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Abstract

Using the notion of δβ-open set, we intend to do more research on rough continuous functions. The ideas of δβ-totally rough
continuous functions and δβ-strongly rough continuous functions are proposed and researched. The notions of δβ-internally
and δβ-totally functions are discussed, as well as some of their characterizations. Finally, the composition of δβ-internally and
totally functions is discussed.
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1. Introduction

Several recent papers [5, 12] have discussed near-openness extensions and the opportunity of spending
them in a variety of presentations, counting data decreasing and novel judgments and conclusions. Rough
set theory [18–20, 35] is a relatively new approach to data reasoning. This idea is based on a specific space
that has had a lot of success in real-world applications [1, 5, 23, 24]. Rough sets theory may now be studied
by general topologists as a topological road from real-world initiatives to computer science [29, 34].

The basics of rough sets was proposed as an original method to incomplete data dispensation. One
of rough set theory’s goals is to describe imprecise concepts. Assume we’re given a universe U, which
is a finite non-empty collection of items. A description, such as a list of attributes, is attached to each of
U’s objects. Pawlak’s rough sets defined a universal set’s equivalence relation based on their properties.
The equality relation on the attributes is specifically used to start this relationship. Both nominal and
continuous belongings are present in many real-world applications [4, 38]. The normal roughness model
built on the indiscernibility relative was recognized early on to be well suited to the problem of nominal
characteristics.
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Other ways were devised to solve the methodology’s flaws [28], and several writers obtainable fasci-
nating postponements of the fundamental concept (for instance [2, 3, 15, 17, 22]). It was observed that
analyzing a similarity relationship rather than an indiscernibility relationship is crucial. Any relation
that produces courses of substances that are undistinguishable or not significantly dissimilar in relation-
ships of the supplied explanation can be used to indicate similarities between things [21, 31–33, 36, 37].
[13, 14, 25, 26, 30] explore additional presentations of rough sets in mainframe (in the ground of material
repossessions) that used topological simplifications [6–11, 16, 27]. There are many ideas, applications and
topological generalizations that can be used in future work on this paper.

Here, we want to perform additional research on rough continuity and propose new rough function
notions. Section 2 goes through the principles of near open sets, specifically δβ-open sets. Section 3
introduces and explains the ideas of δβ-totally rough continuous functions. Section 4 focuses on δβ-
exactly rough continuous functions. Section 5’s goal is to define and investigate δβ-internally functions.
Finally, Section 6 provides the paper’s findings and future work ideas.

2. Some fundamentals of near open sets

This section reviews the meanings of numerous near open sets with a topological structure, which will
be important in the following section. Both arbitrary union and finite intersection are closed operations
for τ⊆P(U) that contains ϕ, U. τ is referred to as a topology on U. For every subset A⊆U, A, Ao, and
Ac indicate “Closure”, “Interior”, and “Complement” of A in U, correspondingly.

Definition 2.1. If A is a subset of (U, τ), then A is referred to as following.

(i) If A⊆(A◦) (resp., A⊆
(
A
)◦, A⊆

(
(A◦)

)◦
), then A is a semi-open (resp., pre-open, α-open), and its

accompaniment is a semi-closed (resp., pre-closed, α-closed) if
(
A
)◦⊆A (resp., (A◦)⊆A,

((
A
)◦)⊆A).

A subset that is together semi-open and semi-closed is known to as semi-regular.

(ii) If A⊆
((
A
)◦), then A is called a semi-pre-open set (or β-open set), and if

(
(A◦)

)◦
⊆A, it is named a

semi-pre-closed set (or β-closed set).
(iii) If A⊆

(
A
)◦, it is called a regular-open set, and if (Ao)=A, it is called a regular-closed set.

(iv) A is called δ-closed set if A= (δ(A)) and (δ (A)) =
{
x∈U:(G)◦∩A 6=ϕ, x∈G,G∈τ

}
.

The connection of all α-closed (resp. semi-closed, semi-pre-closed) sets that cover A is named the
α-closure (resp. semi-closure, semi-pre-closure) and represented by α(A) (resp. S(A), sp(A)) of a subset
A of (U, τ). The union of all semi-open subsets of U is the semi-interior of A, meant by s(A

◦
).

Definition 2.2. Let (X, ø) be a topological space and A be a subset of it, then A is as follows.

(i) Generalized closed set if A⊆G whenever A⊆G and G∈τ are both true.
(ii) Semi-generalized closed (sg-closed) set if s

(
A
)
⊆G whenever A⊆G and G is semi-open set. The

sg-open set is its complement.
(iii) A semi-closed generalized set if s(A)⊆G whenever A⊆G and G∈ø.
(iv) α-generalized closed set if s(A)⊆G whenever A⊆G and G∈ø.
(v) If α(A)⊆G whenever A⊆G and G is ff-open, we have a generalized α-closed set.

(vi) gα∗∗-closed if A⊆Go whenever A⊆G and G is both α-open.

Definition 2.3 ([28]). The δ-closure of A is defined by clδ (A) ={x∈X:A∩
(
U
)◦
6=ϕ, U∈τ and x∈U} for any

subset A of a topological space (X, τ). If A=clδ(A), a set A is said to be δ-closed. A δ-closed set’s
accompaniment is a δ-open set.

It’s worth noting that intδ(A) =[clδ(A
c)]c.
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Definition 2.4 ([34]). If A⊆(clδ (A)
◦
), a subset A of a topological space (X, τ) is called δβ-open.

δβO(X) stands for the family of all δβ-open sets of X. The δβ-closed set is the complement of the δβ-open
set. δβC(X) stands for the family of all δβ-closed sets of X.

Definition 2.5 ([34]). If we assume A to be a subset of a topological space (X, τ), we get following.

(i) The δβ-interior of A is the combination of all δβ-open sets comprised in A, and it is represented by
δβI(A).

(ii) The δβ-closure of A is the connection of all δβ-closed sets covering A, and it is represented by
δβC(A).

Remark 2.6 ([34]). For any subsection A of a topological space (X, τ) we have

(i) δβI(A) =A∩
((
A
)◦)

;

(ii) δβC(A) =A∪
(
(A

◦ )
)◦

.

Figure 1: Relationships of some types of near open sets.

Remark 2.7. As illustrated in Figure 1, δβ-open sets are weaker than any near open sets for example
δ-open, regular open, semi-open, α-open, pre-open, and β-open.

Example 2.8. Let (X, τ) be a topological space wherever, X={a,b, c,d, e} and τ= {X, ϕ, {d}, {e}, {a, d}, {d, e},
{a, d, e}, {b, c, e}, {b, c, d, e}}. We have {a, c}∈δβO(X) but {a, c}/∈δO(X). Also, {b,d, e}∈δβO(X) but {b,d, e}/∈
RO(X). {a, e}∈δβO(X) but {a, e}/∈PO(X). {c}∈δβO(X) but {c}/∈βO(X). {b}∈δβO(X) but {b}/∈SO(X) and
{c,d}∈δβO (X) but {c,d}/∈αO(X).

Remark 2.9 ([2]). The connection of binary δβ-open sets may not be a δβ-open set, but the arbitrary union
of δβ-open sets is. As a result, in the space X, the domestic of all δβ-open sets does not form a topology.

3. δβ-totally rough continuous functions

Throughout this section, consider K=(X,R1, τK) and Q=
(
Y, R2, τQ

)
are two approximation spaces

that have been topologized. The relation Rδβ is devoted a relation R w.r.to δβ-openness. The goal of this
section is to define the term δβ-rough continuous and to discuss some of its features.

Definition 3.1. The function f:K−→Q is called δβ-rough continuous if every internally set in Q is internally
δβ-definable set in K, i.e., f−1(R2N)⊆R1

δβf−1(N) for every subset N in Q.

Theorem 3.2. For a function f:K−→Q, the following are equivalent:

(i) f is δβ-rough continuous;
(ii) the opposite copy of each internally-definable set in Q is internally δβ-definable set in K;

(iii) the opposite copy of each externally-definable set in Q is externally δβ-definable set in K.
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Proof.

(i)=⇒(ii) Let f be δβ-rough continuous and let V be an internally R2-definable set in Q. Then R2V=V and
f−1(V) is a subset of X in K. By (i), we get f−1(V) =f−1

(
R2V

)
⊆Rδβ1 f−1(V). Then f−1(V)⊆Rδβ1 f−1(V). But

R
δβ
1 f−1(V)⊆f−1(V). Hence Rδβ1 f−1(V) =f−1(V). Therefore f−1(V) is internally δβ-definable set in K.

(ii)=⇒(i) Let V be a subset of Y in Q. Since R2V⊆V , then f−1
(
R2V

)
⊆f−1(V). Since R2V is inside δβ-

definable set in Q, then by (ii), we get f−1(R2V) is internally δβ-definable set in K limited in f−1(V).
Hence f−1(R2V)⊆Rδβ1 f−1(V) since Rδβ1 f−1(V) is the main internally R1-definable set contained in f−1(V).

Thus f−1(R2V)⊆Rδβ1 f−1(V) for every subset V of Y in Q. Consequently f is rough continuous.

(ii)=⇒(iii) Let L be an externally R2-definable set in Q, then we get Y−L is R2-internally definable. Thus
by (ii), we have f−1(Y−L) is internally R1-definable set in K. Since f−1 (Y − L) then f−1(Y−L) =X−f−1(L)
is internally R1-definable set in K. Hence f−1(L) is externally R1-definable set in K.

Likewise we can show (iii)=⇒(ii).

Definition 3.3. A function f:K−→Q is called totally-rough continuous if the inverse image of each inter-
nally definable set in Q is a totally definable set in K, i.e., f−1

(
R2 N

)
⊆R1

δβ(f−1 (N) ) for every subset N
in Q.

Definition 3.4. The function f:K−→Q is named δβ-totally rough continuous if the inverse image of each
internally δβ-definable set in Q is a totally definable set in K.

Example 3.5. Let K=(X,R1, τK) and Q=
(
Y, R2, τQ

)
be two topologized approximation spaces such that

X={x1, x2, x3}, Y= {y1,y2,y3}, R1= {(x1, x1) , (x2, x2) , (x2, x3)} and R2= {(y1,y1)}. Then, x1R1= {x1}, x2R1={x2,
x3}, x3R1=ϕ, S1= {ϕ, {x1} , {x2, x3}}, B1= {X,ϕ, {x1} , {x2, x3}}, τK= {X,ϕ, {x1} , {x2, x3}}=τ

∗
K, y1R2= {y1}, y2R2=ϕ,

y3R2=ϕ, S2= {ϕ, {y1}}, B2= {Y,ϕ, {y1}} and τQ= {Y,ϕ, {y1}}. Hence, δβI(Q) ={Y,ϕ, {y1}, {y1,y2}, {y1,y3}}. De-
fine a function f:K−→Q such that f (x2)=f (x3)=y1 and f (x1)=y3. Then, f is δβ-totally rough continuous,
since the inverse image of all internally δβ-definable set in Q is totally definable set in K.

Theorem 3.6. A function f:K−→Q is δβ-totally rough continuous if and only if the inverse image of each externally
δβ-definable set in Q is a totally-definable set in K.

Proof. LetN be an internally δβ-definable set in Q. Formerly, in Q, Nc is externally δβ-definable. However,
any externally δβ-definable set in Q has an inverse image that is a definable set in K. Then, in K,
f−1 (Nc)=

[
f−1 (N)

]c is totally definable. As a result, f−1 (N) is totally definable in K. Therefore f is
δβ-totally rough continuous.

Conversely, let N be any externally δβ-definable set in Q, and f be a δβ-totally rough continuous.
Then, in Q, Nc is internally δβ-definable. f−1 (Nc)=

[
f−1 (N)

]c is totally definable in K because Nc is an
internally δβ-definable set in Q and f is a δβ-totally rough continuous function. This implies that f−1 (N)

is totally set in K.

Lemma 3.7. Every internally definable set in K is internally δβ-definable set in K.

Proof. Suppose A be an internally set in K. Then RA=A◦=∪ {G∈τ:G⊆A}=∪ {G∈δβO (X) :G⊆A}. Since
τ⊆δβO (X)=

(
Aδβ

)◦
=RδβA⊆A, hence, A is internally δβ-definable set in K.

Theorem 3.8. Every δβ-totally rough continuous function is totally rough continuous function.

Proof. Let N be any internally definable set in Q, and f:K−→Q be a δβ-totally rough continuous function.
Using Lemma 3.7, we may conclude that N is δβ-definable set in Q. However, f is a δβ-totally rough
continuous function. Then, in K, f−1(N) is totally definable. Every internally definable set in Q is totally
definable set in K, and vice versa. As a result, f is a totally rough continuous function.

The opposite of Theorem 3.8 does not have to be factual in general.
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Example 3.9 (Continued for Example 3.5). Let the function f:K−→Q be defined by f (x1)=y1, f (x2)=y2,
and f (x3)=y3. Then the family of all internally definable sets in Q is τQ and the family of all internally δβ-
definable sets in Q is δβI (Q)= {Y,ϕ, {y1} , {y1,y2} , {y1,y3}}. Hence, f is totally rough continuous. But f is
not a δβ-totally rough continuous function, since V= {y1,y2} is δβ-definable set in Q, and f−1 (V)= {x1, x2}

is not totally definable set in K.

Definition 3.10. A function f:K−→Q is said to be strongly rough continuous if the inverse image of each
subset of Y in Q is totally definable set in K.

Theorem 3.11. Every strongly rough continuous function is δβ-totally rough continuous.

Proof. Let N be any internally δβ-definable set in Q and f:K−→Q be a strongly rough continuous function.
Because f is a strongly rough continuous function, the set f−1 (N) in K is totally definable. As a result,
every internally δβ-definable set in Q has an inverse image in K that is totally definable. As a result, f is
a δβ-totally rough continuous function.

Example 3.12. Let K=(X,R1, τK) and Q=(Y,R2, τQ) are topologized approximation spaces such that
X= {x1, x2, x3}, Y= {y1,y2,y3}, R1= {(x1, x1) , (x2, x2) , (x3, x3) , (x3, x1)}, and R2= {(y1,y1) , (y2,y2) , (y2,y3)}.
Then x1R1= {x1}, x2R1= {x2}, x3R1= {x1, x3}, S1= {{x1} , {x2} , {x1, x3}}, B1= {X,ϕ, {x1} , {x2} , {x1, x3}}, τK={X,ϕ,
{x1} , {x2} , {x1, x2} , {x1, x3}}, τ∗K= {X,ϕ, {x2} , {x3} , {x2, x3} , {x1, x3}}, y1R2= {y1}, y2R2= {y2,y3}, y3R2=ϕ, S2={ϕ,
{y1} , {y2,y3}}, B2= {Y,ϕ, {y1} , {y2,y3}} and τQ= {Y,ϕ, {y1} , {y2,y3}}=τ

∗
Q. Define a function f:K−→Q be such

that f (x1)=y2, f (x2)=y1 and f (x3)=y3. Then f is a δβ-totally rough continuous function, δβI (Q)={Y,ϕ,
{y1} , {y2,y3}} and every internally δβ-definable set in Q has an inverse image in K that is totally definable.
However, because V= {y2} is a subset of Y in Q and f−1 (V)= {x1} is not a totally definable set in K, f is
not a strongly rough continuous function.

Definition 3.13. A function f:K−→Q is said to be totally δβ-rough continuous function if the inverse
image of each internally definable set in Q is a totally δβ-definable set in K.

Theorem 3.14. Every δβ-totally rough continuous function is totally δβ-rough continuous.

Proof. Let N be any internally definable set in Q and f:K−→Q be a δβ-totally rough continuous function.
We have N is internally δβ-definable set in Q by using Lemma 3.7. Because f is a δβ-totally rough
continuous function, f−1(N) is totally definable in K. f−1(N) is totally δβ-definable set in K, according
to Theorem 3.11. As a result, each internally definable set in Q has an inverse image in K that is totally
δβ-definable. As a result, f is a totally δβ-rough continuous function.

The opposite of Theorem 3.14 does not have to be overall correct.

Example 3.15. Let K= (X,R1, τK ) and Q= (Y,R2, τQ) be two topologized approximation spaces such that
X={x1, x2, x3}, Y={y1,y2,y3}, R1={(x1, x1), (x2, x2)} and R2={(y1,y1)}. Then x1R1= {x1}, x2R1= {x2}, x3R1=ϕ,
S1={ϕ, {x1} , {x2}}, B1= {X,ϕ, {x1} , {x2}}, τK= {X,ϕ, {x1} , {x2} , {x1, x2}}, τ∗K= {X,ϕ, {x3} , {x1, x3} , {x2, x3}}, and
τQ= {Y,ϕ, {y1}}. Hence, δβI (K)= {X,ϕ, {x1} , {x2} , {x1, x2} , {x2, x3}} and δβI (Q)= {Y,ϕ, {y1} , {y1,y2} , {y1,y3}}.
Define a function f:K−→Q be such that f (x1)=y1, f (x2)=f (x3)=y2. Then f is totally δβ-rough continuous
function, since the inverse image of each internally definable set in Q is totally δβ-definable set in K. But
f is not δβ-totally rough continuous function, since V={y1} is internally δβ-definable set of Y in Q, and
f−1 (V)= {x1} is not totally definable set in K.

Theorem 3.16. Every δβ-totally rough continuous function is δβ-rough continuous.

Proof. Let N be any internally definable set in Q and f:K−→Q be a δβ-totally rough continuous function.
N is internally δβ-definable set in Q, according to Lemma 3.7. Because f is a δβ-totally rough continuous
function, f−1 (N) is totally definable in K. We have f−1 (N) is totally δβ-definable set in K from Lemma
3.7. Then, in K, f−1 (N) is internally δβ-definable. As a result, the internally δβ-definable set in K is the
inverse image of an internally definable set in Q. As a result, f is a δβ-rough continuous function.
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The opposite of Theorem 3.16 does not have to be factual in general.

Example 3.17. Let K=(X,R1, τK) and Q=(Y,R2, τQ) be two topologized approximation spaces such that
X= {x1, x2, x3}, Y= {y1,y2,y3}, R1= {(x1, x1)} and R2={(y1,y1), (y2,y1), (y2,y2)}. Then x1R1={x1}, x2R1=ϕ ,
x3R1=ϕ, S1={ϕ, {x1}} , B1= {X,ϕ, {x1}}, τK= {X,ϕ, {x1}}, τ∗K= {X,ϕ, {x2, x3}}, y1R2= {y1}, y2R2= {y1,y2},
y3R2=ϕ, S2= {ϕ, {y1} , {y1,y2}}, B2= {Y,ϕ, {y1} , {y1,y2}} and τQ= {Y,ϕ, {y1} , {y1,y2}}. Hence, δβI (K)={X,ϕ,
{x1} , {x1, x2} , {x1, x3}} and δβI (Q)= {Y,ϕ, {y1} , {y1,y2} , {y1,y3}}. Define a function f:K−→Q be such that
f (x1)=y1, f (x2)=y2 and f (x3)=y3. Then, f is δβ-rough continuous function. But f is not δβ-totally rough
continuous function, since V= {y1} is internally δβ-definable set of Y in Q, and f−1(V) ={x1} is not totally
definable set in K.

Theorem 3.18. The composition of two δβ-totally rough continuous functions is δβ-totally rough continuous.

Proof. Let f:K−→Q and g:Q−→G be two δβ-totally rough continuous functions, where K= (X,R1, τK),
Q=

(
Y, R2, τQ

)
and G=(Z,R3, τG) are three topologized approximation spaces. In G, letN be any internally

δβ-definable set. g is a δβ-totally rough continuous function. Then, in Q, g−1(N) is totally definable set.
g−1(N) is an internally δβ-definable set in Q, according to Lemma 3.7. Because f is a δβ-totally rough
continuous function, then f−1

(
g−1 (N)

)
=(g◦f)−1 (N) is totally definable set in K. As a result, g◦f:K−→G

is δβ-totally rough continuous. As a result, the composition function g◦f is a δβ-totally rough continuous
function.

Definition 3.19. A function f:K−→Q is said to be δβ-rough irresolute if the inverse image of each internally
δβ-definable set in Q is internally δβ-definable set in K.

Theorem 3.20. Let K= (X,R1, τK), Q=
(
Y, R2, τQ

)
, and G=(Z,R3, τG) be three topologized approximation spaces.

If f:K−→Q is δβ-totally rough continuous and g:Q−→G is δβ-rough irresolute, then, g◦f:K−→G is δβ-totally
rough continuous.

Proof. In G, let N be an internally δβ-definable set. g−1(N) is an internally δβ-definable set in Q because
g is a δβ-rough irresolute function. But f is δβ-totally rough continuous, then f−1

(
g−1 (N)

)
=(g◦f)−1 (N)

is totally definable set in K. Accordingly, g◦f:K−→G is δβ-totally rough continuous. Consequently, the
composition function is a δβ-totally rough continuous function.

Theorem 3.21. Let a three topologized approximation spaces K= (X,R1, τK), Q=
(
Y, R2, τQ

)
, and G=(Z,R3, τG).

If f:K−→Q is δβ-totally rough continuous and g:Q−→G is δβ-rough continuous, then, g◦f:K−→G is totally rough
continuous.

Proof. Let N be a set in G that can be defined as internally definable. g is a δβ-rough continuous.
Then, in Q, g−1(N) is internally δβ-definable. Since f is a δβ-totally rough continuous function, then
f−1

(
g−1 (N)

)
=(g◦f)−1 (N) is totally definable set in K. Hence, g◦f:K−→G is totally rough continuous.

Therefore, the composition function g◦f:K−→G is totally rough continuous function.

4. δβ-exactly rough continuous functions

In this section, will focus on δβ-exactly rough continuous functions, and some properties and relations
on it.

Definition 4.1. A function f:K−→Q is said to be δβ-exactly rough continuous if the inverse image of each
internally δβ-definable set in Q is totally δβ-definable set in K.

Example 4.2 (Continued for Example 3.5). The family of all totally δβ-definable sets in K is {X,ϕ, {x1} , {x2,
x3}} and the family of all internally δβ-definable sets in Q is {Y,ϕ, {y1} , {y1,y2} , {y1,y3}}. Hence, the inverse
image of each internally δβ-definable sets in Q is totally δβ-definable sets in K. Therefore, f is δβ-exactly
rough continuous.
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Theorem 4.3. A function f:K−→Q is δβ-exactly rough continuous if and only if the inverse image of every
externally δβ-definable set in Q is totally δβ-definable set in K.

Proof. The proof has the same manner as Theorem 3.6.

Theorem 4.4. Each strongly rough continuous function is δβ-exactly rough continuous.

Proof. Let K=(X,R1, τK) and Q=
(
Y, R2, τQ

)
be two topologized approximation spaces, and f:K−→Q be

a strongly rough continuous function. Allow any internally δβ-definable set in Q to be N. Then, in K,
f−1 (N) is totally definable set. This means that in K, f−1 (N) is totally δβ-definable. As a result, f is a
δβ-exactly rough continuous function.

The converse of Theorem 4.4 does not have to be true in general.

Example 4.5. Let K=(X,R1, τK) and Q=(Y,R2, τQ) be two topologized approximation spaces with X={x1,
x2, x3}, Y= {y1,y2,y3}, R1= {(x1, x1) , (x2, x2) , (x2, x3)} and R2= {(y1,y1) , (y2,y2) , (y3,y1) , (y3,y3)}. Then
x1R1= {x1}, x2R1= {x2, x3}, x3R1=ϕ, S1= {ϕ, {x1} , {x2, x3}}, B1= {X,ϕ, {x1} , {x2, x3}}, τK= {X,ϕ, {x1} , {x2, x3}}

=τ∗K, y1R2= {y1}, y2R2= {y2}, y3R2= {y1,y3}, S2= {{y1} , {y2} , {y1,y3}}, B2= {Y,ϕ, {y1} , {y2} , {y1,y3}} and
τQ= {Y,ϕ, {y1} , {y2} , {y1,y2} , {y1,y3}}. Hence, the family of all internally δβ-definable sets in Q is {Y,ϕ, {y1} ,
{y2} , {y1,y2} , {y1,y3}}, the family of all totally δβ-definable sets in K is {X,ϕ, {x1} , {x2} , {x3} , {x1, x2} , {x1, x3} ,
{x2, x3}} and the family of all totally definable sets in K is {X,ϕ, {x1} , {x2, x3}}. Define f:K−→Q as a function
with f (x1)=y1, f (x2)=y2, and f (x3)=y3. The inverse image of any internally δβ-definable set in Q is
a totally δβ-definable set in K, hence f is a δβ-exactly rough continuous function. Because V= {y3} is a
subset of Y in Q and f−1 (V)= {x3} is not a totally definable set in K, f is not a strongly rough continuous
function.

Theorem 4.6. Each δβ-totally rough continuous function is δβ-exactly rough continuous.

Proof. Let K=(X,R1, τK) and Q=
(
Y, R2, τQ

)
be two topologized approximation spaces, and f:K−→Q be

a δβ-totally rough continuous function. Allow any internally δβ-definable set in Q to be N. Then, in K,
f−1 (N) is totally definable. This means that in K, f−1 (N) is totally δβ-definable. Then any internally
δβ-definable set in Q has an inverse image in K that is totally δβ-definable. Accordingly, f is a δβ-exactly
rough continuous function.

The opposite of Theorem 4.6 does not have to be factual in general.

Example 4.7 (Continued for Example 3.15)). Since the inverse image of every internally δβ-definable set
in Q is a totally δβ-definable set in K, f is a δβ-exactly rough continuous function. However, because
V= {y1} is an internally δβ-definable set in Q and f−1 ({y1})= {x1} is not a totally definable set in K, f is not
a δβ-totally rough continuous function.

Theorem 4.8. Every δβ-exactly rough continuous function is δβ-rough continuous.

Proof. Let K=(X,R1, τK) and Q=
(
Y, R2, τQ

)
be two topologized approximation spaces, and f:K−→Q be a

δβ-exactly rough continuous function. Allow any internally definable set in Q to be N. This means that
in Q, N is an internally δβ-definable set. Because f is a δβ-exactly rough continuous function, the set
f−1 (N) in K is totally definable. That is, in K, f−1 (N) is an internally δβ-definable set. As a result, every
internally definable set in Q has an inverse image in K that is internally δβ-definable. As a result, f is
δβ-rough continuous.

The opposing of Theorem 4.8 does not have to be correct in overall.

Example 4.9 (Continued for Example 3.17). Clearly, f is δβ-rough continuous function. But f is not δβ-
exactly rough continuous function, since for the internally δβ-definable set {y1,y2} in Q, and f−1 ({y1,y2})=
{x1, x2} is not totally δβ-definable set in K.
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Definition 4.10. A function f:K−→Q is said to be strongly δβ-rough continuous if the inverse image of
each subset of Y in Q is totally δβ-definable set in K.

Theorem 4.11. Every strongly δβ-rough continuous function is δβ-exactly rough continuous.

Proof. Suppose the topologized approximation spaces K=(X,R1, τK) and Q=
(
Y, R2, τQ

)
, and f:K−→Q be

a strongly δβ-rough continuous function. N is a subset of Y in Q if N is any internally δβ-definable set in
Q. Because f is a strongly δβ-rough continuous function, then, in K, f−1 (N) is totally δβ-definable. As a
result, f is a δβ-exactly rough continuous function.

The converse of Theorem 4.11 is not correct in the general case.

Example 4.12 (Continued for Example 3.17). f is δβ-exactly rough continuous because the family of
all internally δβ-definable sets in Q is {Y,ϕ, {y1} , {y2,y3}} and all internally δβ-definable sets in K is
{X,ϕ, {x2} , {x1, x3}}. But f is not strongly δβ-rough continuous, since V= {y2} is a subset of Y in Q, and
f−1 (V)= {x1} is not totally δβ-definable set in K.

Theorem 4.13. The composition of two δβ-exactly rough continuous functions is δβ-exactly rough continuous.

Proof. Let Three topologized approximation spaces are K=(X,R1, τK), Q=
(
Y, R2, τQ

)
, and G=(Z,R3, øG).

Allow two δβ-exactly rough continuous functions, f:K−→Q and g:Q−→G. In G, let N be any internally
δβ-definable set. Then g−1 (N) is totally δβ-definable in Q. Because g is a δβ-exactly rough continuous
function, g−1 (N) is an internally δβ-definable set in Q. Then f−1

(
g−1 (N)

)
=(g◦f)−1 (N) is totally δβ-

definable. Because f is a δβ-exactly rough continuous function, g◦f is a δβ-exactly rough continuous
function.

Theorem 4.14. Let K=(X,R1, τK), Q
(
Y, R2, τQ

)
, and G=(Z,R3, τG) are three topologized approximation spaces.

If f:K−→Q is δβ-exactly rough continuous function and g:Q−→G is δβ-rough irresolute, then, g◦f:K−→G is δβ-
exactly rough continuous.

Proof. In G, let N be an internally δβ-definable set. g is δβ-rough irresolute function. Then g−1 (N) in Q is
internally δβ-definable. Because f is δβ-exactly rough continuous, then, in K, f−1

(
g−1 (N)

)
=(g◦f)−1 (N)

is totally δβ-definable set. As a result, g◦f:K−→G δβ-totally rough continuous.

Theorem 4.15. Let K=(X,R1, øK) , Q=
(
Y, R2, øQ

)
, and G=(Z,R3, øG) are three topologized approximation spaces.

If f:K−→Q is δβ-exactly rough continuous function and g :Q−→G is δβ-rough continuous function, then,
g◦f:K−→G is totally δβ-rough continuous.

Proof. Let N be an internally definable set in G. Since g is δβ-rough continuous function, then, g−1 (N) is
internally δβ-definable set in Q. Since f is δβ-exactly rough continuous function, formerly, f−1

(
g−1 (N)

)
=(g◦f)−1 (N) is totally δβ-definable set in K. Hence, g◦f:K−→G is totally δβ-rough continuous. Therefore,
the composition function g◦f:K−→G is totally δβ-rough continuous function.

5. δβ-internally functions

In this section, we introduce the concepts of δβ-internally functions, δβ-totally functions, and δβ-
totally internally functions.

Definition 5.1. A function f:K−→Q is supposed to be

(i) δβ-internally function if the image of every internally δβ-definable set in K is internally δβ-definable
set in Q;

(ii) δβ-totally function if the image of every internally δβ-definable set in K is totally δβ-definable set in
Q.
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Theorem 5.2. Let the bijective δβ-totally function f:K−→Q. Then the image of each externally δβ-definable set in
K is totally definable set in Q.

Proof. Let N be an externally δβ-definable set in K. Then, in K, Nc is internally δβ-definable set. Because
f is a δβ-totally function, f(Nc) is totally defined in Q. However, because f is bijective, f(Nc) =[f (N)]c. As
a result, [f (N)]c is a totally definable set, and so f(N) is a totally definable set in Q.

Theorem 5.3. A function f:K−→Q is δβ-totally if and only if for each subset N of Y in Q and for each externally
δβ-definable set U in K containing f−1 (N), there is a totally definable subset V of Y in Q such that N⊆V and
f−1 (V)⊆U.

Proof. Let an internally δβ-definable set F in K. Since F⊆f−1 (f (F)), then
[
f−1 (f (F))

]
⊆Fc. Hence, Fc is

an externally δβ-definable set in K containing
[
f−1 (f (F))

]c
=f−1 ([f (F)]c), where [f (F)]c is a subset of

Y in Q. Then there exists a totally definable subset V of Y in Q such that [f (F)]c⊆V and f−1 (V)⊆Fc.
That is Vc⊆f (F) and F⊆

[
f−1 (V)

]c. Then, Vc⊆f (F)⊆f
([
f−1 (V)

]c)⊆f (f−1 (Vc)
)
⊆Vc. Thus f (F)=Vc.

Then, f (F) is totally definable set in Q. As a consequence, f is δβ-totally function. Conversely, suppose
f:K−→Q be a δβ-totally function and Y contains a subset N in Q. Let an externally δβ-definable set
U in K such that f−1 (N)⊆U. Since Uc is an internally δβ-definable set in K, then f (Uc) is totally
definable set in Q. Now, Uc⊆

[
f−1 (N)

]c
=f−1 (Nc) and f (Uc)⊆f

(
f−1 (Nc)

)
⊆N. Hence, N⊆[f (Uc)]c. Let

V=[f (Uc)]c, then V is totally definable set in Q containing N andf−1 (V)=f−1 ([f (Uc)]c)=
[
f−1 (f (Uc))

]c.
Thus,

[
f−1 (V)

]c
=f−1 (f (Uc))⊇Uc. Hence, Uc⊆

[
f−1 (V)

]c. Then, f−1 (V)⊆U.

Theorem 5.4. Let K=(X,R1, τK), Q=
(
Y, R2, τQ

)
and G=(Z,R3, τG) are three topologized approximation spaces.

If f:K−→Q is δβ-internally function and g:Q−→G is δβ-totally function, then, f◦g:K−→G is δβ-totally function.

Proof. Let N be an internally δβ-definable set in K. Since f:K−→Q is δβ-internally function, then, f(N)
is internally δβ-definable set in Q. But g:Q−→G is δβ-totally function, then, g (f (N)) is totally definable
set in G. But g (f (N))= (g◦f) (N), then, (g◦f) (N) is totally definable set in G. Hence, g◦f is δβ-totally
function. Therefore, the composition function g◦f:K−→G is δβ-totally function.

Theorem 5.5. Let K=(X,R1, τK), Q=
(
Y, R2, τQ

)
, and G=(Z,R3, τG) are three topologized approximation spaces.

Let f:K−→Q and g:Q−→G be two functions, such that g◦f:K−→G is δβ-totally function. Then, the following hold.

(i) If f:K−→Q is δβ-rough irresolute and onto function, then g is δβ-totally function.
(ii) If g:Q−→G is totally rough continuous and one to one function, then f is δβ-totally function.

Proof.

(i). suppose that f:K−→Q be a δβ-rough irresolute and onto function andN be any internally δβ-definable
set in Q. Formerly, f−1 (N) is internally δβ-definable set in K. Since g◦f:K−→G is δβ-totally function,
(g◦f)

(
f−1 (N)

)
=g (N) because f is onto function. Then g(N) is totally definable set in G. Therefore, g is

δβ-totally function.

(ii). Since g is one to one, we have f (N)=g−1 (g◦f) (N) is true for every subset N of X in K. Let U be an
internally δβ-definable set in K. Since g◦f:K−→G is δβ-totally function, then (g◦f) (U) is totally definable
set in G. This main that (g◦f) (U) is internally definable set in G. Since g is totally rough continuous, then,
g−1 ((g◦f) (U))=f (U) is totally definable set in Q. Therefore, f is δβ-totally function.

Definition 5.6. A function f:K−→Q is said to be δβ-totally internally if the image of every internally
δβ-definable set in K is totally δβ-definable set in Q.

Theorem 5.7. Let two topologized approximation spaces K=(X,R1, τK) and Q=
(
Y, R2, τQ

)
. When a function

f:K−→Q is δβ-totally internally, then the image of each externally δβ-definable set in K is δβ-totally definable set
in Q.
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Proof. Like the proof of Theorem 5.2.

Theorem 5.8. A bijective function f:K−→Q is δβ-totally internally if and only if for each subset B of Y in Q and
for each externally δβ-definable set U in K containing f−1 (B), there is a totally δβ-definable subset V of Y in Q

such that B⊆V and f−1 (V)⊆U.

Proof. Like the proof of Theorem 5.3.

Theorem 5.9. Let f:K−→Q be bijective function. Then, the inverse function of f is δβ-exactly rough continuous if
and only if f is δβ-totally internally function.

Proof. Let N be an internally δβ-definable set in K. Since the inverse function of f is δβ-exactly rough
continuous, then

(
f−1

)−1
(N)=f (N) is totally δβ-definable set in Q. Therefore, f is δβ-exactly internally

function. Conversely, let f be a δβ-exactly internally function and M be any internally δβ-definable set in
K. Then f(M) is totally δβ-definable set in Q. That is

(
f−1

)−1
(M)=f (M) is totally δβ-definable set in Q.

Therefore f−1 is δβ-exactly rough continuous.

Theorem 5.10. The composition of two δβ-totally internally functions is δβ-totally internally function.

Proof. Let K=(X,R1, τK), Q=
(
Y, R2, τQ

)
, and G=(Z,R3, τG) be three topologized approximation spaces

and let f:K−→Q and g:Q−→G be two δβ-exactly internally functions. Let N be an internally δβ-definable
set in K. Since f is δβ-exactly internally function, then f(N) is totally δβ-definable set in Q. That is f (N)

is internally δβ-definable set in Q. Since g is δβ-exactly internally function, then g (f (V))= (g◦f) (V) is
totally δβ-definable set in G. Hence, g◦f is δβ-exactly internally function.

6. Conclusions

Developments of topology in the making of convinced rough functions will serve as a connection for
numerous applications [15, 31, 35–37] and will disclose concealed data families. Topological allowances of
the impression of rough functions deliver the way for rough continuity to be connected to the ground of
near continuous functions. Applications of topological rough functions of information systems exposed
the door to many alterations between many classes of evidence schemes, such as multi-valued and single-
valued information systems.

References

[1] E. A. Abo-Tabl, On links between rough sets and digital topology, Appl. Math., 5 (2014), 941–948. 1
[2] H. M. Abu-Donia, Comparison between different kinds of approximations by using a family of binary relations, Knowl

Based Syst., 21 (2008), 911–919. 1, 2.9
[3] H. M. Abu-Donia, A. S. Salama, Fuzzy simple expansion, J. King Saud Univ. Sci., 22 (2010), 223–227. 1
[4] H. M. Abu-Donia, A. A. Nasef, E. A. Marei, Finite Information Systems, Appl. Math. Inf. Sci., 1 (2007), 13–21. 1
[5] T. M. Al-shami, Somewhere dense sets and ST1-spaces, Punjab Univ. J. Math., 49 (2017), 101–111. 1
[6] T. M. Al-shami, An improvement of rough sets’ accuracy measure using containment neighborhoods with a medical appli-

cation, Inform. Sci., 569 (2021), 110–124. 1
[7] T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft

Comput., 25 (2021), 14449–14460.
[8] T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., (2022), 4101–4113.
[9] T. M. Al-shami, Maximal rough neighborhoods with a medical application, J. Ambient Intell. Humaniz. Comput., (2022),

1–12.
[10] T. M. Al-shami, D. Ciucci, Subset neighborhood rough sets, Knowledge-Based Systems, 237 (2022), 11 pages.
[11] T. M. Al-shami, M. Hosny, Improvement of approximation spaces using maximal left neighborhoods and ideals, IEEE

Access, 10 (2022), 79379–79393. 1
[12] T. M. Al-shami, T. Noiri, More notions and mappings via somewhere dense sets, Afr. Mat., 30 (2019), 1011–1024. 1
[13] O. G. El Barbary, A. S. Salama, Feature selection for document classification based on topology, Egypt. Inform. J., 19

(2019), 129–132. 1

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=44592
https://doi.org/10.1016/j.knosys.2008.03.046
https://doi.org/10.1016/j.knosys.2008.03.046
http://dx.doi.org/10.1016/j.jksus.2010.05.002
https://www.researchgate.net/publication/257945381_Finite_Information_Systems
http://pu.edu.pk/images/journal/maths/PDF/Paper-9_49_2_17.pdf
https://doi.org/10.1016/j.ins.2021.04.016
https://doi.org/10.1016/j.ins.2021.04.016
https://doi.org/10.1007/s00500-021-06358-0
https://doi.org/10.1007/s00500-021-06358-0
https://doi.org/10.1007/s40747-022-00704-x
https://doi.org/10.1007/s12652-022-03858-1
https://doi.org/10.1007/s12652-022-03858-1
https://doi.org/10.1016/j.knosys.2021.107868
https://ieeexplore.ieee.org/abstract/document/9843974
https://ieeexplore.ieee.org/abstract/document/9843974
https://doi.org/10.1007/s13370-019-00700-4
https://doi.org/10.1016/j.eij.2018.01.001
https://doi.org/10.1016/j.eij.2018.01.001


A. S. Salama, A. A. Reyad, A. A. El-Atik, J. Math. Computer Sci., 30 (2023), 122–132 132

[14] O. G. El Barbary, A. S. Salama, E. S. Atlam, Granular information retrieval using neighborhood systems, Math. Methods
Appl. Sci., 41 (2017), 5737–5753. 1

[15] T. Herawan, Roughness of Sets Involving Dependency of Attributes in Information Systems, Int. J. Softw. Eng. Its Appl.,
9 (2015), 111–126. 1, 6

[16] M. Hosny, T. M. Al-shami, Rough set models in a more general manner with applications, AIMS Math., 7 (2022),
18971–19017. 1

[17] M. Kryszkiewicz, Rough set approach to incomplete information systems, Inform. Sci., 112 (1998), 39–49. 1
[18] G. Liu, Y. Sai, A comparison of two types of rough sets induced by coverings, Internat. J. Approx. Reason., 50 (2009),

521–528. 1
[19] T.-J. Li, Y. Leung, W.-X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy coverings, Internat. J.

Approx. Reason., 48 (2008), 836–856.
[20] E. F. Lashin, A. M. Kozae, A. A. A. Khadra, T. Medhat, Rough set theory for topological spaces, Internat. J. Approx.

Reason., 40 (2005), 35–43. 1
[21] J. A. Pomykała,, Approximation operations in approximation space, Bull. Polish Acad. Sci. Math., 35 (1987), 653–662. 1
[22] K. Qin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, Inform. Sci., 178 (2008),

4138–4141. 1
[23] K. Qin, Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets and Systems, 151 (2005), 601–613. 1
[24] A. S. Salama, Topological solution of missing attribute values problem in incomplete information tables, Inf. Sci., 180

(2010), 631–639. 1
[25] A. S. Salama, Generalizations of Rough Sets Using two Topological Spaces with Medical Applications, INFORMATION,

19 (2016), 2425–2440. 1
[26] A. S. Salama, Bitopological approximation space with application to data reduction in multi-valued information systems,

Filomat, 34 (2020), 99–110. 1
[27] A. S. Salama, M. M. E. Abd El-Monsef, New topological approach of rough set generalizations, Int. J. Comput. Math.,

88 (2011), 1347–1357. 1
[28] R. Slowinski, D. Vanderpooten, A generalized definition of rough approximations based on similarity, IEEE Trans.

Knowl. Data Eng., 12 (2000), 331–336. 1, 2.3
[29] P. Srinivasan, M. E. Ruiz, D. H. Kraft, J. Chen, Vocabulary mining for information retrieval: rough sets and fuzzy sets,

Inf. Process. Manage., 37 (2001), 15–38. 1
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