufficient condition for function to be in the class
TS E5(9, 7, 0).
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Theorem 2.1. Let the function u be defined by (1.1). Then w € TS 25(9, h, £) if and only if
D Bn—1)+Unh+1-9)d(n,p,0,8)an < L(h+(1-9)), 2.1)

n=2
where 0 < € <1,0<¥<1,0<hh<1,6>0,0€[0,1] and p € IN. The result (2.1) is sharp for the function
((h+(1-9)) o
Proof. Suppose that the inequality (2.1) holds true and |z| = 1. Then we obtain

u(z) =z— nz=2.

® ulz o u(z
o ((rgeutey = 25 ol (rggutan + -0 L5
—0 Z m—1)dMmn, 0,8 anz™ | —L|h+(1-9)— Z (Mh+1—-9)d(n,p, 0,8 anz™!
n=2 n=2
<) Bm—1+emh+1-9)d(n, g, 0,8)an —L(h+(1—9)) <O.
n=2
Hence, by maximum modulus principle, u € TS ¥5(9, h, ).
Now assume that u € TS ¥ (9,1, £) so that
Lou(z
9 ((785ulz)) — o)
T | < (, zeU.
h( Z8su(z)) + (1 —9)=2—

Hence

’ ((/55“(2”/ - ﬁim)‘ < ‘h (fc&u(z))’+ ¢ —BJ%‘J’ZM) ‘ ’

Therefore, we get

—Z{)(n—l)(b(n,p,(f,é)anz <{|lh+(1—-9)— Z (Mh+1—9)d(n, g, 0,8)anz™ 1.
— n=2
Thus -
Y Bm—1)+Lmh+1-9)d(n, 9, 0,8)an < LUh+(1-9)),
n=2
and this completes the proof. O

Corollary 2.2. Let the function u € TSGK,)(S (9,0, L). Then

L(h+(1-9)) n
WS BT inh+ 1=0)bmp 08>~ "2 >

3. Distortion and covering theorem
We introduce the growth and distortion theorems for the functions in the class TS G’f’é (9,h,0).
Theorem 3.1. Let the function uw € TS &5 (9,1, ). Then

((h+(1-9))
¢(2,90,0,0)+L(2h+1-9)
The result is sharp and attained,

((h+(1-9)) 122

|zl — $(2,9,0,8)[0+L2h+1—9)]

]IZIZ < hu(z) < |z +

((h+(1-9)) 2

W2 =z e P L (2h 1))
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Proof.

z)| =

o0
z— E anz"
n=2

o o
<lad+ ) anl™ <l + 2P ) an.
n=2 n=2

By Theorem 2.1, we get

e e]

Za < ((h+(1-9))
= BH2h+1-9)d(n, 9, 0,0)
Thus
((h+(1-9)) 5
<
TP [ ER eI )l
Also
> ((h+(1-9)) 2
> |z — n — |22 )
(2) > Izl nzzanm > |z] — |z Zan/lzl RS il
Then proof of the theorem follows. O

Theorem 3.2. Let u e TS s (9,0, L). Then

- 20(h + (1-9))
$(2,9,0,0)0 +L2h+1—9)

2€h+(1-9))

$(2,9,0,8)D+L2h+1—9)] 2

]IZI <hu'(z2) <1+

with equality for

W) =z 20(h+ (1 —-9)) 2
$(2,9,0,8)0+L(2h+1—79)]
Proof. Notice that
$(2,9,0,8)0+L(2h+1—79)] Z Zn n—1)+{mh+1-9)]db(n, p, 0,8)an <L(h+(1-9)),
n=2 =2

from Theorem 2.1. Thus

@ =]1-> nanz" <1+ ) nanz™!
n2 n-2 e : (3.1)
2R+ (1—9
<1 <1 .
1zl )_mnan <1+ G 000+ {2h £ 1 9]
On the other hand
"(z)] =

(o0}
1— Z napz™ !
n=2

o0
>1-) nanlz™!
n=2

o0 20(h+ (1-9))
21l ) nan > 1Lzl S i T )T

(3.2)

Combining (3.1) and (3.2), we get the result. O
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4. Radii of starlikeness, convexity, and close-to-convexity

In the following theorems, we obtain the radii of starlikeness, convexity, and close-to-convexity for the
class TS ¥5 (9,1, ().

Theorem 4.1. Let u € TSU&,}) (9,1, (). Then w is starlike in |z| < Ry of order 3, 0 < < 1, where

{(1—19)(19(T1—1)+€(nh—|—1—8))¢(n,)\,{))}nll .

Ry = inf (n—"e(h+(1-9))

n

> 2.

Proof. u is starlike of order 9,0 <9 < 1 if

Thus it is enough to show that

, — Y (m—Danz™ | Y (n—Danlz™
zu (Z) 1’ o n=2 < n=2
(z) | ES = S
u 1— Y apzn! 1— Y aplzt!
n=2 n=2
Thus
zu’(z) ' . v (m—9) 1
-1 <1—-9 if anlz|™ < 1. 4.1
u(z) L g D

Hence by Theorem 2.1, (4.1) will be true if

n—19| -1 Bn—1)+Lmh+1—9))d(n,p,0o,0)
-9 (h+(1—9)
or if )
1-3BFM—-1)+Llnh+1—-3))b(n,p,0,0) |1
lz| < [ o 9)h (1-9)) ] M= 2. (4.2)
The theorem follows easily from (4.2). O]

Theorem 4.2. Let u e TS s (9,1, (). Then w is convex in |z| < Ry of order 9,0 < & < 1, where

> 2.

R —inf{“‘8)(‘9(“—1)+€(nh+1_9))d>(n,p,o,5)}sl §
2= nn—39)(h+(1-9)) ’

R {1 L) } > 9.
u’(z)

Proof. u is convex of order 9,0 < ¥ < 1 if

Thus it is enough to show that
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Thus

<1-9 if Y Manuw—l <1 (4.3)
n

Hence by Theorem 2.1, (4.3) will be true if

nn—13y) 21 < Bn—1)+fmh+1—9))d(n,p,o,d)
1-9 h (th+(1-9)
or if :
1-3FM—-1)+Llnh+1—-3))b(n,p,0,0) |1
lz| < [ )t (1-9)) ] M= 2. (4.4)
The theorem follows easily from (4.4). O]

Theorem 4.3. Let u e TS s (9,1, 0). Then w is close-to-convex in |z| < Rz of order ¥, 0 < ¥ < 1, where

(=9 (n=1)+tmh+1—))b(n,A,9)) T
R3:12f{ e+ (1—9)) } F 22

Proof. u is close-to-convex of order 9,0 <9 < 1 if

R{u'(z)} >
Thus it is enough to show that
u'(z) =1 = ‘— i nanz™ 1 < i nan |z L
n=2 n—2
Thus -
W(z)—1<1—9 if Zz(l_“ﬁ)anm“l <1 (4.5)
n—

Hence by Theorem 2.1, (4.5) will be true if
n |Z|TL—1 < Bn—1)+Lmh+1-9))db(n, e, 0,0)

X

1-9 (th+(1—-9)
or if :
(1—-9)FMn—-1)+LMmh+1—-9))b(n,p,0,0) |1
< ,n > 2. 4.
2 nt(h+ (1—9)) n (46)
The theorem follows easily from (4.6). O

5. Extreme points
In the following theorem, we obtain extreme points for the class TS &s (9, R, 0).
Theorem 5.1. Let uq(z) = z and

((h+(1-9))

un(z) =z— ", for n=2,3,....

Thenu € TS F5(9, 1, {) if and only if it can be expressed in the form

u(z) = Z Onun(z), where 6, >0 and Z 0, = 1.
n=1

n=1
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Proof. Assume that u(z) = ) 6nun(z), hence we get
n=1
_ i {(h+(1—9))0n o
= 2 dn—1)+L¢mh+1-lp(n,p 0,8)

Now, u e TS 05,36 (9,1, 4), since

— PMm—1)+etmh+1-9dp(n, e, 0,8) Lh+(1—9))60n = B
2 t(h+(1-9)) PBn—1) +L¢nh+1-9)p(n, g, 0,0) =) en=1-6<1

n=2

Conversely, suppose u € TS &s (9, h, £). Then we show that u can be written in the form )  0,uy,(z).

n=1
Nowu e TS G’% (9,1, £) implies from Theorem 2.1,
{h+(1—19))
an < .
B(n—1)+Lnh+1-39)]d(n, g, 0,0)
Setting 0, = wm*l)ﬁé&tﬁ:gyf(n’p’g’é)an,n = 2,3,.., and 60 = 1— > 0,, we obtain
n=2
Z enun O

6. Hadamard product

In the following theorem, we obtain the convolution result for functions that belong to the class
TS &5 (9,1, 0).

Theorem 6.1. Let u,g € TS(D,h, {,A). Then uxg € TS(D,h, ¢, A) for

z):z—Zanzn, —Z—anz and (uxg)( —Z—Zanbnz
n=2

where
Ch+(1-9))9n—-1)

Bn—1)+mh+1-2b(n,p,0,8) —Ch+(1—-9))(nh+1—-9)
Proof. uw € TS a&,)zs (9,h,4) and so

¢z

- +enh+1-9)p(n, p,0,8)
Z an <1,
= (h+(1—-19))
and o
Z Bn—1)+¢nh+1—-9)]d(n, e, G,6)b <1
— U(h+(1—9)) ne
We have to find the smallest number  such that
nbn <1
nzz (it (1-9)) ¢
By Cauchy-Schwarz inequality,
Z [19(71—1)-l-e(nh-i-l—%)]d)(n,p,(?/‘s)mg 1 ©6.1)

((h+(1-9))

n=2
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Therefore it is enough to show that

Bn—1)+¢(nh+1—3)]db(n,p,o,d) b < Bn—1)+¢nh+1-I)p(n, g, o,d) o
(h+ (1—9)) fnbn S (h+(1-9)) GnOn

That is

Pn—1)+£¢(nh+1—-9)]C
Vanbn S T Tt oo

From (6.1),

((h+ (1—19))
V anbn < n—1)

Thus it is enough to show that

(Lh+(1-9)) < PBn—1)+Lnh+1-9)]C
Bn—1)+lmh+1—-pn, e 0,0)  Bn—1)+nh+1—-K’

which simplifies to

Ch+(1-9))9n—-1)

> .
¢z PBn—1)+¢mh+1-92p(n,p,0,8) —2(h+(1—-9))(nh+1-9)
O
7. Closure theorems
We shall prove the following closure theorems for the class TS £5(9, h, ().
Theorem 7.1. Let u; € TS &5(9,h,¢),j =1,2,...,s. Then
Zc u;(z) € TSE (9,7, 0)
o0 S
foruj(z) =z— 3 an;z", where ) ¢5=1.
n=2 j=1
Proof.
N o0 S
z) = ZC]'U)'(Z) =z— Z Zc)an]z =z— Z enz”,
j=1 n=2j=1
S
where en = ) cjan ;. Thus g(z) € TS5 (9, h,0) if
j=1
— Bn—1)+{nh+1-Nlpn, g, 0,5
2 (h+(1-9)) en< L
n=2
that is, if
i i +Unh+1-9)b(n,p,0,8)
jan,j
oI ((h+(1-9))
N o0 N
dn—1)+Lmh+1—-9)]db(n,p,o,0d)
. < =1
= B RP )
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Theorem 7.2. Let u, g € TSGS}) (9,7, ¢). Then

h(z) =z— ) (a% +b%)z" € TS F5(9,h,¢,0),

n=2

where
2dm—1)h+(1-9))

Bn—1)+¢{mh+1—-92p(n, 9, 0,8) — 22+ (1—-9))(nh+1—-9)"
Proof. Since u, g € TS %5 (9,1, £), so Theorem 2.1 yields

¢z

= [Bn—1)+lnh+1-9))d(n,p,0,8) 1°
TLZ_J th+ (1-9) o) <1
and )
— [Bn—1) +tnh+1-9))d(n,p,0,90)
n;[ et (1-9)) o) <1
We obtain from the last two inequalities that
S 1[OMm—1)+{nh+1-9))d(n,90,8)]" , .,
n;z { T+ 1—0)] } (a% +b3) < 1. (7.1)
But h(z) € TS 08,35 (9,1, (, ¢), if and only if
Z Bn—1)+(nh+1—-9)]d(n, g, 0,5) (@ +02) <1, 72)

((h+(1-9))

n=2

where 0 < ¢ < 1, however (7.1) implies (7.2) if

B(n—1) + {nh+1-9)d(n,9,0,8) _1[Bn—-1+nh+1-9)d(n e 081"
((h+(1-9)) h t(h+(1-9)) ‘

N

Simplifying, we get

20(n—1)2(h+ (1—9))

CZ BT A1), 0,00 —22M+ (19 mh+1—9)"

8. Concluding remarks and observations

Recently, the Dunkel operator is a center of attraction for many well-known mathematicians, because
of its diverse applications in many areas of Mathematics and Physics. In our present investigations, we
were essentially motivated by the recent research going on in this field of study, and we have introduced a
new sub class of univalent functions with negative coefficients. We next investigate some useful properties
such as coefficient estimates, distortion theorem, growth theorem, radius of starlikness, and radius of
convexity for this class. The authors sincerely hope this article will revive this concept and encourage the
other researchers to work in the near future in the area of complex function theory.
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