
J. Math. Computer Sci., 30 (2023), 89–100

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Regular string token fuzzy Petri nets

A. John Kaspar, D. K. Sheena Christy∗

Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, 6032 203, India.

Abstract
Fuzzy Petri nets are a type of classical Petri nets designed to deal with imprecise and ambiguous data, that have been

widely used to represent fuzzy production rules and fuzzy rule-based reasoning. In this paper, we introduce a new model called
string token fuzzy Petri nets to generate fuzzy regular languages. Also, we study the equivalences of fuzzy regular grammar
and regular string token fuzzy Petri net and establish some closure properties such as union, catenation, kleene closure, reversal,
homomorphism and inverse homomorphism of the languages generated by the regular string token fuzzy Petri nets.

Keywords: Fuzzy Petri net, Petri net languages, string token Petri net, fuzzy languages.

2020 MSC: 68Q45.
©2023 All rights reserved.

1. Introduction

The concept of formal language was first introduced and discussed by linguist, Noam Chomsky in [6].
A formal language is a set of sequence of symbols over some finite alphabet and the formal languages
are generated or recognized by abstract devices. Some of the major and useful devices to generate formal
languages are formal grammars (regular, context-free and context-sensitive), Petri nets, L-systems and
automata [14, 17, 29]. Later various classes of formal languages were introduced, also their relation with
its generating devices are initiated and examined. Formal grammars generally called as grammars are
precise description of formal languages, that is a grammar is a set of rules for rewriting strings to produce
a language and the rewriting begins from a start symbol. The in-depth knowledge of formal languages
along with its application in several fields such as pattern matching, syntax, lexical analyzer, picture
recognition etc, and its relation with grammars can be found in [14, 28]. Recently, there is an increasing
interest in studying and analyzing grammars and Petri nets, which are more applicable and effective
devices to generate the formal languages. Petri nets are dynamic graph with two disjoint sets of nodes
of which first includes the places represented by circles and the second are transitions represented by
rectangles [27]. A Petri net is used to create a simple mathematical framework for modelling concurrent
systems and their behaviour. The collection of firing sequences of transitions produced by the Petri net is
the primary importance in many applications of Petri nets. In addition to that, they have been used for the
description and analysis of system of parallel process [25, 30, 31]. Among the distinct varieties of Petri nets

∗Corresponding author
Email addresses: ja8952@srmist.edu.in (A. John Kaspar), sheena.lesley@gmail.com (D. K. Sheena Christy)

doi: 10.22436/jmcs.030.02.01

Received: 2022-04-25 Revised: 2022-10-23 Accepted: 2022-11-10

http://dx.doi.org/10.22436/jmcs.030.02.01
http://dx.doi.org/10.22436/jmcs.030.02.01
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.030.02.01&domain=pdf

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 90

structures, one of the Petri net structure called labelled Petri net was introduced in [12]. Their extensions
and applications has been studied in many papers [1, 3, 34]. These labelled Petri nets has been useful
for investigating the properties and characteristics of formal languages as they can successfully represent
and analyse the flow of information and the control of action in concurrent systems. In 1967 [9], Hack
formulated the Petri net languages generated by labelled transitions of Petri nets over some alphabet.
This was the commencement of a root causing research for the classification of a number of Petri net
languages [7, 11, 18, 30]. The hierarchy, complexity and deciedabilty results of Petri net languages are
discussed and analyzed in [2, 10]. In [32], another version of labeled Petri net called string token Petri net
has been presented and studied by representing the labels of transitions with grammar’s rules and tokens
by strings over some alphabet. This string token Petri nets led to the study of characterization of family
of picture languages recognized by array token Petri nets and its extension to the generation of graphs
and trees [15, 16, 22, 23, 33].

Zadeh introduced the concept of fuzzy sets to deal with real life problems having uncertainties, vague-
ness and imprises data [8, 35]. In [21], fuzzy Petri nets was introduced to reduce the uncertainty problems,
which aeries in decision making of industrial models. Later varied extensions of fuzzy Petri nets has been
initiated and studied by many researchers [4, 13, 20, 36, 37]. In [19], Zadeh and Lee introduced fuzzy lan-
guages generated by fuzzy grammars to reduce the vagueness occuring in formal languages. In addition
to that, they extended and discussed the basic principles and results of formal languages to fuzzy lan-
guages. Fuzzy languages received a lot of importance since the late seventies and the new class of fuzzy
languages with its associated generative fuzzy devices were further introduced and properties were scru-
tinized by various studies [26]. In [5, 24], The generative tools such as fuzzy L-system, fuzzy grammar
and fuzzy Petri nets were discussed and some properties of fuzzy languages has been studied from the
aspect of those fuzzy generative tools. The fuzzy Petri net introduced in [5] is a labelled fuzzy Petri
net, in which the transitions of Petri nets were labeled by symbols over some alphabet associated with
their membership values. The concept of fuzzy languages is used in script recognition, pattern matching,
lexical analysis, etc [26].

Motivated by the above works, in this paper, the new class of fuzzy Petri net is introduced and
analyzed in detail by labeling the transitions of fuzzy Petri net with production rules of fuzzy grammars.
Further, the closure properties of fuzzy Petri net are studied from the perspective of fuzzy grammars with
fuzzy languages.

This paper is organized as follows. The basic notions of fuzzy languages, Petri nets and Petri net
languages are recalled in Section 2. In Section 3, fuzzy evaluation rules, string token fuzzy Petri net
and regular string token fuzzy Petri net are defined. Also, shown the construction of the regular string
token fuzzy Petri net from the given fuzzy regular language. The closure properties such as union,
concatenation, kleene closure, homomorphism, inverse homomorphism and reversal of the family of
fuzzy regular languages generated by regular string token fuzzy Petri net are studied.

2. Preliminaries

In this section, the concept of fuzzy regular grammar and fuzzy regular languages are recalled [19, 26].
Also, the basic definitions of Petri net, labeled Petri net, Petri net language, string token Petri net and fuzzy
Petri net are recalled [9, 12, 25, 27, 30, 32]. The notion of regular languages, regular grammar and some
useful properties can be found in [14, 28].

Definition 2.1 ([19, 26]). A fuzzy grammar is a 4-tuple G = (VG, TG,S,PG) where,

1. VG is a finite collection of non-terminals;
2. TG is a finite collection of terminals, (VG ∩ TG = ∅);
3. S ∈ VG is start symbol; and
4. PG is a collection of rules called fuzzy production rules, which are of the form A

ρ−→ B, where
A, B ∈ (VG ∪ TG)∗ and ρ ∈ (0, 1] is the grade of membership (membership value) of A given B.

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 91

Definition 2.2 ([19, 26]). Let α, β ∈ (VG ∪ TG)∗. The string β is derivable from α, if there exist α1, . . . ,αn ∈
(VG ∪ TG)∗ and ρ1, ρ2, . . . , ρn, ρn+1 ∈ (0, 1] such that α

ρ1−→ α1, α1
ρ2−→ α2, . . ., αn−1

ρn−→ αn, αn
ρn+1−−−→ β are

fuzzy production rules in G.
A derivation chain from α1 to αn is an expression α1

ρ1=⇒ α2
ρ2=⇒ α3 . . .αn−1

ρn−1
===⇒ αn.

Definition 2.3 ([19, 26]). A string x of terminals is said to be derivable from a start variable S ∈ VG,
symbolically S ∗=⇒ x, if there is at least one derivation chain from S to x.

The degree of the string x is given by µ(x) = sup{min(ρ1, . . . , ρn−1)}, where the supremum is taken over
all derivation chains from S to x.

The fuzzy language generated by G is denoted by L(G) and it is defined by L(G) = {(x,µ(x))/S ∗=⇒
x;S ∈ VG and x ∈ V∗G}.
Definition 2.4 ([19, 26]). A fuzzy grammar G = (VG, TG,S,PG) is said to be fuzzy regular grammar, if all
the fuzzy production rules in G are of the form A

ρ−→ yB or A
ρ−→ y, where A,B ∈ VG,y ∈ T∗G and ρ ∈ (0, 1].

Definition 2.5 ([19, 26]). The collection of all strings y ∈ T∗G generated by the fuzzy regular grammar G is
called the fuzzy regular language and it is denoted as L(G).

Definition 2.6 ([15, 30]). A Petri net is a quadruple C = (P, T , I,O), where

• P = {pi : i = 1, 2, . . . ,n} is a finite collection of places;

• T = {tj : j = 1, 2, . . . ,m} is a finite collection of transitions, where P and T are disjoint and P ∪ T 6= ∅;

• input function I, that maps transitions to a collection of places (i.e., I : T → 2P);

• output function O, that maps a collection of places to transitions (i.e., O : T → 2P).

Definition 2.7 ([15, 30]). A generalized Petri net is a quintuple N = (P, T , I,O,M0) where,

• P, T , I, and O are same as defined in Definition 2.6;

• M0 is a marking called the initial marking, in which a marking is a mapping from places P to
{0, 1, 2, . . . }.

Definition 2.8 ([12, 15, 30]). A labeled Petri net is a hextuple N = (P, T , I,O,M0,γ), where P, T , I, O, M0
are same as defined in Definition 2.7 and γ is a labeling function, which assigns labels to the transitions.

Definition 2.9 ([22, 23]). “A String Token Petri Net (STPN) is a hextuple N = (P, T ,V ,A,R(t),M0), where

• P = {pi : i = 1, 2, . . . ,n} is a finite collection of places;

• T = {tj : j = 1, 2, . . . ,m} is a finite collection of transitions and each tj is the label of evolution rules;

• V is a finite non-empty collection of alphabets consisting of terminals (denoted in lower case letters)
and non-terminals (denoted in upper case letters);

• A ⊆ (T × P)∪ (P× T) is a collection of arcs (flow relation);

• R(t) is the collection of evolution rules used to label each transition tj; j = 1, 2, . . . ,m of T ;

• M0 : P → (a string over V) is an initial marking;

where, P and T are disjoint and P ∪ T 6= ∅. The collection of all strings generated by the STPN N is called
the language generated by the STPN.

Definition 2.10 ([24]). A fuzzy language generating Petri net is a sep-tuple (C,γ,Σ,M0,MF,ω,⊕), where

• C, γ, and M0 are same as defined in Definition 2.8;

• Σ is a finite collection alphabets, used to label the transitions;

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 92

• MF is a collection of final markings;

• ω : T → [0, 1] assigns membership values to every transitions tj; j = 1, 2, . . . ,m of T ; and

• ⊕ is a t-norm obtains the membership value (grade of membership) of the generated string based
on the values of the switched transitions, which is the grade of membership of the generated string
to the fuzzy language.”

3. Regular string token fuzzy Petri net

In this section, fuzzy evolution rules, string token fuzzy Petri net and regular string token fuzzy Petri
net have been introduced and described with example. Furthermore, it has been proved that for every
fuzzy regular language there exists a regular string token fuzzy Petri net.

Definition 3.1. Fuzzy Evolution Rules (FER) for String Token Fuzzy Petri Net (STFPN) are as follows.

• Reflexive rule: a 1−→ a, i.e., there is no change in the string replacement.

• Insertion rule: λ 1−→ a, an empty string (λ) is replaced by a string over V . It can be done in either
leftmost or rightmost side of the string.

• Deletion rule: a 0−→ λ, a string over V is replaced by an empty string. It can be done either in leftmost
or rightmost side of the string.

• Substitution rule: a
ρ−→ b, ρ ∈ [0, 1], a string over V is replaced by another string over V ,

where a ∈ V , b ∈ V∗ and λ is the empty string.

Definition 3.2. A String Token Fuzzy Petri Net (STFPN) is a 8-tuple Nf = (P, T ,V ,A, F,<(t),M0,MF), where

• P = {pi : i = 1, 2, . . . ,n} is a finite collection of places;

• T = {tj : j = 1, 2, . . . ,m} is a finite collection of transitions, where each tj is the label of fuzzy evolution
rules;

• V is a finite non-empty collection consists of terminals (denoted as Vtr, where the elements are
represented by lower case letters) and non-terminals (denoted as Vntr, where the elements are
represented by upper case letters);

• A ⊆ (T × P) ∪ (P × T) is a collection of arcs (flow relation) and an arc from any p (place) to t
(transition) is denoted by p 7→ t (similarly, t 7→ p);

• F ⊆ P is a collection of final places, which contains only strings of terminals;

• <(t) is the collection of fuzzy evolution rules (FRE) labeled with each transition tj; j = 1, 2, . . . ,m of
T ;

• M0 : P → (a string over V) is the initial marking;

• MF : P → (a string of terminals over V) is the set of final markings (also called as the reachable
markings).

where, P ∪ T 6= ∅ and P ∩ T = ∅.

Definition 3.3. A state or marking in an STFPN is altered according to the following transition (firing)
rule to replicate the dynamic system’s behavior.

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 93

(i) A transition (say t) is termed an enabled transition, if the tokens of every input place (say p) of a
transition t possesses a string appearing on the left-side expression of the FER labeled with t (for
example, the transition t labelled by FRE AxB

ρ−→ BCy is enabled. Then the string token of its input
place p of t is a string AxB).

(ii) A transition t can be fired, if it is enabled (depending on whether the event actually takes place).
(iii) The string token (say X) is removed from all input place (say p) of a transition (say t) and altered

as the string token Y in the output place of t, if the enabled transition t is fired (for example: if
t : AxB

ρ−→ BCy is an enabled transition and a string wAxBz on the input place (say p1) of t is altered
as the string wBCyz on the output place (say p2) of t, after t fires).

If a transition t in T is labelled with a FRE A
ρ−→ B then firing of the transition t from an input

place to a output place is denoted by A t

ρ
B, where A,B ∈ V∗; ρ ∈ [0, 1]. A firing sequence from X1

to Xn with transitions t1, t2, . . . , tn−1 ∈ T is denoted by X1 t1

ρ1
X2 t2

ρ2
X3 t3

ρ3 · · ·Xn−1 tn−1

ρn−1
Xn, where

Xi ∈ V∗; i = 1, . . . ,n and ρi ∈ [0, 1]; i = 1, . . . ,n− 1. The degree of derivability (membership value) of X1

to Xn is obtained by d(X1
?
Xn) = sup min{ρ1, ρ2, . . . , ρn−1}, where the supremum is taken over all the

firing sequence from X1 to Xn.
Note that, ? is the transitive closure of .

Definition 3.4. A string w of terminals is generated by the STFPN Nf, if there exists atleast one firing
sequence that reaches the final marking for the string w from the initial markingM0 with d(M0

?
w) > 0.

The membership value of the string is denoted by d(w) (also, dNf(w)) and is obtained by d(w) = d(M0 `
w).

The fuzzy language generated by the STFPN Nf is the collection of all strings of terminals generated
by the STFPN Nf and it is denoted by L(Nf). That is,

L(Nf) = {w/w ∈ V∗tr and d(M0
?
w) > 0}.

Definition 3.5. A Regular STFPN (RSTFPN) is also a 8-tuple Nf = (P, T ,V ,A, F,<(t),M0,MF), in which P,
T , V , A, F, M0, MF are all same as defined in Definition 3.2 and identity, insertion and deletion rules of
FER <(t) are same as defined in Definition 3.1 in which the substitution rules are of the form α

ρ−→ yβ or
α
ρ−→ y, where α,β ∈ Vntr,y ∈ V∗tr and ρ ∈ (0, 1].

Example 3.6. Consider a fuzzy regular language L(Nf) = {(w, 0.5)/w = anbm;n > 2,m > 3} generated
by the RSTFPN Nf = (P, T ,V ,A, F,<(t),M0,MF), in which, P = {p1,p2,p3,p4,p5}, T = {t1, t2, t3, t4, t5, t6},
V = {S,A,B,C,a,b}, A = {p1 7→ t1, t1 7→ p2,p2 7→ t2, t2 7→ p2,p2 7→ t3, t3 7→ p3,p3 7→ t4, t4 7→ p4,p4 7→
t5, t5 7→ p4,p4 7→ t6, t6 7→ p5}, F = {p5}, M0: initial marking, MF: reachable marking, and <(t) = {S

0.8−→
aaA,A 0.7−→ aA,A 0.9−→ B,B 0.8−→ bbC,C 0.6−→ aC,C 0.6−→ a}. The RSTFPN Nf generating the fuzzy regular
language L(Nf) is illustrated in Figure 1.

Figure 1: RSTFPN Nf.

Let y = aabbb in L(Nf), the firing sequence of the string y and the membership value of the string is
given below:

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 94

S t1

0.8
aaA t3

0.9
aaB t4

0.8
aabbC t6

0.6
aabbb, d(y) = max min(0.8, 0.9, 0.8, 0.6) = 0.6 > 0.

Therefore the string y = aabbb generated by Nf with membership value 0.6 is in L(Nf).

Definition 3.7. A fuzzy language generated by the RSTFPN Nf is called the fuzzy regular language
generated by Nf and is denoted by L(Nf).

Theorem 3.8. For every fuzzy regular language L, there exists a RSTFPN Nf such that L = L(Nf).

Proof. Let L be a given fuzzy regular language generated by the fuzzy regular grammarG = (VG, TG,S,PG),
where VG, TG,S are same as defined in Definition 3.5 and the fuzzy production rules in PG are of the

form S
ρ−→ zB, B

γ−→ yB, S
β−→ yC, B α−→ yD D

ω−→ w and C
η−→ y where, y, z ∈ T∗G; S,B,C,D ∈ VG and

ρ,γ,β,α,ω,η ∈ [0, 1].
The fuzzy production rules PG of G is partitioned as follows, which has been used in the construction

of RSTFPN Nf = (P ′, T ′,V ′,A ′, F ′,< ′(t),M ′0,M ′F).

i) Collection of all fuzzy production rules are of the form S
ρ−→ zB, B

γ−→ yB, S
β−→ yC and B α−→ yD are

called as NT -rules, i.e., the collection of non-terminal rules.
ii) Collection of all other fuzzy production rules are called as T -rules, i.e., the collection of terminal

rules.
iii) Collection of all fuzzy production rules whose leftside has start variable (say S) of G are called as

S-rules.

Among the NT -rules, collection of all fuzzy production rules are of the form B
β−→ yB (i.e., loop rules)

are called as LNT -rules and collection of all other fuzzy production rules are called as WLNT -rules.
Among the S-rules, collection of all NT -rules are called as SNT -rules and all other rules are called as

ST -rules.
Step 1: If S is the start symbol of G then construct a place pS with S as a token.
Step 2: Let there are n rules in the set of S-rules and let ti be the tag of the n rules in the set of S-rules,
where i = 1, 2, . . . ,n.

1 for (i = 1, i ≤ n, i = i++) do
2 if ti ∈ SLNT then
3 transition label = tSLNT i;
4 input place = PS ;
5 output place = PS ;
6 firing times = any;

7 else
8 if ti ∈ SWLNT then
9 transition label = tSWLNT i;

10 input place = PS ;
11 output place = PSW i;
12 firing times = one;

13 else
14 if ti ∈ ST then
15 transition label = tST i;
16 input place = PS ;
17 output place = PST i;
18 firing times = one;

19 end

20 end

21 end

22 end

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 95

All the strings in PSwi , i = 1, 2, . . . ,n has at least one non-terminal in it. Let Cj be the leftmost non-
terminal in Swi. Now, collect all Cj-rules partition them as CjLNT , CjWLNT and CjT . Let Cj has n
number of rules.

Step 3: The Regular STFPN Nf = (P ′, T ′,V ′,A ′, F ′,< ′(t),M ′0,M ′F), in which P ′ is the collection all con-
structed places, T ′ the collection of all labeled transitions used so far, V ′ = VG ∪ TG, A ′ the collection all
arcs, < ′(t) = PG, M ′0 is the initial marking and M ′F is the collection of reachable markings.

1 while i ≤ n do
2 Search(PSwi , Cj);
3 for (j = 1, j ≤ n, j = j ++) do
4 if tj ∈ CjLNT then
5 transition label = tCjLNT j ;

6 input place = PSwj ;

7 output place = PSwj ;

8 firing times = any;

9 else
10 if tj ∈ CjWLNT then
11 transition label = tCjWLNT j ;

12 input place = PPSwj ;

13 output place = PCjW j ;

14 firing times = one;

15 else
16 if tj ∈ CjT then
17 transition label = tCjT j ;

18 input place = PSwj ;

19 output place = PCjT j ;

20 firing times = one;

21 i = i+ 1;

Now, collection of all places PSTi ,PCjTj , . . . are called as final places F ′, since it leads to the terminal
strings and collection of all the places so far are called as P ′.

Thus, for every fuzzy regular language L there exists a Regular String Token Fuzzy Petri Net Nf such
that L = L(Nf).

Example 3.9. Consider the fuzzy regular language L1 = {anb/n > 0;a,b ∈ Σ} with membership value
0.6 when n = 1 and 0.4 when n > 2 generated by the fuzzy regular grammar G = ({S,S1}, {a,b},S,PG),

where PG = {S
0.7−→ aS1,S1

0.4−→ aS1,S 0.6−→ b}.

Among the rules in PG, S 0.7−→ aS1,S1
0.4−→ aS1 are NT-rules and S1

0.6−→ b is a T-rule. Also, among the

NT-rules S1
0.7−→ aS1 is a LNT-rule and S 0.4−→ aS1 is a WLNT-rule. Here, S 0.7−→ aS1 is the SWLNT-rule,

since S is the start symbol of G and also a NT-rule.
By step 1 of Theorem 3.8, construct a place pS with S as a string token in it (Figure 2).

Figure 2:

By step 2 of Theorem 3.8, label the rule S 0.7−→ aS1 as tSWLNT1, since it is a SWLNT-rule. Now, construct

a transition tSWLNT1 : S
0.7−→ aS1 with input place and output place as pS and paS1 (Figure 3), respectively.

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 96

Figure 3:

By step 3 of Theorem 3.8, collect all the S1-rules, since S1 is the leftmost non-terminal in aS1. Label the

the rule S1
0.4−→ aS1 as tS1LNT1, since it is a S1LNT -rule. Now, construct a transition tS1LNT1 : S1

0.4−→ aS1

with input place and output place as paS1 . Also, label the rule S1
0.6−→ b as tS1T1, since it is a S1T1-

rule. Now, construct a transition tS1T1 : S1
0.6−→ b with input place and output place as paS1 and pab,

respectively. The complete RSTFPN Nf is illustrated in Figure 4.

Figure 4: RSTFPN Nf.

Thus, the RSTFPN Nf that generates the given fuzzy regular language L is Nf = (P,V , T ,A, F,<(t),M0,
MF), where,

P = {pS,paS1 ,pab},
V = {S,S1,a,b},
T = {tSWLNT1, tS1LNT1, tS1T1},
A = {pS 7→ tSWLNT 1, tSWLNT 1 7→ paS1 ,paS1 7→ tS1LNT 1,

tS1LNT 1 7→ paS1 ,paS1 7→ tS1WLNT 1, tS1WLNT 1 7→ pab},
F = {pab},

<(t) = {tSWLNT1 : S
0.7−→ aS1, tS1LNT1 :

0.4−→ aS1, tS1T1 : S1
0.6−→ b},

M0 = (S, ε, ε) and MF = {ε, ε,pab}.

It is easy to see that L(G) = L(Nf).

4. Closure properties

In this section, the closure properties such as, union, concatenation, kleene closure, reversal, homomor-
phism and inverse homomorphism are defined and proved that the fuzzy regular languages generated by
the RSTFPN are closed under union, concatenation, kleene closure, reversal, homomorphism and inverse
homomorphism.

Definition 4.1. Let L(Nf), L(Nf1) and L(Nf2) be the fuzzy regular languages generated by the RSTFPN Nf,
Nf1 and Nf2 , respectively then the union of two fuzzy regular languages L(Nf1) and L(Nf2) is also a fuzzy

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 97

regular language defined by

dL(Nf1)∪L(N
f
2)
(w) = max(dL(Nf1)(w), dL(Nf2)(w)), where w is a string of terminals

and is denoted by L(Nf1)∪ L(Nf2).
The intersection of L(Nf1) and L(Nf2) is also a fuzzy regular language defined by

dL(Nf1)∩L(N
f
2)
(w) = min(dL(Nf1)(w), dL(Nf2)(w)), where w is a string of terminals

and is denoted by L(Nf1)∩ L(Nf2).
The concatenation of L(Nf1) and L(Nf2) is also a fuzzy regular language defined by

dL(Nf1)L(N
f
2)
(w) = sup

w1

min(dL(Nf1)(w), dL(Nf2)(w)),

where w is a string of terminals the supremium has taken over all the terminal strings of L(Nf1) and is
denoted by L(Nf1)L(N

f
2).

The kleene closure of L(Nf1) is also a fuzzy regular language denoted by L(Nf∗1) and is defined by

L(Nf∗1) = L(Nf∗1)1L(Nf∗1)2 · · ·L(Nf∗1)i · · · .

Theorem 4.2. The fuzzy regular languages generated by regular string token fuzzy Petri nets are closed under
union.

Proof. Let L1 and L2 be two fuzzy regular languages generated by regular string token fuzzy Petri net
Nf1 = (P1, T1,V1,A1, F1<1(t),M01 ,MF1) such that L1 = L(Nf1) and a regular string token fuzzy Petri net
Nf2 = (P2, T2,V2,A2, F2,<2(t),M02 ,MF2) such that L2 = L(Nf2).

The construction of the RSTFPN Nf such that L(Nf) = L(Nf1) ∪ L(Nf2) is done by the following three
steps. First, the string tokens S1 and S2 are removed from the start places say pS1 and pS2 of the nets Nf1
and Nf2 , respectively. In the second step, a new place pS is constructed with string token S in it. Finally,

add the transition labeled, tα with insertion rule S 1−→ S1, whose input and output place as pS and pS1 ,

respectively. Also, add another transition labeled, tβ with insertion rule S 1−→ S2, whose input and output
place as pS and pS2 , respectively. Once the process is initiated, either Nf1 or Nf2 continues to operate
usually, after firing of the transitions tα and tβ. The membership value of the string is obtained by taking
maximum of its membership value in L(Nf1) and L(Nf2).

Formally it is defined as follows: construct a regular string token fuzzy Petri net Nf that generates the
fuzzy regular language L1 ∪ L2 such that Nf = (P, T ,V ,A, F,<(t),M0,MF), where

P = P1 ∪ P2 ∪ {p}, T1 ∪ T2 ∪ {tα, tβ},
V = V1 ∪ V2 ∪ {S}r {S1,S2}, A = A1 ∪A2 ∪ {p 7→ tα,p 7→ tβ, tα 7→ pS1 , tβ 7→ pS2},

F = F1 ∪ F2, <(t) = <1(t)∪<2(t)∪ {tα : S
1−→ S1, tβ : S

1−→ S2},

and M0 is the initial marking and MF = {MF1 ∪MF2}.
The same procedure is extended to L1,L2, . . . ,Ln, i.e., let L1,L2, . . . ,Ln be fuzzy regular languages

generated by regular string token fuzzy Petri nets, then L =
n⋃
i=1

Li is also a fuzzy regular languages

generated by regular string token fuzzy Petri net.

Theorem 4.3. The fuzzy regular languages generated by regular string token fuzzy Petri nets are closed under
concatenation.

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 98

Proof. Let L1 and L2 be the two fuzzy regular languages generated by regular string token fuzzy Petri
net Nf1 = (P1, T1,V1,A1, F1,<1(t),M01 ,MF1) such that L1 = L(Nf1) and regular string token fuzzy Petri net
Nf2 = (P2, T2,V2,A2, F2,<2(t),M02 ,MF2) such that L2 = L(Nf2).

The construction of the RSTFPN Nf such that L(Nf) = L(Nf1)L(N
f
2) is done by the following two steps.

First, a new place p is constructed at the end of the net Nf1 with strings generated from the net Nf1 as

token in it. In the second step, add a transition labeled, tα with insertion rule λ 1−→ S2, whose input and
output place as p and pS2 (start place of Nf2), respectively. Any string in L(Nf) is first operated by the net
Nf1 followed by the net Nf2 . The membership value of the string is obtained by taking maximum of its
membership value in L(Nf1) and L(Nf2).

Formally it can be written as, construct a regular string token fuzzy Petri net Nf that generates the
fuzzy regular language L1L2 such that Nf = (P, T ,V ,A, F,<(t),M0,MF), where

P = P1 ∪ P2{p: a place containing the words of L1}, T1 ∪ T2 ∪ {tα},
V = V1 ∪ V2 ∪ {λ}, A = A1 ∪A2 ∪ {p 7→ tα, tα 7→ pS2},

F = F2, <(t) = <1(t)∪<2(t)∪ {tα : λ
1−→ S2},

and M0 is the initial marking and MF = {MF2}.
The same procedure is extended to L1,L2, . . . ,Ln, i.e., Let L1,L2, . . . ,Ln be fuzzy regular languages

generated by regular string token fuzzy Petri nets then L = L1L2 . . .Ln is also a fuzzy regular languages
generated by regular string token fuzzy Petri net.

Theorem 4.4. The fuzzy regular languages generated by regular string token fuzzy Petri nets are closed under
kleene closure.

Proof. Let L1 be a fuzzy regular language generated by a regular string token fuzzy Petri net Nf1 =
(P1, T1,V1,A1, F1,<1(t),M01 ,MF1) such that L1 = L(Nf1).

The construction and process of the net L(Nf) is same as stated in Theorem 4.3, whereas the transition

labeled tα has insertion rule λ 1−→ S1 with input and output place as p and pS1 (start place of Nf1),
respectively.

The formal way is as follows: construct a regular string token fuzzy Petri net Nf that generates the
fuzzy regular language L∗1 such that Nf = (P, T ,V ,A, F,<(t),M0,MF), where

P = P1 ∪ {p: a place containing the words of L1}, T = T1 ∪ {tα}, V = V1 ∪ {ε},
A = A1 ∪ {p 7→ tα, tα 7→ pS1}, F = F1, <(t) = <1(t)∪ {tα : λ

1−→ S1},

and M0 is the initial marking and MF = {MF1}.

Theorem 4.5. The fuzzy regular languages generated by regular string token fuzzy Petri nets are closed under
reversal.

Proof. Let L1 be a fuzzy regular language then there exists a regular string token fuzzy Petri net Nf1 =
(P1, T1,V1,A1, F1,<1(t),M01 ,MF1) such that L1 = L(Nf1).

Now, construct a regular string token fuzzy Petri net Nf that generates the fuzzy regular language LR1
such that Nf = (P, T ,V ,A, F,<(t),M0,MF), where P = P1, T = T1, V = V1, F = F1, A = A1,

<(t) =

{
A
ρ−→ ByR, if A

ρ−→ yB;A,B ∈ Vntr,y ∈ V∗tr,
A
ρ−→ yR, if A

ρ−→ y;A ∈ Vntr,y ∈ V∗tr,

and M0 is the initial marking and MF = {MF1}. The concept is that, first the terminal strings occurs in the
leftside of the rules are written in the reverse order and then they are labeled by the transitions tj from T

of the net Nf with same the membership value.

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 99

Definition 4.6. Let V∗ and V∗1 be two given alphabets. A mapping h : V∗ → V∗1 is called a homomorphism,
if it satisfies h(yz) = h(y) h(z) for all y, z ∈ V∗tr. The homomorphism of the given language L is denoted
by h(L) obtained from the set h(L) = { h(x)/x ∈ L}.

Theorem 4.7. The fuzzy regular languages generated by regular string token fuzzy Petri nets are closed under
homomorphism and inverse homomorphism.

Proof. Let L1 be a fuzzy regular language generated by a regular string token fuzzy Petri net Nf1 =
(P1, T1,V1,A1, F1,<1(t),M01 ,MF1) such that L1 = L(Nf1).
(i) Construct a regular string token fuzzy Petri net Nf that generates the fuzzy regular language h(L1)
such that Nf = (P, T ,V ,A, F,<(t),M0,MF), where P = P1, T = T1, V = V1, A = A1, F = F1,

<(t) =

{
A
ρ−→ h(y)B, if A

ρ−→ yB;A,B ∈ Vntr,y ∈ V∗tr,
A
ρ−→ h(y), if A

ρ−→ y;A ∈ Vntr,y ∈ V∗tr,

and M0 is the initial marking and MF = {MF1}.
(ii) Construct a regular string token fuzzy Petri net Nf that generates the fuzzy regular language h−1(L1)
such that Nf = (P, T ,V ,A, F,<(t),M0,MF), where P = P1, T = T1, V = V1, A = A1, F = F1,

<(t) =

{
A
ρ−→ h−1(y)B, if A

ρ−→ yB;A,B ∈ Vntr,y ∈ V∗tr,
A
ρ−→ h−1(y), if A

ρ−→ y;A ∈ Vntr,y ∈ V∗tr,

and M0 is the initial marking and MF = {MF1}.
The concept is that, first the homomorphism (inverse homomorphism) is applied to the terminal

strings occurs in the left-side of the rules and then they are labeled by the transitions tj from T of the net
Nf with same the membership value.

5. Conclusion

In this paper, a new model, regular string token fuzzy Petri nets to generate fuzzy regular languages
has been introduced and discussed. Also, given the construction of regular string token fuzzy Petri net
from given fuzzy regular language and some closure properties such as union, catenation, kleene closure,
homomorphism, inverse homomorphism and reversal of the languages generated by regular string token
fuzzy Petri nets has been established. The scope of this study is to extend the concept to fuzzy context-
free languages and fuzzy context-sensitive languages. Also, the study can be further taken up to the
complexity theory of array token fuzzy Petri nets. Moreover, find the possible applications of the concept
in approximate pattern matching and image processing.

References

[1] A. Al-Ajeli, D. Parker, Fault diagnosis in labelled Petri nets: a Fourier-Motzkin based approach, Automatica J. IFAC, 132
(2021), 7 pages. 1

[2] P. T. An, A complexity characteristic of Petri Net languages, Acta Math. Vietnam., 24 (1999), 157–167. 1
[3] P. T. An, P. V. Thao, On capacity of labeled Petri Net languages, Vietnam J. Math., 27 (1999), 231–240. 1
[4] J. Cardoso, C. Heloisa, Fuzziness in Petri nets, Springer Science & Business Media, (1998). 1
[5] S. R. Chaudhari, D. D. Komejwar, On fuzzy regular grammars, Adv. Fuzzy Syst., 6 (2011), 89–103. 1
[6] N. Chomsky, Three models for the description of language, IRE Trans. Inform. Theory, 2 (1956), 113–124. 1
[7] J. Dassow, G. Mavlankulov, M. Othman, S. Turaev, M. H. Selamat, R. Stiebe, Grammars controlled by Petri Nets, In:

Petri Nets Manufacturing and Computer Science, InTech, (2012), 337–358. 1
[8] G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic, New Jersey: Prentice hall, (1995). 1
[9] M. Hack, Petri Net languages, Technical report, Massachusetts Institute of Technology, (1976). 1, 2

[10] M. Jantzen, On the hierarchy of Petri Net languages, RAIRO Inform. Théor., 13 (1979), 19–30. 1
[11] M. Jantzen, M. Kudlek, G. Zetzsche, Language classes defined by concurrent finite automata, Fund. Inform., 85 (2008),

267–280. 1

https://doi.org/10.1016/j.automatica.2021.109831
https://doi.org/10.1016/j.automatica.2021.109831
http://journals.math.ac.vn/acta/pdf/9902157.pdf
http://www.math.ac.vn/publications/vjm/vjm_27/No.3/231-240_An-Thao.PDF
https://books.google.fr/books?hl=en&lr=&id=ssFFZ_4DpVcC&oi=fnd&pg=PP11&dq=Fuzziness+in+Petri+nets&ots=TP0W9C5O1W&sig=CJANFOM0GOA9JUxB_0RivSoI6oY&redir_esc=y#v=onepage&q=Fuzziness%20in%20Petri%20nets&f=false
https://www.researchgate.net/profile/Shrikant-Chaudhari/publication/266734533_On_Fuzzy_Regular_Grammars/links/54390d0d0cf204cab1d77f1f/On-Fuzzy-Regular-Grammars.pdf
https://doi.org/10.1109/TIT.1956.1056813
https://books.google.fr/books?hl=en&lr=&id=R9mgDwAAQBAJ&oi=fnd&pg=PA337&dq=Grammars+controlled+by+Petri+Nets&ots=tPstOQ6uBa&sig=UMk8gEVuf1DJqgqkvyxogUoQaSg&redir_esc=y#v=onepage&q=Grammars%20controlled%20by%20Petri%20Nets&f=false
https://books.google.fr/books?hl=en&lr=&id=R9mgDwAAQBAJ&oi=fnd&pg=PA337&dq=Grammars+controlled+by+Petri+Nets&ots=tPstOQ6uBa&sig=UMk8gEVuf1DJqgqkvyxogUoQaSg&redir_esc=y#v=onepage&q=Grammars%20controlled%20by%20Petri%20Nets&f=false
https://www.researchgate.net/profile/Somyajit-Chakraborty/post/Up_to_What_Point_Extent_do_I_need_to_Study_Fuzzy_Set_Theory_and_Logic_to_Review_and_Understand_Papers_on_Fuzzy_Expert_System/attachment/5e8c4671c005cf0001821116/AS%3A877616034762752%401586251376079/download/Klir.pdf
https://dl.acm.org/doi/10.5555/888947
https://doi.org/10.1051/ita/1979130100191
https://content.iospress.com/articles/fundamenta-informaticae/fi85-1-4-19
https://content.iospress.com/articles/fundamenta-informaticae/fi85-1-4-19

A. John Kaspar, D. K. Sheena Christy, J. Math. Computer Sci., 30 (2023), 89–100 100

[12] M. Jantzen, G. Zetzsche, Labeled Step Sequences in Petri Nets, In: Applications and Theory of Petri Nets, Springer,
Berlin, (2008), 270–287. 1, 2, 2.8

[13] W. Jiang, K.-Q. Zhou, A. Sarkheyli-Hägele, A. M. Zain, Modeling, reasoning, and application of fuzzy Petri net model:
a survey, Artif. Intell. Rev., 55 (2022), 1–39. 1

[14] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson
Education Ltd., 3rd edition, (2014). 1, 2

[15] T. Kalyani, T. T. Raman, D. G. Thomas, K. Bhuvaneswari, P. Ravichandran, Triangular array token Petri Net and P
system, In International Conference on Membrane Computing, Springer, Cham, (2020), 78–93. 1, 2.6, 2.7, 2.8

[16] T. Kamaraj, D. Lalitha, D. G. Thomas,A Study on Expressiveness of a Class of Array Token Petri Nets, Proceedings of
the Third International Conference on Soft Computing for Problem Solving, Springer, New Delhi, (2014), 457–469.
1

[17] A. Lindenmayer, Developmental Systems without Cellular Interactions, their languages and Grammars, J. Theoret. Biol.,
30 (1971), 455-–484. 1

[18] S. Lafortune, H. Yoo, Some results on Petri Net languages, IEEE Trans. Automat. Control, 35 (1990), 482–485. 1
[19] E. T. Lee, L. A. Zadeh, Note on fuzzy languages, Inf. Sci., 1 (1969), 421–434. 1, 2, 2.1, 2.2, 2.3, 2.4, 2.5
[20] H. Li, J.-X. You, H.-C. Liu, G. Tian, Acquiring and sharing tacit knowledge based on interval 2-tuple linguistic assessments

and extended fuzzy Petri nets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 26 (2018), 43–65. 1
[21] C. G. Looney, Fuzzy Petri nets for rule-based decision making, IEEE Trans. Syst. Man Cybern., 18 (1988), 178–183. 1
[22] M. I. Mary Metilda, D. Lalitha, Petri Nets for pasting tiles, Intelligent Computing in Engineering, Springer, Singa-

pore, (2020), 701–708. 1, 2.9
[23] M. I. Mary Metilda, D. Lalitha, Kolam generated by color Petri Nets, Information and Communication Technology

for Sustainable Development, Springer, Singapore, (2020), 675–681. 1, 2.9
[24] C. Moraga, Some properties of fuzzy languages, Computational Intelligence, Theory and Applications. Springer,

Berlin, Heidelberg, (2006), 367–374. 1, 2.10
[25] T. Muratma, Perti nets: properties, analysis and applications, Proceedings of IEEE, 77 (1989), 541–580. 1, 2
[26] J. N. Mordeson, D. S. Malik, Fuzzy Automata and Languages: Theory and Applications, CRC Press, (2002). 1, 2, 2.1,

2.2, 2.3, 2.4, 2.5
[27] C. A. Petri, Communication with automata, (1966). 1, 2
[28] P. Linz, An introduction to formal languages and automata, Jones & Bartlett Learning, (2006). 1, 2
[29] J. L. Peterson, Petri Nets, Comput. Surveys, 9 (1977), 223–252. 1
[30] J. L. Peterson, Petri Net theory and the modeling of systems, Prentice Hall PTR, (1981). 1, 2, 2.6, 2.7, 2.8
[31] G. Rozenberg (Ed.), Advances in Petri Nets, Springer Science & Business Media, (1987). 1
[32] D. K. Shirley Gloria, S. Devi, K. Nirmala, Regular string-token Petri Nets, Malaya J. Mat., 8 (2020), 445–449. 1, 2
[33] P. Usha, K. Thirusangu, B. Immanuel, Tree-Token Petri Nets and Derivation Trees, Ann. Pure Appl. Math., 8 (2014),

219–226. 1
[34] X. Yin, S. Lafortune, On the decidability and complexity of diagnosability for labeled Petri Nets, IIEEE Trans. Automat.

Control, 62 (2017), 5931–5938. 1
[35] L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338-353. 1
[36] C. Zhang, G. Tian, A.M. Fathollahi-Fard, W. Wang, P. Wu, Z. Li, Interval-valued intuitionistic uncertain linguistic

cloud petri net and its application to risk assessment for subway fire accident, IEEE Trans. Autom. Sci. Eng., 19 (2022),
163–177. 1

[37] K.-Q Zhou, A. M. Zain, Fuzzy Petri Nets and industrial applications: a review, Artif. Intell. Rev., 45 (2016), 405–446. 1

https://doi.org/10.1007/978-3-540-68746-7_19
https://doi.org/10.1007/978-3-540-68746-7_19
https://doi.org/10.1007/s10462-022-10161-0
https://doi.org/10.1007/s10462-022-10161-0
https://d1wqtxts1xzle7.cloudfront.net/31352670/19s_Automata_Theory-with-cover-page-v2.pdf?Expires=1669321486&Signature=aL3jdzVaRToelULKCQyAeUAXhXSUHA2DWjtlkJH0zSPdEx8NqjdcGqFLXCnHom~zzEXO9yuJd3KzQx4LAI61kf0XIngghxwQ95AyiD8B~luHR5KIjTI8JDYdvJLatq7wJmMA7wPVCpRCBquvkkxESZTknX5937pffTfkLhZlqUUO9kHvuLRNBynwe9H6GJe7A3RoqROQSL4tzStoHzlOBdjTgs-3kLlRdjHejapUId8SLJNmpgULRlEk24igwn9ZwIKihpo4vSCH-itv2e1lkAx5nCWaZW9zhVN2h6c4P0I8MLqlTLWtdilHgInTzT1P8T2QX-YVxAWbmWp~mm3LiA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/31352670/19s_Automata_Theory-with-cover-page-v2.pdf?Expires=1669321486&Signature=aL3jdzVaRToelULKCQyAeUAXhXSUHA2DWjtlkJH0zSPdEx8NqjdcGqFLXCnHom~zzEXO9yuJd3KzQx4LAI61kf0XIngghxwQ95AyiD8B~luHR5KIjTI8JDYdvJLatq7wJmMA7wPVCpRCBquvkkxESZTknX5937pffTfkLhZlqUUO9kHvuLRNBynwe9H6GJe7A3RoqROQSL4tzStoHzlOBdjTgs-3kLlRdjHejapUId8SLJNmpgULRlEk24igwn9ZwIKihpo4vSCH-itv2e1lkAx5nCWaZW9zhVN2h6c4P0I8MLqlTLWtdilHgInTzT1P8T2QX-YVxAWbmWp~mm3LiA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1007/978-3-030-77102-7_5
https://doi.org/10.1007/978-3-030-77102-7_5
https://doi.org/10.1007/978-81-322-1768-8_41
https://doi.org/10.1007/978-81-322-1768-8_41
https://doi.org/10.1016/0022-5193(71)90002-6
https://doi.org/10.1016/0022-5193(71)90002-6
https://doi.org/10.1109/9.52310
https://doi.org/10.1016/0020-0255(69)90025-5
https://doi.org/10.1142/S0218488518500034
https://doi.org/10.1142/S0218488518500034
https://doi.org/10.1109/21.87067
https://doi.org/10.1007/978-981-15-2780-7_76
https://doi.org/10.1007/978-981-15-2780-7_76
https://doi.org/10.1007/978-981-13-7166-0_68
https://doi.org/10.1007/978-981-13-7166-0_68
https://doi.org/10.1007/3-540-34783-6_37
https://doi.org/10.1007/3-540-34783-6_37
https://doi.org/10.1109/5.24143
https://books.google.fr/books?hl=en&lr=&id=-3XLBQAAQBAJ&oi=fnd&pg=PR5&dq=Fuzzy+Automata+and+Languages:+Theory+and+Applications&ots=fsPQRInSVg&sig=eGTMVfLnvBgobGN3x7UmIVaL4Ko&redir_esc=y#v=onepage&q=Fuzzy%20Automata%20and%20Languages%3A%20Theory%20and%20Applications&f=false
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2010/155/
https://books.google.fr/books?id=KOo4NpfTEAIC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://doi.org/10.1145/356698.356702
https://dl.acm.org/doi/abs/10.5555/539513
https://books.google.fr/books?hl=en&lr=&id=Pu0JHdPErIoC&oi=fnd&pg=PA1&dq=Advances+in+Petri+Nets&ots=x4pahoWxgj&sig=owCn2zUNUxb7vDnurUIbB0fnlB0&redir_esc=y#v=onepage&q=Advances%20in%20Petri%20Nets&f=false
https://doi.org/10.26637/mjm0802/0019
http://www.researchmathsci.org/apamart/apam-v8n2-27.pdf
http://www.researchmathsci.org/apamart/apam-v8n2-27.pdf
https://doi.org/10.1109/tac.2017.2699278
https://doi.org/10.1109/tac.2017.2699278
https://www-liphy.univ-grenoble-alpes.fr/pagesperso/bahram/biblio/Zadeh_FuzzySetTheory_1965.pdf
https://ieeexplore.ieee.org/abstract/document/9178460
https://ieeexplore.ieee.org/abstract/document/9178460
https://ieeexplore.ieee.org/abstract/document/9178460
https://doi.org/10.1007/s10462-015-9451-9

	Introduction
	Preliminaries
	Regular string token fuzzy Petri net
	Closure properties
	Conclusion

