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Abstract
A co-infection model with two short-term diseases with delay in recovery is proposed. Here, we consider the simultane-

ous transmission of infection does not happen but of simultaneous recovery from both illnesses. The system consists of four
epidemiological classes populations, namely: susceptible (S), an infected class with the first disease (I1), an infected class with
the second disease (I2), co-infected class (I12). We have found all possible equilibrium states, and the basic reproduction number
also examined their stability without and with delay. Analytically, we have established that the local stability of equilibrium
points depends on the basic reproduction number in the absence of recovery delay. But with delay, it requires some additional
conditions. We have also checked the effect of delay on stability of endemic steady state numerically and showed that beyond
a critical threshold value of delay parameter, the system loses its stability, and Hopf bifurcation occurs. Finally, a numerical
simulation presented supports the analytical findings.
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1. Introduction

The co-infection is defined as the aggression of a single host by two pathogens, which may cause
various diseases or different parasite variants (Allen et al. [1], Courchamp et al. [6] etc). A relation
between superinfection and co-infection with various strains is discussed in [25], as well as studied the
effect of both on virulence coexistence and evolution.

Simultaneously, it is natural to establish a fundamental model that can explain the general charac-
teristics of a co-infection epidemic and analyze its dynamics to better understand qualitative behavior in
this system. In the case of two diseases, co-infection can be classified into many types: (i) both are short
term diseases; (ii) one short term and long term diseases; (iii) one short term, and other is nonrecoverable
(i.e., permanent) diseases; (iv) both are nonrecoverable diseases. For example, co-infections of the third
type are typical for people infected with permanent illnesses like the human immunodeficiency virus
(HIV). HIV weakens the immune system, making it susceptible to other infections such as opportunis-
tic infections [14]. The case of HIV-HSV (herpes simplex virus) co-infection, for example, has been well
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known. Such co-infection commonly results in HSV reactivation, hastening the progression of HIV dis-
ease to AIDS [34]. Co-infections can also occur when a patient already has a long-term, slow-progressing
disease. For example, in tuberculosis (TB), even a minor illness may cause the infection to reactivate. Re-
cent years it has been observed that the COVID-19 disease becomes more deadly to those having already
long-term infection like tuberculosis (TB) [9] also HIV with TB shows deadly effect as co-infection [33].
Simultaneously, few studies look at the interaction of two or more diseases. The interactions between
M. tuberculosis and HIV-1 are studied on an immunological basis in [16]. [7] focuses on the statistical
implications of mapping two diseases. [24] examined co-infection from a large viewpoint.

Numerous mathematical models describe disease nature, treatment optimization, and population vac-
cination. Some studies look at models that combine two infections, such as tuberculosis and AIDS [16, 23],
or identify two type of strains for a single disease that are prevalent in the people, such as tuberculosis
or influenza [5, 21, 26]. The case of sexually transmitted (STDs) such as gonorrhea and AIDS [15] is an
example of a practical scenario in which two diseases coexist.

Mathematical models with delay are commonly used for studies and forecasts in numerous areas in
life sciences, such as epidemiology, ecology, eco-epidemiology, neuroscience, immunology, and neural
networks [2, 4, 20, 27, 29]. In such models, time lags or time delays can be linked with the length of
many secret cycles, such as the life cycle periods, the duration between development of new viruses, the
span of the infection growth, the recovery process, etc. [28]. The inclusion of time delays increases the
complexity of the model. Thus It is important to analyze the model’s qualitative behavior, using stability
or bifurcation approach [10]. In recent years, the non-linearity and sensitivity analysis of DDEs has been
intensively analyzed in numerous scientific and technological fields, especially in the sense of chaotic
dynamics [19, 30]. Before this study, Hao and Fan [13], integrated double delays in the mathematical
model of HIV and using the traditional analysis proposed by Beretta and Kuang [3], they achieve adequate
conditions for the presence of Hopf bifurcation. Dynamical systems with single and double delay analysis
with limiting conditions for two delays studied [31, 32]. Later, Gu et al. discussed multiple delays,
especially two delay problems with limiting characteristic equation of the variational matrix [11]. Lin and
Wang, generalized the characteristic equation of two delay problems and given more effective analysis
[22]. Recently many researchers used the single and multiple delays in the eco-epidemic model and
demonstrated the stabilization effect of the disease [17, 18]. They studied the dynamics of the interior
steady-state’s stability for different pairs of delay factors and showed that delay could lead to oscillation
through a hop bifurcation.

The paper aims to look at a co-infection model induced by two short-term infections and the effect
of the recovery delay in co-infection dynamics. It may be two different infections or two distinct strains
of the same disease. Further, it is assumed that each human is thought to be susceptible to one or both
diseases, and no vaccine is available.

2. Formulation of the mathematical model

We have divided the total population in four compartments, i.e., susceptible population (S), an infected
class population with the first disease (I1), an infected class population with the second disease (I2), and
Co-infected population (I12). This model’s schematic flow is shown in Figure 1 and driven by a system of
differential equations with delay (DDEs) (2.1)-(2.4) with assumption that an individual can not co-infected
directly, an individual can not recovered once infected by permanent disease, and one can get susceptible
after getting recovered due to loss of immunity,

dS

dt
= Λ−β1SI1 −β2SI2 −β3SI12 + γ1I1 + γ2I2 + γ3I12(t− τ) − µS, (2.1)

dI1
dt

= β1SI1 + (1 − p)β3SI12 − (1 − q)β4I1I2 − γ1I1 − µI1, (2.2)

dI2

dt
= β2SI2 + pβ3SI12 − qβ4I1I2 − γ2I2 − µI2, (2.3)
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dI12

dt
= β4I1I2 − γ3I12(t− τ) − (µ+ δ)I12, (2.4)

with the initial conditions, let C([−τ, 0],R4) be a Banach space of continuous functions χ defined as χ :
[−τ, 0] → R4, with norm ‖ χ ‖= sup

τ<ν<0
{| χ1(ν) |, | χ2(ν) |, | χ3(ν) |, | χ4(ν) |}, where χ = (χ1,χ2,χ3,χ4). The

given initial conditions of system are S(ν) = χ1(ν), I1(ν) = χ2(ν), I2(ν) = χ3(ν), I12(ν) = χ4(ν), ν ∈
[−τ, 0], where the initial function χ = (χ1,χ2,χ3,χ4) belongs to Banach space C. The initial condition, with
biological feasibility, we choose as

χi(ν) > 0, where ν ∈ [−τ, 0], for i = 1, 2, 3, 4.

By the fundamental theorem of functional differential equations [12], delayed system possesses the unique
solution with above initial conditions. All system parameters are positive, and these parameters are
defined as: Λ is susceptible recruitment rate, 1

µ is an average life span, β1 is transmission coefficient from
susceptible to infection class I1, β2 is transmission coefficient from susceptible to infected class I2, β3
is transmission coefficient from susceptible to infected class I1 & I2 by co-infected I12 interaction, β4 is
transmission coefficient from I1 & I2 to co-infected class I12, γ1 is the rate of recovering from the infected
class I1, γ2 is recovery rate from infected class I2, γ3 is recovery rate from co-infected class I12, δ death
rate due to co-infection, τ delay in recovery from co-infected class, and p,q are constants.

Figure 1: Schematic flow of proposed S− I1 − I2 − I12 − S model with two delays.

3. Boundedness and positivity

This part has some lemmas for boundedness and positivity of the system solution (2.1)-(2.4).

Lemma 3.1. Non-negative initial conditions system (2.1)-(2.4) possesses non-negative solution for all t > 0.

Proof. Let (S, I1, I2, I12) be the solution with nonnegative initial population of the proposed system. For
t ∈ [0, τ], the equation (2.1) forms the relation:

d(S)

dt
> −(µ+β1I1 +β2I2 +β3I12)S,
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which evidences that
S(t) > S(0)e−

∫
µ+β1I1(t)+β2I2(t)+β3I12(t) dt > 0,

also for t ∈ [0, τ], the equation (2.2) state that

dI1
dt

> −((1 − q)β4I2 + γ1 + µ)I1,

which results
I1 > I1(0)e−

∫
(1−q)β4I2(t)+γ1+µ dt > 0,

Also for t ∈ [0, τ], the equation (2.3) state that

dI2

dt
> −(qβ4I1 + γ2 + µ)I2,

which results
I2 > I1(0)e−

∫
qβ4I1(t)+γ2+µ dt > 0,

finally for t ∈ [0, τ], the equation (2.4) state that

dI12

dt
> −(γ3

I12(t− τ)

I12
+ µ+ δ)I12,

which results

I12 > I12(0) e
−
∫
γ3
I12(t−τ)
I12

+µ+δ dt
> 0.

Similarly for the interval [0, τ], [τ, 2τ] · · · [(n− 1)τ,nτ] · · · , where n∈N, it can prove that S(t), I1(t), I2(t),
and I12(t) all are non-negative. For this reason, the population remains positive for the system (2.1)-(2.4),
i.e., S(t), I1(t), I2(t), I12(t), > 0 for all t > 0.

Lemma 3.2. If the initial population is positive then the proposed system solution (2.1)-(2.4) is bounded uniformly
in Ω, where,

Ω =

{
(S, I1, I2, I12) : 0 6 S+ I1 + I2 + I12 6

Λ

µ

}
.

Proof. Assuming that P(t) = S(t) + I1(t) + I2(t) + I12(t) is total population at any instant ’t’, now differen-
tiating P(t) with respect to ’t’, we have as follows from the system (2.1)-(2.4):

dP(t)

dt
= Λ− µ(S(t) + I1(t) + I2(t) + I12(t)) − δI12 6 Λ− µP =⇒ P(t) 6 P(0)e−µt +

Λ

µ
,

as t → ∞, P(t) → Λ
µ . Clearly the system (2.1)-(2.4) is bounded above for its each population. Since

initially all population are positive hence system is bounded below by zero. Therefore the bounded,
feasible biological region is given by Ω =

{
(S, I1, I2, I12) : 0 6 S+ I1 + I2 + I12 6 Λ

µ

}
.

4. System dynamical study

Under this portion, we explore all possible feasible equilibria and the basic reproduction number/ratio
of the system (2.1)-(2.4). As the system is positively invariant under the feasible region Ω, therefore, we
only consider solutions, which follow initial conditions within the region Ω and also the uniqueness and
existence conditions with result of continuation.
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4.1. Possible equilibrium points
The system (2.1)-(2.4) possesses several equilibria: when both disease are absent (disease free equilib-

rium), and when a disease (one or both simultaneously) is present. In the latter case an equilibrium is
called endemic.

(i) Disease/Infection-free equilibrium (DFE) E0(S0, 0, 0, 0, ), always exists, where S0 = Λ
µ .

(ii) Infection (I2)-free equilibrium (IFE) E1(S1, I11, 0, 0, ), exists, if C1 holds, where S1 = µ+γ1
β1

, I11 =
−µ2+Λβ1−µγ1

µβ1
, and C1 : β1S

0

γ1+µ
> 1.

(iii) Infection (I1)-free equilibrium (IFE) E2(S2, 0, I21, 0, ), exists, if C2 holds, where S2 = µ+γ2
β2

, I21 =
−µ2+Λβ2−µγ2

µβ2
, and C2 : β2S

0

γ2+µ
> 1.

(iv) Endemic Equilibrium (EE) E∗, when both infections are present the expression for endemic equilib-
rium cannot be obtained analytically. Thus we e will analyze this through numerical simulation.

4.2. Basic reproduction ratio/number
The basic reproduction ratio R0, which mathematically characterizes the spread of infection is calcu-

lated below as defined in [8, 35].

F =

β1S
0 0 (1 − p)β3S

0

0 β2S
0 pβ3S

0

0 0 0

 and V =

γ1 + µ 0 0
0 γ2 + µ 0
0 0 γ3 + µ+ δ

 .

So R0 is given by the matrix FV−1 spectral radius, i.e.,

R0 = max
{
β1S

0

γ1 + µ
= R10,

β2S
0

γ2 + µ
= R20

}
.

Therefore it is clear from existing conditions C1 and C2 that the steady states E1 and E2 exist only when
R10 > 1 and R20 > 1, respectively.

4.3. Stability criterion for disease-free equilibrium E0

The local stability dynamic of the disease free equilibrium E0 is derived as calculated in given lemmas
of [17, 31, 32]. For a equation of the form (first degree transcendental)

λ+ r0 + q0e
−λτ = 0 (4.1)

for the given cases:

(A1) r0 + q0 > 0;
(A2) (r0 + q0)(r0 − q0) > 0;
(A3) (r0 + q0)(r0 − q0) < 0.

Lemma 4.1. For equation of the form (4.1):

(i) the equation (4.1) shows all the roots with negative real parts ∀ τ > 0, if (A1)-(A2) satisfy;
(ii) if cases (A1)-(A2) satisfy, then the equation (4.1) possesses all negative roots or having nagative real parts;

(iii) when τ = τ+j , then all the roots of equation (4.1) except purely imaginary ±iω+ have negative real parts, if
(A1) and (A3) satisfy.

Now, the stability condition for equation with second degree transcendental polynomial

λ2 + p1λ+ r1 + (s1λ+ q1)e
−λτ = 0, (4.2)

as
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(B1) p1 + s1 > 0;
(B2) q1 + r1 > 0;
(B3) either s2

1 − p
2
1 + 2r1 < 0 and r2

1 − q
2
1 > 0 or (s2

1 − p
2
1 + 2r1)

2 < 4(r2
1 − q

2
1);

(B4) either r2
1 − q

2
1 < 0 or s2

1 − p
2
1 + 2r1 > 0 and (s2

1 − p
2
1 + 2r1)

2 = 4(r2
1 − q

2
1);

(B5) either r2
1 − q

2
1 > 0 or s2

1 − p
2
1 + 2r1 > 0 and (s2

1 − p
2
1 + 2r1)

2 > 4(r2
1 − q

2
1).

Lemma 4.2. For the equation (4.2):

(i) the equation (4.2) shows all the roots with negative real parts ∀ τ > 0, if (B1)-(B3) hold;
(ii) when τ = τ+j , then all the solutions of (4.2) except purely imaginary ±iω+ have negative real parts, if

(B1),(B2), and (B4) hold;
(iii) all the solutions of equation (4.2) except purely imaginary roots ±iω+(±iω−) have negative real parts for

τ = τ+j (respectively τ = τ−j ), if (B1), (B2), and (B5) hold.

Theorem 4.3. For the system of equations (2.1)-(2.4), we have defined the stability condition of disease free equilib-
rium E0 as:

(i) the infection free equilibrium E0 is locally asymptotically stable for τ1 = 0, if R0 < 1 holds;
(ii) the infection free equilibrium E0 is locally asymptotically stable for all τ1 > 0, if µ > γ3 − δ and R0 < 1 hold.

Proof. The variational matrix at DFE E0 is
−µ −S0β1 + γ1 −S0β2 + γ2 −S0β2 + γ3e

−λτ

0 −µ+ S0β1 − γ1 0 (1 − p)S0β3
0 0 −µ+ S0β1 − γ1 0
0 0 0 −δ− µ− e−λτγ0


and its characteristics equation is given by

(λ+ µ)(λ+ µ− S0β1 + γ1)(λ+ µ− S
0β2 + γ2)(δ+ µ+ λ+ γ3e

−λτ) = 0, (4.3)

So it is clear from characteristic equation (4.3) that three roots −µ, −(γ1 +µ− S
0β1), and −(γ2 +µ− S

0β2)
are negative if R0 < 1 and remaining roots are given by equations

δ+ µ+ λ+ γ3e
−λτ = 0. (4.4)

Case (i). If τ = 0, then the equation (4.4) becomes (δ+ µ+ λ+ γ3) = 0, which gives negative root. So
therefore the DFE E0 will be locally asymptotically stable if R0 < 1.

Case (ii). If τ > 0, then on comparing the equation (4.4) with the equation (4.1), we will get r0 = µ+ δ,
q0 = γ3. Clearly both (A1) and (A2) hold simultaneously when µ > γ3 − δ, which gives all negative roots
for 4.4. So therefore the DFE E0 will be locally asymptotically stable if R0 < 1 and µ > γ3 − δ for all τ1 > 0.
Otherwise E0 will be quasi locally asymptotically stable if R0 < 1 and µ < γ3 − δ for all τ1 > 0.

4.4. Stability criterion for infection I2-free equilibrium E1

The variational matrix at equilibrium point E1 is given as:
−µ− I11β1 −S1β1 + γ1 −S1β2 + γ2 −S1β3 + e

−λτ1γ3
I11β1 −µ+ S1β1 − γ1 −(1 − q)I11β4 (1 − p)S1β3

0 0 −µ+ S1β2 − qI
1
1β4 − γ2 pS1β3

0 0 I11β4 −δ− µ− e−λτ1γ3


and characteristic equation is

(λ+ µ)
(
λ+ µ+ (I11 − S

1)β1 + γ1
) ((

λ2 + P1λ+ R1
)
+ (S1λ+Q1) e

−λτ
)
= 0, (4.5)
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where

P1 =
(
−S1β2 + I

1
1β4q+ 2µ+ γ2 + δ

)
, R1 =

(
−S1β2 + µ+ γ2 + I

1
1β4q

)
(δ+ µ) − I11β4pS

1β3,

S1 = γ3, Q1 = γ3
(
−S1β2 + µ+ γ2 + I

1
1β4q

)
,

then the roots of equation (4.5) are −µ,−(µ+ (I11 − S
1)β1 + γ1) and the roots given by equation(

λ2 + P1λ+ R1
)
+ (S1λ+Q1) e

−λτ = 0. (4.6)

Case (i). If τ = 0, then by Routh Hurwitz Criterion all roots of equation (4.6) will be negative if condition
C3: P1 + S1 > 0 & R1 +Q1 > 0 holds. So therefore equilibrium point E1 will be stable if conditions R10 > 1
and C3 hold.
Case (ii). If τ > 0, then by Lemma 4.2 all roots of equation (4.6) will be negative if conditions (B1)-(B3)
hold. So therefore equilibrium point E1 will be stable if condition R10 > 1 together with (B1)-(B3) hold.
Further, if conditions (B1), (B2), and (B3) hold, then by Lemma 4.2 equation (4.6) will have set of imaginary
roots. Put λ = iw in (4.6), then we have

(iw)2 + P1(iw) + R1 + (S1(iw) +Q1) e
−(iw)τ = 0,

on comparing real and imaginary parts on both sides, we get

−w2 + R1 + S1w sinwτ+Q1 coswτ = 0, (4.7)
P1w+ S1w coswτ−Q1 sinwτ = 0, (4.8)

on simplifying equations (4.7) and (4.8), we get

sinwτ =
S1w

3 + (P1Q1 − R1S1)w

S2
1w

2 +Q2
1

,

coswτ =
(Q1 − P1S1)W

2 −Q1R1

S2
1w

2 +Q2
1

, (4.9)

w4 + (P2
1 − 2R1 − S

2
1)w

2 + (R2
1 −Q

2
1) = 0. (4.10)

Since R2
1 −Q

2
1 holds, hence by Descart’s rule of sign, there exists at least one positive root of equation

(4.10). Let this positive root be w0, hence by equation (4.9), we have

τj =
1
w0

[
cos−1

(
(Q1 − P1S)w

2
0 −Q1R1

S2
1w

2
0 +Q

2
1

)
+ 2jπ

]
, where j = 0, 1, 2, . . . .

Now if transversality condition Re
[(
dλ
dτ

)−1
]
6= 0 holds at τ+0 , then hopf bifurcation will necessary occur

at τ+0 . Hence by differentiating λ with respect to τ in equation (4.6), we get

dλ

dτ
=

λ(S1λ+Q1)e
−λτ

2λ+ P1 + S1e−λτ − (S1λ+Q1)τe−λτ
.

Thus, at τ = τ+0 and λ = iw0, we get

Re

(
dλ

dτ

)−1

=
Q1J− S1w0K

w0(Q
2
1 + S

2
1w

2
0)

, (4.11)

here J = P1 sinw0τ0 + 2w0 cosw0τ0 and K = S1 + P1 cosw0τ0 − 2w0 sinw0τ0. On simplifying equation
(4.11), we have

Re

(
dλ

dτ

)−1

6= 0 if Q1J 6= S1w0K.
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4.5. Stability criterion for infection I1-free equilibrium E2

The variational matrix at equilibrium point E2 is given as:
−µ− I22β2 −S2β1 + γ1 −S2β2 + γ2 −S2β3 + e

−λτγ3
0 −µ+ S2β1 − (1 − q)I22β4 − γ1 0 (1 − p)S2β3
I22β2 −qI22β4 −µ+ S2β2 − γ2 pS2β3

0 I22β4 0 −δ− µ− e−λτγ3


and characteristic equation is

(λ+ µ)
(
λ+ µ+

(
−S2 + I22

)
β2 + γ2

) ((
λ2 + P2λ+ R2

)
+ (S2λ+Q2) e

−λτ
)
= 0, (4.12)

where

P2 =
(
−S2β1 + 2µ+ γ1 + δ+ I

2
2β4(1 − q)

)
,

R2 =
(
−S2β1 + 2µ+ γ1 + δ+ I

2
2β4(1 − q)

)
(δ+ µ) − I22β4(1 − p)S2β3,

S2 = γ3, Q2 = γ3
(
−S2β1 + µ+ γ1 + I

2
2β4(1 − q)

)
,

then the roots of equation (4.12) are −µ,−(µ+ (I22 − S
2)β2 + γ2) and the roots given by equation(

λ2 + P2λ+ R2
)
+ (S2λ+Q2) e

−λτ = 0. (4.13)

Case(i): if τ = 0, by Routh Hurwitz Criterion all roots will be negative if condition C4: P2 + S2 >

0 & R2 +Q2 > 0 hold. So therefore equilibrium point E2 will be stable if conditions R20 > 1 and C4 hold.
Case(ii): if τ > 0, by Lemma 4.2 all roots of equation (4.13) will be negative if conditions (B1)-(B3) hold. So
therefore equilibrium point E2 will be stable if conditions R20 > 1 together with (B1)-(B3) hold. Further, if
conditions (B1), (B2), and (B3) hold, then by Lemma 4.2 equation (4.13) will have set of imaginary roots.
Put λ = iw in 4.13, then we have

(iw)2 + P2(iw) + R2 + (S2(iw) +Q2) e
−(iw)τ = 0,

on comparing real and imaginary parts on both sides, we get

−w2 + R2 + S2w sinwτ+Q2 coswτ = 0, (4.14)
P2w+ S2w coswτ−Q2 sinwτ = 0, (4.15)

on simplifying equations (4.14) and (4.15), we get

sinwτ =
S2w

3 + (P2Q2 − R2S2)w

S2
2w

2 +Q2
2

,

coswτ =
(Q2 − P2S2)W

2 −Q2R2

S2
2w

2 +Q2
2

, (4.16)

and
w4 + (P2

2 − 2R2 − S
2
2)w

2 + (R2
2 −Q

2
2) = 0. (4.17)

Since R2
2 −Q

2
2 holds hence by Descart’s rule of sign, there exist at least one positive root of equation (4.17).

Let this positive root be w0, hence by equation (4.16), we have

τk =
1
w0

[
cos−1

(
(Q2 − P2S)w

2
0 −Q2R2

S2
2w

2
0 +Q

2
2

)
+ 2kπ

]
, where k = 0, 1, 2, . . . .
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Now if transversality condition Re
[(
dλ
dτ

)−1
]
6= 0 holds at τ+0 , then hopf bifurcation will necessary occur

at τ+0 . Hence by differentiating λ with respect to τ in equation (4.13), we get

dλ

dτ
=

λ(S2λ+Q2)e
−λτ

2λ+ P2 + S2e−λτ − (S2λ+Q2)τe−λτ
,

thus at τ = τ+0 and λ = iw0, we get

Re

(
dλ

dτ

)−1

=
Q2L− S1w0M

w0(Q
2
2 + S

2
2w

2
0)

, (4.18)

here L = P2 sinw0τ0 + 2w0 cosw0τ0 and M = S2 + P2 cosw0τ0 − 2w0 sinw0τ0. On simplifying equation
(4.18), we have

Re

(
dλ

dτ

)−1

6= 0 if Q2L 6= S2w0M.

4.6. Stability criterion of endemic equilibrium E∗

Endemic equilibrium explored numerically due to complexity in analytical expression.

5. Numerical simulation

The numerical simulations would be used to demonstrate previously defined effects for different sets
of parameter values.

(a) When τ = 0: for set of values of parameters Λ = 0.10;µ = 0.06;β1 = 0.11;β2 = 0.11;β3 = 0.07;β4 =
0.25;γ1 = 0.10;γ2 = 0.10;γ3 = 0.012; δ = 0.0005;p = 0.1;q = 0.3, we obtain basic reproduction
number R0 = 0.92 < 1. The system (2.1)-(2.4) has an DFE E0 (1.428, 0, 0, 0). Also, the local stability
conditions R0 < 1 and µ > γ3 − δ ae well satisfied. Therefore the DFE E0 is locally asymptotically
stable and presence of the delays does not affect the stability even choosing any positive value of
delay parameters (see Figure 2).

(b) For set of values of parameters Λ = 0.10;µ = 0.06;β1 = 0.33;β2 = 0.10;β3 = 0.07;β4 = 0.25;γ1 =
0.10;γ2 = 0.11;γ3 = 0.012; δ = 0.0005;p = 0.1;q = 0.3, we obtain basic reproduction number R20 =
0.98 < 1 and R10 = 3.43. The system (2.1)-(2.4) has an I2-free equilibrium E0 (0.48, 1.18, 0, 0). Also, the
local stability conditions R20 < 1 and C5 are satisfied. Therefore the DFE E0 is locally asymptotically
stable and presence of the delays does not affect the stability even choosing any positive value of
delay parameters (see Figure 3).

(c) For set of values of parameters Λ = 0.10;µ = 0.06;β1 = 0.10;β2 = 0.33;β3 = 0.07;β4 = 0.25;γ1 =
0.11;γ2 = 0.10;γ3 = 0.012; δ = 0.0005;p = 0.1;q = 0.3, we obtain basic reproduction number R10 =
0.98 < 1 and R20 = 3.43. The system (2.1)-(2.4) has an I1-free equilibrium E0 (0.48, 0, 1.18, 0). Also, the
local stability conditions R10 < 1 and C6 are satisfied. Therefore the DFE E0 is locally asymptotically
stable and presence of the delays does not affect the stability even choosing any positive value of
delay parameters (see Figure 4).

(d) For set of values of parameters Λ = 0.20;µ = 0.06;β1 = 0.15;β2 = 0.43;β3 = 0.70;β4 = 0.30;γ1 =
0.10;γ2 = 0.10;γ3 = 0.12; δ = 0.0005;p = 0.3;q = 0.3, we obtain basic reproduction number R0 =
8.95 > 1. The system (2.1)-(2.4) has an Endemic equilibrium E∗ (0.34, 0.40, 1.54, 1.03). Therefore
the system along EE E∗ is locally asymptotically stable if delay parameter has less value than critical
threshold τ = 31.21 and start bifurcating beyond the critical threshold and hopf bifurcation occurs.
This phenomena is shown in the Figures 5 and 6.
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Figure 2: Population densities when R0 < 1 and τ > 0.
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Figure 3: Population densities when R10 > 1 and τ > 0.
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Figure 4: Population densities when R20 > 1 and τ > 0.
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Figure 5: Population densities when R0 > 1 and τ = 30.5 < 31.0.
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Figure 6: Population densities when R0 > 1 and τ = 31.217 > 31.0.

6. Conclusions

In this paper, we proposed a simple two short-term disease S− I1 − I2 − I12 − S model with recovery
delays featuring not simultaneous transmission of infection but recovery from duly infected individuals.
In this model, there are four population classes susceptible to both infections S, susceptible to infection
two but infectious of infection one I1, susceptible to infection one but infectious of infection two I2, and
infectious of both infections I12. We observed four biologically feasible states for the model: the disease-
free, the infection-I2-free, the infection-I1-free, and the endemic steady state from the analysis. The basic
reproduction ratio R0 is determined for the system and observed that infection would die out if R0 < 1
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for the system without delay. But in the presence of delay, stability conditions do not remain sufficient
and additional condition is required for stability which is defined in Theorem 4.3. The infection I2-free
equilibrium becomes stable if R10 > 1 with additional condition C3 for system without delay. The infection
I1-free equilibrium become stable if R20 > 1 with additional condition C4 for without delay system.
Further, for both the boundary equilibria E1,E2 , Hopf bifurcation condition is derived for the system
with delay but can not be satisfied for a practical set of values of parameters; hence does not show the
bifurcation phenomenon in both the cases. Analytically endemic equilibrium expression is very lengthy,
so the existence of the endemic state is verified numerically. Further, it is established that the coexistence
state is stable only when R0 > 1 and the delay parameter value is less than the critical threshold value
τ < 31.217 and becomes unstable beyond this value also shows hopf bifurcation at τ > 31.217.
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