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Abstract

The oscillatory behavior of solutions of a class of second order forced non-linear differential equations is discussed. Several
oscillation and non-oscillation criteria are established using Riccati transformations technique. Four examples are given to
illustrate our results.
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1. Introduction

Consider the damped second order differential equation

[a(t)Qy (1) (' ()®) + Py (1) +q(t)p(y(t) =0, (1.1)

and the forced differential equation
[a(0O(y(1) (' (1) + POy (1))° + q(t)e(y(t) = e(t) for t >ty >0, (1.2)

where d > 1 is a ratio of odd positive integers, and P(t), Q(y(t)), and q(t) € C ([tg, o0); R). The functions
p(t) and e(t) € C (R;R) with yp(y) > 0and a(t) € C!([tg, 00); (0, 00)). As usual, we restrict our attention to
those solutions y(t) of the differential equations which exist on [to, c0). Each equation is called oscillatory
if all its solutions are oscillatory. A non-trivial solution of the differential equation is called oscillatory if
it has an infinite number of zeros; otherwise, it is said to be non-oscillatory. During the last few decades,
there has been considerable interest in studying the oscillatory behavior of solutions of different classes
of second order differential equations with and without damping or forcing term. In 1993, El Sheikh [3]
studied the oscillatory behavior of solutions of the undamped second order differential equation

[a(t)Qy(t)y' ()] + q(t)p(y(t)) =0, (1.3)
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with Q(y(t)) < n(t), where n(t) is a positive function. More recently Cakmak [2] and Rogovchenko [15]
discussed the oscillation of the damped equation

[a(t)y ()] + P(t)y'(t) + q(t)p(y(t)) = 0.

Rogovchenko et al. [18], Mustafa et al. [12], and Zhang et al. [28] used Riccati transformation and the
integral average technique to derive sufficient conditions for the oscillation of solutions of the differential
equation

[a()Qy ()Y’ (1] +P(t)y'(t) + q(t)e(y(t)) =0. (1.4)

In [18, 28] the authors discussed the oscillation of solutions of Eq. (1.4) with the assumption that m; <
Q(y(t)) < my, where m; and m; are constants. In 2007, Jiang et al. [7] discussed the oscillation of the
forced second order differential equation

[a()QEND (Y +q(t)ely(t)) =e (1) .

In 2013, Tung et al. [23] discussed the interval oscillation criteria for the unforced second order non-
linear differential equations of the form

[a(t)K1(y, y")" +PB)K2(y, y" )y (1) + q(t)p(y(t)) =0.

In [24] Tung et al. studied the oscillatory behavior of the forced second order differential equations
with mixed nonlinearities of the form

t) |y’ (0)]° Y (1) + Py (1) y( +Zq)ly )Py (t) = e(t),

where 0 < 8 < 31 < B2 < -+ < B are real numbers. In [6, 13, 22] the authors studied the more general
forced differential equation

[a(t)K1(y,y)" + P()K2(y, y" )y (1) + q(t)p(y(t)) = e(t).

In 2017, Ogrekci et al. [13] introduced a new functional A&(h,t) as A?i(h,n) to overcome problems
of singularity and in-applicability of the functional A§i(h,t) at the points s; , t; mentioned in [25].

The aim of this paper is to extend and complement some known oscillation criteria published in
the literature. In Section 2, we study the oscillatory behavior of Eq. (1.1) in the case (8 = 1) which is
equivalent to Eq. (1.4) that was discussed by Cakmak [2]. We extend the range of the function Q(y(t))
to be more general than those considered by the authors in [18, 28]. Moreover, we relax the restriction of
[1] on the damping term P(t). Then we establish some oscillation criteria for (1.3), (1.4), and (1.1), which
partially generalize some of those given by [3, 8, 18]. In Section 3, we discuss the interval oscillation type
[10] for the more general forced Eq. (1.2) using Ogrekci’s technique [13]. Further, we establish sufficient
condition for the non-oscillation of an undamped forced differential equation. In the last section, we give
some illustrative examples.

Throughout the paper we assume that

(C) 2 >, u> 0 for y(t) £0;

(C2) 0<&t) < Qy(t) <n(b).

Denote D ={(t,s):tg <s<t< ooland Dy ={(t,s) :tg <s <t < oo}.
Following [11], we say that H € C (D, [0,00)) belongs to the class ws if it satisfies the conditions:
1. H(t,t) =0 for t > to, H(t,s) > 0 for all (t,s) € Dy;
2. 9H/dt = hy(t,s) (H(t,s))5T and dH/ds = —hy(t,s) (H(t,s))5H.
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The following lemmas will be needed.

Lemma 1.1 ([11]). Let & > 1 be a ratio of two odd numbers. Then

1
i 1
AlFE _(A-B) < B%[(zs +1)A—B], (1.5)
et 0t lept s _lpse (1.6)
5 5
Lemma 1.2 ([6]). If A and B are non-negative, then

1 1 1
1Ap + —B9 > AB, for —4+—=1. (1.7)

P q P q

2. Non-linear second-order differential equation with damping term

In this section, we first discuss the oscillatory behavior of solutions of Eq. (1.1) in the particular case
(0 = 1) and establish new criteria which generalize those of [2], and relax the restriction of [1] about
the sign of the damping term. Then, we study the oscillatory behavior of the more general second-order
differential equation (1.1).

Theorem 2.1. Suppose that the conditions (Cy) and (Cy) hold. Assume that q(t) > 0, and there exists a differen-
tiable function g(t) € C!([tg, 00); Ry) such that

& ds
Lo a(s)g(sin(s) " @1
and
. a(t)g' (&) —P(t)g(t) | [* [a(s)g’(s)n(s) —=P(s)g(s))* | |
hrtrlsolip{ > + LO ug(s)q(s) — Za(s)g(sn(s) ds} = co. (2.2)

Then Eq. (1.4) is oscillatory.

Proof. Suppose the contrary that there exists a non-oscillatory solution y(t) of Eq. (1.4). Without loss of
generality, we may assume that y(t) # 0 for all t > to. Define,

B a(t)Q(y(t))y'(t)
@(t) = —g() =5 (23)
In view of (1.4), we have
o gH@(t) @(t) p(y(t) @%(t)
@M =""m Pmanm TV t amemann)
for all t > to. Thus by (C;), we get
p 1 a(t)g'(t)Q(y(t)) —Pt)g(t),, [alt)g'(t)Q(y(t)) — P(t)g(t)]?
@)= fgmamm 2 H T 2 ] Za(Dg(DQY (1) (2.4)
+ug(t)q(t).
Therefore by (C,), we have
o'(t) > uglt)q (1) + 1 @) + a(t)g't)E(t) —P(tg(t) , _ [a(t)g(t)n(t) —P(t)g(t)]?
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Putting
Glt) = o) + “VI (t)é(tz) —P()g(t) (2.5)
e @1 lat)gBn() — PHgHPR
, t _la(t)g’'(t)n(t) —P(t)g(t
20 > volValY+ gt 4 a(Ug(tn(t
By integrating from tg to t, we obtain
Y G a(t)g'(&(t) — P(t)g(t)
60 > @lto)+ | iy 2
t ~ la(s)g’(s)n(s) — P(s)g(s))?
], potslals) — sk
This with (2.2) leads to
t GZ(S)
60> || gt
for sufficiently large t > t;. Putting
t GZ(S)
M) = | 2%
v Jto a(s)g(s)n(s) as
then it follows that
G(t) > M(t) >0,
and G2(t) M2(t)
M'(t) = .
= 0ettn® ~ algltin(®
By dividing by M?(t) and integrating from t; to t, we get
Jt IS SO S
t, a(s)g(s)n(s) M(t) M(t)
But since M(t) > 0, then
Jt LI NP
t, a(s)g(s)n(s) M(t1)’
which is a contradiction with (2.1) as t — co. Then Eq. (1.4) is oscillatory. O

Remark 2.2. In the special case Q(y(t)) =1, u =1, Theorem 2.1 includes the criteria (2.1) and (2.2) of [2],
while if Q(y(t)) = a(t) = g(t) = 1 and p(y) =y, then the Theorem includes those of [20]. Moreover if
Qy(t)) = a(t) =1, and p(y) =y, Theorem 2.1 includes those of [1].

Theorem 2.3. If

L {L a(0)g(0n()dr) ds = oo 2.6)
and
(Y als)g(s)E(s) — Pls)gls) | [° ' la(t)g(n(t) — (g0l
hi“jo‘thLO{ 2 +LO holmla(r) Talmglonn  dHds=co @7

then Eq. (1.4) is oscillatory.
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Proof. Going through as in Theorem 2.1, we get
t 5 , B
G(t) > @ (t) J G2(s) 4 o919/ (8)E(s) —P(s)g(s)

o als)glsm(s) 2
t _ la(v)g/(On(1) — P(1)g())?
+LO hg(D)q(1) Lo P9 g
By integrating from tg to t and dividing by t,
1t 10t 1" G2s) 1 [, als)g'(s)&(s) — P(s)g(s)
: LO Gls)ds > ¢ J @lt) LO a(s)glsin(s) = LO{ >
s _ la(®g/(n(1) — P(1)g(1)P?
], woelare famgltmm O

Thus, we can choose t; sufficiently large such that for t > t;, we have

Jt G(s)ds—Jt M(s)ds > 0.

to to

Putting

and using (1.7), we get

Az(t)<{J ds}Z—J Valsglms) - ——2t8_pag

a(5)9(sIn(s)
t GZ(S)
{J als dS}{LO a(s)g(sin(s) °¥
t
<Mt )j a(s)g(s)n(s)ds < A’(1) j a(s)g(s)n(s)ds
Dividing by A2(t) [{ a b @ (s)ds and integrating from t; to t, we obtain
tors o 11 1
Ll{LOa(T)g(T)n(T)dT} 35 < 5~ A S A

Then as t — oo, we find that f:l (fio a(t)g(t)n(t)dt)"lds # oo. This contradicts (2.6), and so Eq. (1.4) is
oscillatory. O

Remark 2.4. In the special case Q(y(t)) = 1, the criteria (2.6) and (2.7) of Theorem 2.3 include the criteria
(2.15) and (2.16) of the paper [2].

The following result, improves the result obtained by Li et al. [11] for the unforced Eq. (1.1).
Theorem 2.5. Suppose that (Cy) and (Cy) hold. Suppose further that Q(t) is non-negative and does not vanish
eventually. If for some B > 1, a positive function Y (t) € C!([ty, 00), R), and some H € ws, we have

lim su
t—>oop H( )

t 5 )
L H(t,s)O(s) — MJSWG(S)H(S)Vl(S)hy (t,s)ds = oo, (2.8)

where

t
v = exp{—(6+1)j
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and

01(t) = v ({—PO - g+ MY T v,
&(t) n(t)s

then Eq. (1.1) is oscillatory.

Proof. Let y(t) be a non-oscillatory solution of Eq. (1.1). Assume that y(t) # 0 for all t > t; and define a
generalized Riccati transformation of the form

(1) = Ha(I0 ) + Y0
Then
sy VaBu(t) oY) py(t)
Ml =T Pl Al
v at) Q) = (0 e,
Ay wta)
ie.,
sy Vi(Hu(t) oYW ply(t)
() = TS P — g )
Ol ey —s 2ttt wlt) e
Qe)° 1Hey

_ Vi(tu(t) o Vs eyl ,

wj () = L (0P - a0 2 XS F v e ()
svi(t)a(t) T (1 wit) o w) g
amont s P ey T R e’

Using the condition (C), we have

1408
u1+ (s)

nevisats) a1

ui(t) < —

Multiplying by H(t, s) and integrating from Ty to t, in view of the properties of H(t, s), we get
t t; ul—!—é (S) ; t; s
J H(t, )@ (s)ds < H(t, Ty)wi (Ty) — 6j H(t,s)[— 1 ]¥ds —J w(s)ha(t, s)[H(t, 5)]57 ds.
Ti T n(s)vi(s)a(s) T

Thus for some 3 > 1, we have

t ti t3 1+6
J H(t,s)@l(s)ds—i—J ul(s)hz(t,s)[H(t,s)]liéds—%6J H(t,s)[&]%ds
T T T n(s)vi(s)a(s)
5 ty u1+6(s) (29)
_ % 1 W) a5
<HIE T (T) - 5 (B 1)L1H(t,s)[n(s)w(s)a(s)] ds.

Applying the inequality (1.6) with
1+8
SHu,® 8

]m

C=I

7

L1
p vy asms
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and s
D= _[56%(5)\)1(8)0(1835?12 (t,S)]HL&’
(1+6)
we have
e 8 uts) 1 BOnlshvils)als)hy (b s)
ul(S)hz(t,S)[H(t,S)] +BH(t,3)[m} N (1+6)1+5 .
Substituting into (2.9), we have
‘ Bn(s)vi(s)a(s)hy " (t,s) 5 wts)
Ll H(t, $)(s) — Thmat ds < it T (T) — (B —1) Ll Hi o)l s
By the monotonicity of H(t, s) for all t > T;, we have
t 5h1+5
L Hit, 5)Oy(s) — P2 (ffgfff)“(s) ds < H(t,Ty) (1))
-
< (1) har(T)] < Hit ) (Tl + | 1@1(5)] )

to

Thus
. 1 t Bé 1+8 T
h?jolip m LO H(t,s)©1(s) — Wa(s)n(s)vl(s)hz (t,s)ds < [ug(T7)| + LO ©1(s)ds < oo,

which contradicts (2.8). Then Eq. (1.1) is oscillatory. O]
Remark 2.6.

(1) Theorem 2.4 includes Theorem 2 of [11] in the special case Q(y(t)) =1.

(2) If 5 =1, then the criterion (2.8) of Theorem 2.4 partially improves that given by [18].
Corollary 2.7. If

t—o00

. 1 t n
lim sup =) LO uq(s)[R(t) —R(s)™lds =00, forn >3,t>to, (2.10)

where

R(t)zjt s 2.11)

then Eq. (1.3) is oscillatory.

Proof. Let H(t,s) = [R(t) —R(s)]™! for t > s > t¢, then

halt,s) = — - [R(t) — R(s))"Z"
a(s)n(s)
and
t t (n_l)z B (n_l)Z B
2 _ o n—3 _ n—2
J, atmismie e = | FEh R - R as = SRR
By (2.11) we directly obtain (2.10). Then by Theorem 2.4, Eq. (1.3) oscillates. O

Remark 2.8. In the case u = 1, Corollary 2.5 includes Theorem 3.3 of [3], and Theorem 2 of [26]. Moreover
in the case Q(y(t)) =1 and H(t,s) = [R(t) — R(s)]*ds for A > 1, the criterion (2.10) includes the Criterion
(2.2) of [8], while for u =1 and H(t,s) = (t —s)*, Theorem 2.4 improves corollary (2.4) of [8].
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3. Forced second-order differential equations

Now, we are going to discuss the oscillation of solutions of the more general forced equation (1.2). We

are concerned with the interval oscillation type [10]. Throughout the section, we assume that

(C3) for any T > to, or there exist T < v; < by < v2 < by, such that: e(t) <0 fort € [vy,b1] and e(t) > 0

for t € [vy, byl;
(C4) P(t) >0 and q(t) >0onte [Vl,bl] U [vo, bsl.

Theorem 3.1. Suppose that (C1)-(Cy) hold. If there exist some c; € (vi,bi),1 =1,2 such that

H(Cllvl) E{H(S’ Vi)O2(s) —81Hi (s, vi)a(s)va(s)n(s)}ds

b
+ H(bi,cl) Li {H(by,8)O2(s) — d1Hz(by, s)a(s)va(s)n(s)}ds > 0,

fori=1,2, then Eq. (1.2) is oscillatory, where

Hit, s) = (5+1)H1izs(t,s)1f((3 Fhu(ts)|,
Hy(t, s) = (5+1)H1izs(t,s)1f((3 —Tho(t,s)|,
B tP(s) 1
2 =ovl] G 8=
and
Thetas(t) = va()—P(t) g +ua(t) + 2 ”1:((3;(” ]

(3.1)

Proof. Let y(t) be a non-oscillatory solution of Eq. (1.2). We may assume that y(t) # 0 for all t > tp and

define the Riccati transformation

y'(t)

_ 5
up(t) = va(t)a(t){Q(y(t))( "o )° + Y (1)}
By differentiating (3.2) in view of (1.2), we get
Lo VaBualt) e® oo v py(b)
W) = It (0 5~ PO e M)
1 u(t) 541 ’
=8t g i ey ~ TN b e T)

Thus by (1.5), we have

ie.,

y(t) s . pyit)
SRR AT
Svo(t)alt) Y(t)° up(t)

up(t) 141
[(6+1)(v72(t)a(t) =Y (1)) - [vip_(t)a(t)] *s,

_|_VZ(t){y76 — P(t)( P va () a(t) Y (L)

(3.2)

(3.3)
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Therefore by (Cz), we have

o=

u%Jr(S (t)
n(thva(t)a(t)

1 ) gy(r) ¢ B Helt)Y
y ()}

Now, consider the case y(t) > 0 for all t > Ty. Since e(t) < 0 on the interval [vy, b1], we get

()

up(t) < —§(

145 !
uy(t) < _5[%—“)]% —Oy(t) + (6 +Dup(t)Y (t)'

n(thvz(t)a(t) £ ()

-

Multiplying by H(t,s) and integrating (with t replaced by s) over [ci,t) for t € [ci,bi), i = 1,2 using the

properties of H(t,s), we have

t t 1+6 .
J H(t,5)02(s)ds < H(t,ci)ualcs) —5J | H(t,s)[mhds

1

+J:ukm6+UHﬁﬁMY“%b—hﬂtﬂHﬁwtﬂMS

. E(0)
i 1+6
<H@Mwwwﬁ¢me&@ﬂmww—&ma[‘”(“ﬁ
. 1G)va(s)als)
For a given t and s, let
1+6
Fluz) = ua(s HET (1, ) Ha (b, 5) — SH(t, 8)[——2 S}
n(s)va(s)a(s)
Then
F(uz) = He¥1 (t, s)Ha (b s) — (6 4+ DH(t, ) 2003,
NEva(s)als)
So the maximum of F(u,) is obtained at
w(t) = [— 2]y ()a(s),
(54 1)[H(t, s)] 5

ie.,

Fluz) < 81[Ha(t, $)1° " n(s)va(s)a(s),

Thus J

Ci

H(t, s)O®>(s)ds < H(t, ¢i)ua(cy) —I—Jt 61H§+1(t,s)n(s)vz(s)a(s)ds.

ci
Letting t — b, in (3.4), we obtain

by by
J mmw@mm<wammm+&JH?mm$mmwmam

Ci Ci

(3.4)

(3.5)

On the other hand, if we multiply (3.4) by H(t,s) and integrating (with t replaced by s) over (t,ci] for

t € (vi,cil, s € (t,¢ci],1=1,2, and using the properties of H(t, s), we get

Ci cy 1+6
meﬂ@mm<—m%ﬂmmrj(wﬂmmﬂ[“2“)

t t n(S)Vz(S)a(S)]EdS

5
1

+hy(t, s)H&1 (s, t)}ds

o=

Ci Y(s)
+L‘@wxw+nHw¢naﬂ]
<—Hkuﬂuﬂm)+&Jle1®JMBWﬂﬂaBM&

t

(3.6)
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Letting t — v;" in (3.6), we have

Ci Ci
|| s vieatsis < —Hien viwaen + 81 [ HE s On(shals)ats)as. (37)
Finally, dividing (3.5) and (3.7) by H(bj, ci) and H(cy, vi), respectively, and then adding them, we get the
following inequality

1 Ci 1 bi
—_ H(s,vi)©>(s)ds —i—J H(bi,s)O>(s)ds
H(Ci,'\/‘l) J"v;L ( ) 2( ) H(bi/ Ci) ci ( ) 2( )

1
< -
H(cy, vi)

b

" S HI (s, vi)alsvalsIn(s)lds + ——— [ 8yHE*1(by, s)als)va(s)n(s)ds,
v, H (bi, ci) Je,

which contradicts (3.1). Then Eq. (1.2) is oscillatory. O

Now, following [13], we shall use the functional

ti
Agi(h,mn) = J H(t)|" h(t)dt,s; <t <ti,i=1,2andn >0,
Si
where Dy(si, ti) = {u € Clsi, ti] : u(t) # 0 for t € (si, ti),u(si) = u(ty ) = 0} fori = 1,2, and h
€ C([tg, 00),[0,00)), H € Dy(sy,t;), where, the linear functional A&(h, n) satisfies the conditions

(Cs) Alith,n) = AN (Ht)|*h,n—k), fori=1,2and k € R;
(Ce) Asi(h/,n) >—Ag(n [H/(th];n—1), fori=1,2.

Theorem 3.2. Suppose that (C1)-(Ca) hold. If there exists a function H € D»(sy, ti) and non-negative constants n
and o such that

Alt(ng(t),n+a+1) > Al (Sa(t(t)GSTH* % n), fori=1, 2, (3.8)

then Eq. (1.2) is oscillatory, where the linear functional G1(t) = |(n+ o+ 1)H/(t) — %H(t) and &, =
1

(841)°%°

Proof. Let y(t) be a non-oscillatory solution of Eq. (1.2). Assume that y(t) # 0 for all t > to. Consider the
Riccati transformation

- y'(t) 5
us(t) = a(t)Q(y(t))[y(t) ]
Then in view of (1.2), we get
(1) = (52 P e - g 5 - sarary )L
e(t) ws(t) W )
<—=—Plt)— " — 523 -
S y® Plt) a(t)Q(y(t)) Ha(t) [a(t)Q(y(t)]s

On the intervals [s1, t1] if (y(t) > 0) or [sp, to] (if y(t) < 0), us(t) satisfies

uz(t) ul %(t)
! — 3
u3(t) < —pq(t) —P(t) Dou) 6[ 00 (t))]%.

Then by (C;), we have
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Multiplying by [H(t)[™***! and integrating from s; to t; fori =1, we get

FulH(t)l”*"‘“ q(t)dt

Si

t t1 141

<[ —womomrreta [ Rt us(t) | (us) TS (L)

<[ Omor e o o g5 e B ar

<(n+oc+1)r] us(t) IH(t)I““‘H’(t)dtJrJt] IH(t)™ < {—P(t) ualt) u;’+%(t) Jdt

s1 s1 altn(t) [a(t)n(t)s
t n P(t) n 1 t ul+%(t) n 1

< 1H T (1) — ot _ 4 ol gy

<[ w0t e DI - T MO s | S
Thus

A (ug,n+o+1)

t ! _ P(t) _ At u;+%(t) a+1
W ()
< AY (Hu3(t) Gy — 8—2——1 [H(t)**",n)
[a(t)n(t)]s
Now setting
W)
Flus) = H¥(t)us(t) Gy (t) — 5 —2——— [H(t)|*™", u5 >0,
[a(tn(t)]s
then )
F(us) = H¥(1)G1(t) — (6 + 1) us (1 - H)
la(t)n(t)]s
Let the maximum of F (u3) occurs at uj, then
Wit) = a(tin(t) Git)s

Thus

So,
Al (pg(t),n+a+1) < Al (Sa(tn(t)G P (HH *°(t),n),

which contradicts (3.8) for i = 1. Similarly, if y(t) < 0 on [Ty, co) for some large Ty > to and on the interval
[s2, t2]. Then we get a contradiction with (3.8). This completes the proof. O

Remark 3.3. In Theorems 3.1 and 3.2, we have to use a restriction on the sign of the damping term P(t).
For those who did not impose any restriction on the sign of the damping term, see [9, 17, 19, 21].

Now, we discuss the non-oscillation property of the following forced equation
[a(t)Q(y(t)(y' (1)) + q(t)p(t) = e(t), for t > o > 0. (3.9)

Assume that
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(B1) a(t), q(t),e(t) € C ([to,00), R), a(t) >0,Q(y(t)) >0, p(t)), Qy(t)) € (R,R);
(B2) yp(y(t)) >0, for x # 0, and there exists k > 0 such that for any [y>| > [y1] > 0,|p1(t))| < klp(y2(t))I.

Theorem 3.4. Suppose that the assumptions (B1) and (By) hold. Then the conditions

e e]

JOO le(s)| ds = oo and J p(u(s))q(s)ds < oo, (3.10)

t t

are sufficient for any bounded solution y(t) of Eq. (3.9) to be non-oscillatory.

Proof. Suppose the contrary that y(t) is oscillatory. Then there exists a sufficiently large t; > tg such that
y’(t1) > 0 and a sequence {tn}, tn — o0, tn > t; with y’(tn) = 0. By integrating Eq. (3.9) from t; — ty, it

follows that

tn tn

els)ds — | "alslols)as,

t

tn /
J lals)Q(y(s)(y(s) ds = J

t t

ie.,

—a(t)Qy(t) (' (t))° :J " e(s)ds —J " q(s)p(s)ds.

t t

This means that . .
J e(s)ds < J q(s)p(s)ds < oo,

t t

which is a contradiction with the condition (3.10), then any bounded solution of Eq. (3.9) is non-oscillatory.

O
Remark 3.5. Theorem 3.3 includes Theorem 5.2 of [3] in the special case 6 = 1.
4. Examples
In the first example, we show that the restriction P(t) < 0 of [1] is not necessary.
Example 4.1. Consider the differential equation
KOy (1Y (1) + /(0 + 150(t) =0. @)

Taking the function Q(y(t)) such that % <Qyt) < %, choose

g(t) =t.

Now, applying the conditions of Theorem 2.1, we get

and
. a(t)g’(H&(t) —P(t)g(t) | [* ~ la(s)g’(s)n(s) — P(s)g(s))?
hl:cn—>solip{ 2 +LO hgls)als) 4 a(s)g(s)n(s) s}
, 1 1 (*ud
= hﬂsolip{ﬁ -3 +L0 Has, _ 0

Then the conditions of Theorem 2.1 hold and so Eq. (4.1) is oscillatory.
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Example 4.2. Consider the differential equation

(5e¢'Q(y(t))y’) —10e*y'(t) + e*'p(t) = 0,t > 0, (4.2)
for
et < Qy(t) < 2
Taking
et

it is easy to see that the condition (2.1),

0 ds © ds 1
LO n)als)gls) Jo 2 47

so we cannot apply Theorem 2.1. Now, applying Theorem 2.3, we obtain

[ amatommantas =" 5% < e

0 Ji o —1+e*
, 1 (%, a(s)g'(s)&(s) —P(s)g(s) | [* [a(s)g’(s)n(s) — P(s)g(s)]?
imaup ¢ ¢ 2 |, ratwate) - Sy s
t 2s
_hmsup1J (wtDe®—p _
t—o0 0 2
So Eq. (4.2) is oscillatory.
Example 4.3. Consider the differential equation
1 1
O ()"0 + tfz(y'(t))6 +Q(t)y* =0, 8>1and t>1, (4.3)
where : s
1 o+1)" 5

for any function Q(y(t)) that satisfies L5 < ( (t) < Ect) and H(t,s) = (t—s)2.

Choosing p(t) = (5“)5 then h, —Z(t—s) v1 1and ©4(t) = 1 for p > 1. Now since

-

1 t 5 5+1
limsup e | H(L9081(5) — (5 meratsm(sm(ons (1, 5)ds
L L[ (t=s)2 2°71p% 1 1-879¢ —
_h?joljpzjl S (6+1)5+1[—2(t—s) lds = oo,

then the conditions of Theorem 2.4 hold and so Eq. (4.3) is oscillatory.

Example 4.4. Consider the forced differential equation
A y)0) + 22 (y')° + Nt*My® =sint, fort >ty > 1, (4.4)

where N and A > 0. Comparing with Eq. (1.2), it is clear that: a(t) = t3**1, Q(y(t)) = 1, P(t) =
t2%, p(y(t)) = t*, and e(t) = sint. Choosing s; = nm, t; = (n+ 1), 50 = (n+ 1) and tp = (n +2)7, for
n > 1, it is easy to verify that

S
(Cr) B — ML > =1, for y(t) £0,
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and all the conditions (C3)-(C4) hold. For x = n =6 =1, then 4, = % Suppose that H(t) =t sin?(t),
then

ti 27T
AL (ualt)no+ s 1) = AL(a(6),3) = | MO qde=N | sin(t)de = TN, fori =1, 2,

and

A (82a(t(BGTTHHH 7%, n) = AZ(82a(tn(t)G T (HH “°,n)

27T 27T
= 1J (G (1). [t sin?(t)])dt = 1J t2A L sin® (1) G3(t)dt.

Since

2 )~ 2 )x
Gi(t) = |(n+a+1)H/(t) — P(t) H(t)‘ = |3[2t *sintcost — At sin?(t)] —t*!sin®(t)|
a(t)n(t)
= ‘6’(_)‘ sintcost+ (—3\ — 1)t 1sin?(t)],

then

AL (S2a(tm ()G (HH “78,n)

1 7T
=5 22 sin?(1)[36t 2 sin?(t) cos?(t) + 12(—3A — 1)t 2 L sin?(t) cos(t)
JTT
+ (=32 — 12t~ Zsint(t)]dt
1 27 .. 5 2,—1 27 2 2
< 5 [36t — 12(3A + 1) sin”(t) cos(t) + (BA+ 1)t ']dt = 7]‘[ + (BA+1)"In2.
JTT
So, the condition (3.8) holds for
SN §ﬂ2+ (3A+1)%1In2
16 2 '

Thus Eq. (4.4) is oscillatory if N > [%ﬂ + 51—76I (3A +1)?1In 2] according to Theorem 3.2.
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