
J. Math. Computer Sci., 29 (2023), 329–342

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

A fish harvesting model with Allee effect and Holling type
II functional response

Eihab B. M. Bashier

Faculty of Education and Arts, Sohar University, Sohar, Oman.

Faculty of Mathematical Sciences, University of Khartoum, Khartoum, Sudan.

Abstract

Fish harvesting is one of the most profitable investments as it does not require financial costs other than fishing equipment.
Therefore, population harvesting models have become attractive to many researchers in the field of mathematical bio-economics.
With so many models of fish harvesting, few of them discuss the use of Holling type II functional response to model the
interaction between fish populations, harvest effort, and the conditions that are necessary to sustain fish harvesting in the long
term. In this paper, we first present a differential equations model describing the dynamics of the fishes population under
the presence of harvesting activity. We assume that, in the absence of harvesting activities, the growth dynamics of the fishes
population is governed by a logistic growth with Allee effect. The harvesting term is represented by Holling type II functional
response. The existence conditions for positive equilibrium point are derived, and the stability of the model equilibrium points
are analyzed. An explicit fitted numerical method that is much faster than the Matlab’s ODE solvers is developed to solve the
model. Finally, numerical simulations are used to confirm the theoretical results.

Keywords: Fish harvesting, stability analysis, fitted numerical methods, Holling type II functional response, logistic growth
with Allee effect.
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1. Introduction

Fishing is one of eldest known to mankind, dating back to 40000 BC. In addition to fish being an
important source of food, they are also profitable, and are used in the manufacture of many fish products
used for non-food purposes. Currently, investing in fishing is one of the most profitable investments. The
cost of fishing is limited to the equipment and human resources necessary to operate it, without incurring
costs for fish production in the case of fishing from natural resources. After the industrial revolution, the
means of fishing developed greatly, and the mechanisms of artificial fish production also developed.

Many mathematical models have been suggested in the literature to describe the dynamics of fish
population under harvesting activity. In some fish harvesting models, the harvesting effort is described
by a fixed or periodic harvesting terms [5, 6, 9, 12]. In many fish harvesting models, the interaction
between fish population and effort excerted to catch them are looked at as prey-predator models. In
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such a model the harvesting effort plays the role of predator, and the fish population plays the role of
prey. Hence, in many of these models, the dynamics of fish population is described by either a logistic
growth [1, 10], Gompertz growth [15] or logistic growth with Allee effect [8, 17], whereas the harvesting
term is either assumed to be constant or described by type I functional response [18]. The dynamics of
several discrete harvesting models of single species populations are discussed by [4]. The growth rates of
such models included the logistic growth, logistic growth with Allee effect, and Ricker growth.

On the other hand, the term ”functional response” was first used by Holling in 1959, to describe
the predator intake rate to its food as a function of change in the density of available prey in a habitat
[16]. Type I is a linear response in which the attack rate of the predator population individuals increases
linearly with the density of the prey population and then suddenly reaches a constant value when the
predators are satiated. In type II functional response, the predator population is assumed to spend its
time in two types of activities: searching for prey and hunting of the prey (which includes stalking, killing,
eating, and digesting). The rate of consumption in this model is limited because even assuming that the
prey community is available and there is no need to spend time searching, predators still need to spend
time in hunting. Type III has same assumptions as type II, but it further assumes that the rate of attacks
of members of the predator population on members of the prey population accelerates at the beginning
and slows down as it approaches the saturation level [7, 13].

Many models in the literature assume a type I functional response for the harvesting term, under the
assumption that the harvesting effort is proportional to the fish intensity (see for example [12]). However,
Idels [11] suggested other forms for the harvesting term.

In this paper we present a system of two ODEs representing the harvesting of fishes, where the
dynamics of the fish population is represented by a logistic model with Alee effect, and the second
equation describes the dynamics of the harvesting effort exerted to catch the fishes. We analyze the
model for the existence and stability of positive steady state and present a numerical method for solving
the model.

The rest of this paper is organized as follows. In Section 2, we present the model statement. Qualitative
analysis of the model will be presented in Section 3. In Section 4, we present a numerical method for
solving the model and illustrate the results of the numerical experiments. And finally, the discussions
and conclusions will be presented in Section 5.

2. Model problem

In this section we present a system of two ODEs describing the dynamics of the fishes population
and the effort exerted to catch them. The model compartments are: the abalone population denoted by
N(t) and the effort exerted in the fishes population, denoted by E(t). The proposed model is given by the
equations:

Ṅ(t) = rN(t)

(︃
N(t)

M
− 1

)︃(︃
1 −

N(t)

K

)︃
−

qN(t)E(t)

κ+N(t)
, N(0) = N0 t ∈ [0, T ], (2.1)

E(t)̇ = α

(︃
pqN(t)E(t)

κ+N(t)
− cE(t)

)︃
, E(0) = E0, t ∈ [0, T ], (2.2)

In this model, the growth rate of the fish population is represented by a logistic model with Alee effect.
The parameter p is the average unit price and c is the per unit cost. The rate of change in effort is
assumed to be proportional to the difference between the total profits and total expenses, where α is the
proportionality constant.

The functional response term qN(t)E(t)
κ+N(t) that appears in equations (2.1) and (2.2) is a second form

of the type II functional response aN(t)E(t)
1+aθN(t) , where a represents the catchability parameter and θ is the

search rate (or rate of discovery). The parameters q and κ in model (2.1)-(2.2) are given by q = 1/θ and
κ = 1/(aθ), respectively.
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3. Qualitative analysis

The equilibria points of the model described by equations (2.1)-(2.2) are obtained by solving the system
of linear equations:

rN(t)

(︃
N(t)

M
− 1

)︃(︃
1 −

N(t)

K

)︃
−

qN(t)E(t)

κ+N(t)
= 0, (3.1)

α

(︃
pqN(t)E(t)

κ+N(t)
− cE(t)

)︃
= 0. (3.2)

By solving Equation (3.2), we find that E = 0 or N = cκ
qp−c . Substituting E(t) = 0 in Equation (3.1) we

obtain three equlibria points: Equi(b0) : (N∗
0 ,E∗

0) = (0, 0), Equi(b1) : (N∗
1 ,E∗

1) = (M, 0) and Equi(b2) :
(N∗

2 ,E∗
2) = (K, 0). By substituting N(t) = cκ

qp−c = β in Equation (3.1) we obtain the equilibria point:

Equi(b3) : (N
∗
3 ,E∗

3) =

(︃
cκ

qp− c
,
rpβ(K−β)(β−M)

cKM

)︃
, where β =

c · κ
qp− c

.

These four equilibrium points can be interpreted as follows.

(i) The first equilibrium point Equi(b0) = (0, 0): there are no fishes in the reserve and therefore no
effort can be exerted to harvest them.

(ii) The second equilibrium point Equi(b1) = (M, 0): the fish population is at its minimum level, and
any effort to harvest from it at this time will drop the fish stock below the threshold under which
the fish population will extinct at the long term.

(iii) The third equilibrium point Equi(b2) = (K, 0): the fish population reaches its carrying capacity
due to temporary prohibition (governmental or any stakeholders’ policies) of fish harvesting at
previous time to allow the fish population to grow. The level of fish population continues at this
level until the policy is changed and harvesting from the population becomes allowed. For example,
due to the high demand for abalone in the local and international markets, harvesting operations
at the individual and corporate levels are intensively active during the abalone hunting seasons.
Therefore, the Ministry of Agriculture and Water Resources in the Sultanate of Oman follows a
policy of harvesting abalone for one year, and then banning fishing operations for a year or two to
control the abalone stock in its areas of the coasts of the Dhofar Governorate and give it time to grow
again, without reaching critical levels.

(iv) The fourth equilibrium point Equi(b3) = (β, rpβ(K− β)(β−M)/(cKM)): there is a safe level of
fish in the reserve and the policies allow harvesting from the fish population.

The Jacobi matrix of system (2.1)-(2.2) is given by the form:

J(N,E) =

⎡⎣−r(3N2+KM−2KN−2MN)
KM − qEκ

(κ+N)2 − qN
κ+N

αpqκE
(κ+N)2 α

(︂
qpN−c
κ+N

)︂⎤⎦ . (3.3)

To determine local stability of any equilibrium point Equi(bj, j) = 0, . . . , 3, we evaluate the Jacobian matrix
given by Equation (3.3) at such equilibrium and determine whether the real parts of its eigenvalues are
both negative.

(i) Local stability of Equi(b0): The Jacobian matrix at Equi(b0) = (0, 0) is given by:

J∗0 = J(N∗
0 ,E∗

0) =

[︃
−r 0
0 −αc

]︃
.

Since J∗0 is a diagonal matrix, its eigenvalues are the diagonal elements. Hence, λ0,1 = −r < 0 and
λ0,2 = −αc < 0. Therefore, the equilibrium point Equi(b0) is locally asymptotically stable.
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(ii) Local stability of Equi(b1) = (M, 0): The Jacobian matrix at Equi(b1) = (M, 0) is given by:

J∗1 = J(N∗
1 ,E∗

1) =

⎡⎢⎣r
(︁
1 − M

K

)︁
− qM

κ+M

0 α
(︂

pqM
κ+M − c

)︂
⎤⎥⎦ .

Since J∗1 is upper triangular matrix, its eigenvalues are its diagonal elements. Hence, λ1,1 = r
(︁
1 − M

K

)︁
> 0 (since M < K) and λ1,2 = α

(︂
pqM
κ+M − c

)︂
. Therefore, the equilibrium point Equi(b1) is locally

unstable.
(iii) Local stability of Equi(b2): The Jacobian matrix at Equi(b2) = (K, 0) is given by:

J∗2 = J(N∗
2 ,E∗

2) =

⎡⎢⎣r
(︁
1 − K

M

)︁
− qK

κ+K

0 α
(︂

pqK
κ+K − c

)︂
⎤⎥⎦ .

Since J∗2 is upper triangular matrix, its eigenvalues are its diagonal elements. Hence, λ2,1 = −r
(︁
K
M − 1

)︁
< 0 (since K > M) and λ2,2 = α

(︂
pqK
κ+K − c

)︂
. Therefore, the equilibrium point Equi(b2) is locally

asymptotically stable iff
pqK

κ+K
< c, (≡ β > K),

locally marginally stable iff
pqK

κ+K
= c, (≡ β = K),

and locally unstable iff
pqK

κ+K
> c (≡ β < K).

3.1. Positivity of E3

We have N∗
3 = c ·κ/(qp− c) and we notice that both c and κ are positive, hence c ·κ > 0. If we suppose

that N∗
3 > 0, then that leads to qp− c > 0, which leads to the condition:

qp > c. (3.4)

We suppose that Equation (3.4) holds. Then,

E∗
3 > 0 ⇒ rpβ(K−β)(β−M)

qKM
> 0.

Since the denominator cKM > 0, then rpβ(K−β)(β−M) > 0, which implies that

(K−β)(β−M) > 0.

It is either both K− β > 0 and β−M > 0 which means M < β < K, or K− β < 0 and β−M < 0, which
means K < β < M. This later is rejected since given K > M.

By writing c · κ/(qp− c) instead of β, we have:

M <
c · κ

qp− c
< K,

which leads to the second condition:
qpM

κ+M
< c <

qpK

κ+K
. (3.5)

Hence, the positivity conditions of E3 can be stated through the following theorem.
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Theorem 3.1. The equilibrium point (N∗
3 ,E∗

3) =
(︂
β, rpβ(K−β)(β−M)

cKM

)︂
is positive, if the following two conditions

hold:

(i) qp− c > 0; and
(ii) qpM

κ+M < c < qpK
κ+K .

3.2. Local stability of E3

Equations (3.4) and (3.5) indicate that the existence of a positive equilibrium Equi(b3) depends on the
value of β, where β must lie in (M,K) (M < β < K). If either β < M or β > K the system will have only
three equilibria points. This is telling us to study the effects of the parameters in β (p, q and c) to the
dynamic of the system. Hence, we consider particularly parameters c and κ.

To study the stability of E3, first we evaluate the Jacobi matrix J(N,E) at (N∗
3 ,E∗

3) to obtain:

J∗3 = J(N∗
3 ,E∗

3) =

⎡⎢⎢⎣
−cr[(κ+K)(κ+M)c2+2pq(κ2−KM)c+p2q2(KM−κ(K+M))]

pqKM(pq−c)2 − c
p

−αr(κc−K(pq−c))(κc−M(pq−c))
qKM(pq−c) 0

⎤⎥⎥⎦ .

The characteristic equation of J∗3 is given by:

λ2 + σλ+ δ = 0,

where

σ = −trace(J∗3) =
cr

[︂
c2κ2

(pq−c)2 −
Kκ(p2q2)
(pq−c)2 −

Mκ(p2q2−c2)
(pq−c)2 +

KM(pq−c)2

(pq−c)2 + 2pqc2κ2

(pq−c)2

]︂
pqKM

=
cr

[︂
β2 + K+M

2 (pq+ c)β+KM+ 2pq
c β2

]︂
pqKM

=
r
[︁
(2pq+ c)β2 − (K+M)(pq+ c)β+ cKM

]︁
pqKM

and

δ = det(J∗3) =
−αcr (κc−K(pq− c)) (κc−M(pq− c))

pqKM(pq− c)

=
−αcr (κc−K(pq− c))

(︂
κc

pq−c −M
)︂

pqKM

=
αcr(pq− c)

(︂
K− κc

pq−c

)︂(︂
κc

pq−c −M
)︂

pqKM

=
αcr(pq− c) (K−β) (β−M)

pqKM
.

From its characteristic equation, the eigenvalues of J∗3 are given by:

λ3,1 =
−σ+

√
σ2 − 4δ

2
, λ3,2 =

−σ−
√
σ2 − 4δ

2
.

The discriminant D2 = σ2 − 4δ determines whether the eigenvalues of J∗3 are real or complex (depending
on whether the discriminant is non-negative or negative, respectively). The equilibrium point Equi(b3) is
asymptotically stable if the real parts of its eigenvalues are negative. This can be achieved if and only if
σ > 0 and δ > 0 in both the cases D2 ⩾ 0 (real eigenvalues) or D2 < 0 (complex eigenvalues) [14].
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We assume that the conditions pq− c > 0 and M ⩽ β ⩽ K (described by equations (3.4) and (3.5),
which guarantee that Equi(b3) is non-negative) are fulfilled and therefore δ is always positive. Hence, to
determine the stability of Equi(b3), we will discuss different scenarios about σ = −trace(J∗3).

The solutions of δ = 0 in parameter c are given by

cδ0 = 0, cδ1 =
pqM

κ+M
, cδ2 =

pqK

κ+K
.

The assumption that δ > 0, which requires that β > M implies that c > pqM
κ+M . Hence, for 0 ⩽ c ⩽ cδ1 ,

the equilibrium point Equi(b2) is unstable as stated in Theorem 3.1 and the only stable node is Equi(b0).
Therefore, hereafter we assume that cδ1 < c < cδ2 . Since δ has three roots (0, cδ1&cδ2), it does not change
its sign within either of the intervals (0, cδ1), (cδ1 , cδ2), or (cδ2 ,∞). That means δ is either positive or
negative in (cδ1 , cδ2).

Assume that pqM
κ+M < c < pqK

κ+K and pq > c. Let ϵ > 0 be a small positive real number. Then,

δ(cδ1 + ϵ) =
αrϵ

(︁
p2q2κM(K−M) + pq(κ+M) (K(κ−M) − 2KM) ϵ− (κ+M)2(κ+K)ϵ2

)︁
pqKM(pq− c)

.

Since the coefficient of ϵ is given by p2q2κM(K−M) > 0, then δ > 0 in (cδ1 , cδ2) for all κ > 0.
To determine where σ changes its sign, we have

σ =
cr

[︁
(κ+K) (κ+M) c2 + 2pq

(︁
κ2 −KM

)︁
c+ p2q2 (KM− κ (K−M))

]︁
pqKM (pq− c)2 .

Now,

σ = 0 ⇒
cr

[︁
(κ+K) (κ+M) c2 + 2pq

(︁
κ2 −KM

)︁
c+ p2q2 (KM− κ (K+M))

]︁
pqKM (pq− c)2 = 0

⇒ cr
[︁
(κ+K) (κ+M) c2 + 2pq

(︁
κ2 −KM

)︁
c+ p2q2 (KM− κ (K+M))

]︁
= 0

⇒ c = c1 = 0, or (κ+K) (κ+M) c2 + 2pq
(︁
κ2 −KM

)︁
c+ p2q2 (KM− κ (K+M)) = 0.

A positive solution of the quadratic equation:

(κ+K) (κ+M) c2 + 2pq
(︁
κ2 −KM

)︁
c+ p2q2 (KM− κ (K+M)) = 0, (3.6)

such that σ = 0, can always be found. This can be shown as follows:

(i) In the case κ < (KM)/(K+M)(< M), we notice that KM− κ(K+M) > 0 and κ2 = κ · κ < KM.
Hence, p2q2 (KM− κ (K+M)) > 0 and 2pq

(︁
κ2 −KM

)︁
< 0. This guarantees that Equation (3.6) has

two positive roots.
(ii) In the case κ > (KM)/(K+M) the term KM− κ (K+M) is always negative, hence Equation (3.6) has

one positive root and one negative root.

The solutions of Equation (3.6) are given by:

cσ1 =
pq

(︂
KM− κ2 − κ

√
K2 +Kκ−KM+ κ2 + κM+M2

)︂
(κ+M)(κ+K)

and

cσ2 =
pq

(︂
KM− κ2 + κ

√
K2 +Kκ−KM+ κ2 + κM+M2

)︂
(κ+M)(κ+K)

.

We notice that either cσ1 < 0, cσ0 = 0 and c∗σ > 0 in case of κ > (KM)/(K+M) or cσ0 = 0, cσ2 > 0 and
cσ1 > 0 if κ ⩽ (KM)/(K+M).

In the case that κ < (KM)/(K+M), we have cδ0 = cσ0 = 0 < cσ1 < cδ1 < cσ2 < cδ2 . In the case that
κ > M, we have cσ1 < 0 < cδ1 < cσ2 < cδ2 .
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In the interval [0, cδ1 ], we have δ < 0 and the only stable node is Equi(b0) given by (0, 0). Hence, we
restrict our focus on the interval (cδ1 , cδ2) which always includes the point c = cσ2 . We wish to determine
the sign of σ in both the intervals (cδ1 , cσ2) and (cσ2 , cδ2).

Since σ does not change its sign within either of the intervals (0, cσ1), (cσ1 , cσ2), and (cσ2 ,∞), and the
quantities r and pqKM(pq− c)2 are positive, the sign of sigma in (cδ1 , cδ2) is determined by the sign of

φσ(c) = c
(︁
(κ+K)(κ+M)c2 + 2pq(κ2 −KM)c+ p2q2(KM− κ(K+M))

)︁
.

The function φσ satisfies φσ(0) = φσ(cσ1) = φσ(cσ2) = 0. Therefore, the function φσ does not change
its sign in either of the intervals (0, cσ1), (cσ1 , cσ2), or (cσ2 ,∞). To determine the signs of φσ(c) for
c ∈ (cδ1 , cσ2), and (cσ2 , cδ2), let ϵ an arbitrary small positive real number. Then,

φσ(cσ2 − ϵ) = −
(︁
2pq(κ2 −KM) + 2 ∗ (κ+K)(κ+M) ∗ cσ2

)︁
ϵ+O(ϵ2), (3.7)

which shows that σ < 0 in (cδ1 , cσ2). On the other hand,

φ(cσ2 + ϵ) = φσ(cσ2 + ϵ) =
(︁
2pq(κ2 −KM) + 2 ∗ (κ+K)(κ+M) ∗ cσ2

)︁
ϵ+O(ϵ2), (3.8)

which shows that σ > 0 in (cσ2 ,∞). Let

c∗σ = cσ2 =
pq

(︂
KM− κ2 + κ

√
K2 +Kκ−KM+ κ2 + κM+M2

)︂
(κ+M)(κ+K)

. (3.9)

Equations (3.7) and (3.8) indicate that c = c∗σ is the value at which σ changes its sign from negative to
positive, causing changes in the signs of the real parts of the eigenvalues λ3,1 and λ3,2 from positive to
negative. That means J∗3 changes its stability status from unstable to a stable equilibrium, when c crosses
from values less than c∗σ, through c∗σ to values greater than c∗σ.

Based on equations (3.5), (3.7), (3.8), and (3.9), we have the following theorem.

Theorem 3.2. In the system (2.1)-(2.2), if pq > c and M < β < K, then the equilibrium point Equi(b3) =
(β, rpβ(K−β)(β−M)/(cKM)) is asymptotically stable iff

c∗σ < c <
pqK

κ+K
,

and unstable if 0 ⩽ c ⩽ c∗σ or c ⩾ pqK
κ+K .

To find the points at which the eigenvalues change from real to complex or vice versa, we have to
solve the equation σ2 − 4δ = 0. We have

σ2 − 4δ =
cr

(︁
A5c

5 +A4c
4 +A3c

3 +A2c
2 +A1c+A0

)︁
K2M2p2q2(pq− c)4 ,

where,

A5 = r (K+ κ) (κ+M) (r(K+ κ)(κ+M) − 4αpqKM) ,

A4 = 4rpq
[︁
r
(︁
κ4 −K2M2 +Kκ3 + κ3M−KκM2 −K2κM

)︁
+αpqKM

(︁
5KM+ 4κM+ 3κ2 + 4Kκ

)︁]︁
,

A3 = −2rp2q2[r(κ2(K(K+ κ+ 5M) + κ(M− 2κ) +M2) − 3K2M2) + 2αpqKM(2M(5K+ 3κ) + 3κ(κ+ 2K))],

A2 = 4rp3q3 [︁r (︁K(M(κM−KM+ κ2 +Kκ) − κ3) − κ3M
)︁
+αpqKM

(︁
10KM+ 4κM+ κ2 + 4Kκ

)︁]︁
,

A1 = rp4q4 [︁r(K2κ2 +K2M2 + κ2M2 − 2KκM2 + 2Kκ2M− 2K2κM) − 4αpqKM(5KM− κM−Kκ)
]︁

,

A0 = 4rαp6q6K2M2.

Now,
σ2 − 4δ = 0 ⇒ c1 = 0 or A5c

5 +A4c
4 +A3c

3 +A2c
2 +A1c+A0 = 0.

Let P(c) = A5c
5 +A4c

4 +A3c
3 +A2c

2 +A1c+A0. It is very hard to compute the roots of the fifth degree
polynomial P(c) for the set of general parameters, even by using computer algebra systems. But, we have
the following notices about P(c).
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(i) A0 is always positive.
(ii) The sign of the leading coefficient A5 depends on the sign of r(K+ κ)(κ+M) − 4αpqKM = rκ(K+

κ+M) + (r− αpq)KM. If the parameters α,p,q, and r lie in the same scale, then it is more likely
that A5 is positive.

(iii) If κ2 > KM, then A4 will be positive because κ4 > K2M2, Kκ3 > K2κM, and κ3 > KκM2, while the
remaining terms are positive.

(iv) A3 is more likely to be negative, since most of the terms it contains are negative with few positive
terms.

(v) After collecting terms, A2 consists of two terms. The second term αpqKM(10KM+ 4κM+ κ2 + 4Kκ)
is always positive. There is no more likely possibility as to whether the sign of the first term is
positive or negative. But considering both terms, we think that the sign of A2 is more likely to be
positive.

Considering the above notices about the coefficients of P(c), and using the Descartes rule of signs, we
can expect that there are at most two positive roots of P(c) if A1 > 0 and at most four positive roots if
A1 < 0. However, through many numerical experiments, we found that there are always two positive
roots of P(c), which we will refer to as c∗1 and c∗2 such that 0 < c∗1 < c∗σ < c∗2 < pqK/(κ+K). According to
these values (

{︁
0, c∗1 , c∗σ, c∗2 ,pqK/(κ+K)

}︁
), the c-space is divided into regions such that

(I) for 0 < c < c∗1 , the eigenvalues λ3,1 and λ3,2 are real and positive, hence, the equilibrium point
Equi(b3) is unstable;

(II) for c∗1 < c < c∗σ, the eigenvalues λ3,1 and λ3,2 are complex with positive real parts, hence, the
equilibrium point Equi(b3) is unstable;

(III) if c∗σ < c < c∗2 , the eigenvalues λ3,1 and λ3,2 are complex with negative real parts, hence, the
equilibrium point Equi(b3) is stable;

(IV) for c∗2 < c < pqK/(K+ σ), the eigenvalues λ3,1 and λ3,2 are real and negative, hence, the equilibrium
point Equi(b3) is stable. This show that a transcritical bifurcation occurs at the point c = c∗2 .

An important notice here is that the signs of the real parts of the complex eigenvalues λ3,1 and λ3,2 are
changed from positive to negative when c crosses from the interval (c∗1 , c∗σ) through c∗σ to (c∗σ,pqK/(κ+
K)), showing that a Hopf bifurcation occurs at c = c∗σ.

According to the above mentioned properties of the eigenvalues of J∗0 , J∗1 , J∗2 and J∗3 , the stability of the
equilibrium points Equi(b0), Equi(b1), Equi(b2), and Equi(b3) are summarized as follows.

(i) If 0 < c ⩽ c∗σ, then Equi(b0) is the only stable equilibrium point. Hence, for any initial starting point
N∞ → N∗

0 = 0 and E∞ → E∗
0 = 0.

(ii) If c∗σ < c < pqK
κ+K , then both Equi(b0) and Equi(b3) are stable. Hence, any starting initial condition

ends at either N∞ → N∗
0 = 0,E∞ → E∗

0 = 0 or N∞ → N∗
3 = β,E∞ → E∗

3 = pβ(β−M)(K−β)/(cKM).
(iii) If c > pqK/(κ+K), then both Equi(b0) and Equi(b2) are stable. Hence, any starting initial condition

ends at N∞ → N∗
0 = 0,E∞ → E∗

0 = 0 or N∞ → N∗
2 = K,E∞ → E∗

2 = 0.
(iv) The equilibrium point Equi(b1) is always unstable. Hence, any starting initial point that is close to

Equi(b1) ends either at either Equi(b0), Equi(b2) or Equi(b3).

4. Numerical results

We propose a positivity preserving fitted numerical method as in [2, 3] for solving the system (2.1)-
(2.2) in [0, T ]. The time space [0, T ] is divided into n subintervals of equal lengths h, where h = T/n. The
concepts of denominator functions and nonlocal approximations are used to design the following explicit
finite difference formulas:

Nj+1 −Nj

ϕ1
= −rNj+1 +

r(K+M)

KM
N2

j −
rN2

j

KM
Nj+1 −

qNj+1Ej

κ+Nj
,N(0) = N0, j = 0, . . . ,n− 1, (4.1)
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Ej+1 − Ej

ϕ2
=

αpqNjEj

κ+Nj
− cEj+1, E(0) = E0, j = 0, . . . ,n− 1, (4.2)

where the denominator function ϕ1 and ϕ2 are given by the forms ϕ1 = 1−e−rh

r and ϕ2 = 1−e−αch

αc . The
numerical scheme (4.1)-(4.2) can be simplified into

Nj+1 =

(︂
1 + rϕ1(h)

(︂
1
K + 1

M

)︂
Nj

)︂
Nj

1 +ϕ1

(︃
r+

rN2
j

KM +
qEj

κ+Nj

)︃ , N(0) = N0, j = 0, . . . ,n− 1, (4.3)

Ej+1 =

(︁
1 +αϕ2(h)pqNj

)︁
Ej

(κ+Nj)(1 +αcϕ2)
, E(0) = E0, j = 0, . . . ,n− 1. (4.4)

We notice that the numerical scheme (4.3)-(4.4) is explicit, and whenever N0 > 0 & E0 > 0, then
Nj > 0 ∀j ⩾ 0 and Ej > 0 ∀j ⩾ 0. That is (4.3)-(4.4) preserves the positivity of the solution for any
positive initial conditions.

Now, we provide numerical simulations confirming the stability analysis results obtained in Section 3.
The values of the model parameters are taken as follows. M = 10,K = 100, κ = 60,q = 0.6,p = 0.2

and α = 1.0. We consider two values for the parameter r, the first is r = 0.2, which is close to αpq = 0.12,
and the second is r = 0.02, which is much less than αpq. When r = 0.2 we set N(0) = 70, E(0) = 40 and
T = 3000, and when r = 0.02 we set N(0) = 90, E(0) = 10 and T = 4000.

To show that for any κ > 0, there exists c∗σ, such that the equilibrium point E∗
3 is unstable for c < c∗σ

and stable for c > c∗σ, we considered values of κ such that 0 < κ < 2K and against any value of κ we
plotted the values pqM/(κ+M), c∗σ and pqK/(κ+ K). Figures 1a and 1b show the values of cδ1 , c∗σ, c∗2 ,
and cδ2 against the values of κ where 0 < κ < 2K.
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Figure 1: The values of cδ1 , c∗σ, c∗2 , and c∗δ2
against values of κ for 0 < κ < 2K.

With these set of parameters and when r = 0.2, we have c∗1 ≈ 0.056646840, c∗σ ≈ 0.0614514256,
c∗2 ≈ 0.0643994831, pqK/(κ+ K) = 0.075, N∗

3 = 62.8668942, and E∗
3 = 80.4004905. When r = 0.02, we

have c∗1 ≈ 0.024128186, c∗σ ≈ 0.0614514256, c∗2 ≈ 0.068137799, pqK/(κ+K) = 0.075, N∗
3 = 62.8668942, and

E∗
3 = 8.04004905 (no change in c∗σ and pqK/(κ+K) as they do not depend on r).

To show that Hopf bifurcations occur at c∗σ ≈ 0.0614514256 when r = 0.2 or r = 0.02, we developed
Matlab codes to plot the bifurcation diagrams in either of the two cases, where 500 values of parameter c
in the interval [0.06, 0.063] with 200 random initial conditions in the interval N0 ∈ (89, 91),E0 = 5 are used
to compute N∞ and E∞. Figure 2 shows the bifurcation diagram in the case r = 0.2.

For r = 0.2 we consider six values of the parameter c, which are 0.0612, 0.0614, 0.0615, 0.0616, 0.07, and
0.08. For r = 0.02 we consider the values 0.0610, 0.0614, 0.0615, 0.0617, 0.07, and 0.08 of parameter c.

Figures 3, 4, 5, and 6 illustrate the dynamics of the fishes population and harvesting effort obtained
by the numerical simulations for selected values of parameter c below and above the critical value c∗σ.
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Figure 2: Bifurcation diagrams for the fishes population and harvesting effort, with c ∈ [0.06, 0.063] and
r = 0.2 (Figures 2a and 2b) and c ∈ [0.054, 0.066] and r = 0.02 (Figures 2c and 2d).
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(a) Fishes population: r = 0.2 and c = 0.0612.
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(b) Harvesting effort: r = 0.2 and c = 0.0612.
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(c) Fishes population: r = 0.02 and c = 0.0610.
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(d) Harvesting effort: r = 0.02 and c = 0.061.
Figure 3: Fishes populations vs harvesting efforts for r = 0.2, c = 0.0612 and r = 0.02, c = 0.061.
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In Figures 3a,3b, 3c, and 3d the parameter c is set to the value 0.0612 which is below c∗σ. Hence, both
the dynamics of fishes population and harvesting effort tend to Equi(b0) = (0, 0) at the long run.
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(a) Fishes population percentage c = 0.0614.
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(b) Harvesting effort percentage c = 0.0614.
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(c) Fishes population percentage c = 0.0615.
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(d) Harvesting effort percentage c = 0.0615.
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(e) Fishes population percentage c = 0.0616.
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(f) Harvesting effort percentage c = 0.0616.
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(g) Fishes population percentage c = 0.0700.
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(h) Harvesting effort percentage c = 0.0700.

Figure 4: Fishes population vs harvesting effort for r = 0.2 and different values of c.
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(a) Fishes population: r = 0.02 and c = 0.0614.
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(b) Harvesting effort: r = 0.02 and c = 0.0614.
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(c) Fishes population: r = 0.02 and c = 0.0615.
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(d) Harvesting effort: r = 0.02 and c = 0.0615.
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(e) Fishes population: r = 0.02 and c = 0.0617.
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(f) Harvesting effort: r = 0.02 and c = 0.0617.
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(g) Fishes population: r = 0.02 and c = 0.0700.
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(h) Harvesting effort: r = 0.02 and c = 0.0700.

Figure 5: Fishes population vs harvesting effort for r = 0.02 and different values of c.
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When c = 0.0614, which is too close the critical value c∗σ, we see from Figures 4a, 4b, 5a, and 5b
that the fishes population and harvesting effort oscillate around the equilibrium point Equi(b3). As c

passes c∗σ to the value 0.0615 (which is less than c∗2 ), the long term dynamics of the fishes population
and harvesting effort converges the equilibrium point Equi(b3) as can be seen in Figures 4c, 4d, 5c, 5d,
and also in Figures 4e, 4f, 5e, and 5f. When c = 0.07 > c∗2 , the dynamics of the fishes population and
harvesting effort converge to the equilibrium point Equi(b3) without oscillations as appears in Figures 4g,
4h, 5g, and 5h. This is due to the fact that the eigenvalues of J∗3 are real negative.
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(a) Fishes population: r = 0.2 and c = 0.08.
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(b) Harvesting effort: r = 0.2 and c = 0.08.
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(c) Fishes population: r = 0.02 and c = 0.08.
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(d) Harvesting effort: r = 0.02 and c = 0.08.

Figure 6: Fishes population vs harvesting effort for c = 0.08.

As c passes pqK/(κ+K) = 0.075 to the value 0.08, β becomes bigger than the carrying capacity K and
Equi(b3) losses its stability, so the solutions tend to the equilibrium point Equi(b2) = (K, 0) = (100, 0).
This scenario is illustrated in Figures 6a, 6b, 6c, and 6d.

5. Discussions and conclusions

This paper presented a harvesting model of fishes population, where the dynamics of fishes in absence
of harvesting effort is governed by a logistic model with Allee effect, whereas the harvesting term is
represented by a Holling functional response of type II. The proposed model has four equilibrium points
Equi(b0) = (0, 0), Equi(b1) = (M, 0), Equi(b2) = (K, 0), and Equi(b3) = (β,pβ(β −M)(K − β)/(cKM)),
where the local stability of each equilibrium point is analyzed and discussed. An explicit fitted numerical
method is designed for solving the model. This numerical method is much faster than the Matlabs’ solvers
ode23 and ode45, and through it we generated the bifurcation diagrams that appeared in Figures 2a-2d
by solving the model 105 times in 68.66 seconds, with average of 0.00069 seconds per one problem. The
Matlab’s solver ode45, solves the model at average time of 0.111505 seconds.
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We found that for every value of κ > 0, there are points cδ1 , c∗σ, c∗2 , and cδ2 , such that cδ1 < c∗σ < c∗2 <

cδ2 . These values of c are such that δ = det(J∗3) = 0 when c = cδ1 or c = cδ2 , σ = trace(J∗3) = 0 when
c = c∗σ and D = σ2 − 4δ = 0 when c = c∗2 . The curves that show the relationships between κ, cδ1 , c∗σ, c∗2 ,
and cδ2 are illustrated in Figures 1b and 1a.

We considered several values of the parameter c for the numerical simulations that are aimed to
confirm the theoretical results. The first case was when c < c∗σ, where Equi(b0) is the only stable node. It
showed that in the long term, the dynamics of the fishes population and effort tend to Equi(b0) = (0, 0)
(see Figures 3a, 3b, 3c, and 3d). The second case was when c ≈ c∗σ (Figures 4b, 4b, 5a, and 5b), which
shows oscillatory behaviour around Equi(b3), because the eigenvalues of J∗3 are almost pure imaginary.
The third case was when c∗σ < c < c∗2 , (where the eigenvalues J∗3 are complex with negative real parts),
which showed that the solutions oscillate around Equi(b3) but converge it (Figures 4c, 4d, 5c, 5d, 4e, 4f,
5e, and 5f). The fourth case was when c∗σ < c < c∗2 (where the eigenvalues of J∗3 are real and negative),
which showed convergence to Equi(b3) in the long term without oscillations (Figures 4g, 4h, 5g, and 5f).
The last case is when c > pqK/(κ+ K), where N∗

3 becomes greater than the carrying capacity K and the
solution tend in the long term to the equilibrium point Equi(b2) = (K, 0) (as appear in Figures 6a, 6b, 6c,
and 6d).

The results obtained by the numerical simulations agree with and confirm the theoretical results
obtained in Section 3.
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[8] E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores, Dynamical complexities in the Leslie-Gower preda-
tor–prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366–381. 1

[9] M. W. Hirsch, S. Smale, R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Third
ed., Elsevier/Academic Press, Amsterdam, (2013). 1

[10] L. R. Huang, D. H. Cai, W. Y. Liu, Optimal harvesting of an abstract population model with interval biological parameters,
Adv. Difference Equ., 2020 (2020), 17 pages. 1

[11] L. V. Idels, M. Wang, Harvesting fisheries management strategies with modified effort function, Int. J. Model. Iden.
Control (IJMIC), 3 (2008), 83–87. 1

[12] M. Kot, Elements of mathematical ecology, Cambridge University Press, Cambridge, (2001). 1
[13] E. V. Leeuwen, V. A. A. Jansen, P. W. Bright, How population dynamics shape the functional response in one-predator-

two-prey system, Ecology, 88 (2007), 1571–1581. 1
[14] L. Perko, Differential equations and dynamical systems, Springer-Verlag, New York, (2001). 3.2
[15] T. Pradhan, K. S. Chaudhuri, Bioeconomic modelling of a single species fishery with Gompertz law of growth, J. Biol.

Syst., 6 (1998), 393–409. 1
[16] L. A. Real, The Kinetics of Functional Response, Amer. Natural., 111 (1977), 289–300. 1
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