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Abstract
The purpose of this paper is to propose a method for approximating the solution of the split common fixed point problem

involving λ-strict quasi-Gf-pseudocontractive mappings in the setting of two Banach spaces using Gf(., .) functional. We prove
that the proposed method converges strongly to a solution of the split common fixed point problem. In addition, we provide
some applications of our method and provide numerical results to demonstrate the applicability of the proposed method.
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1. Introduction

Let C and D be nonempty subsets of real Hilbert spaces H1 and H2, respectively. The split feasibility
problem (SFP) is given by the following:

find x ∈ C such that Ax ∈ D,

where A : H1 → H2 is a bounded linear map with the adjoint operator A∗.
This problem has attracted the attention of many authors due to its application in different disciplines

such as image restoration, computer tomography, radiation therapy treatment planning, antenna design,
sensor arrays, data communication and data compression (see, for instance, [3–5, 7–9, 11, 20, 33, 45]).
Different methods of solving this problem have been studied by several authors on the bases of its appli-
cations (see, for instance, [4, 5, 42, 45–47]).

Several generalized problems related to the SFP have also been studied. In this connection, it is worth
to mention, for instance, the multiple-set SFP (MSSFP) (see [9, 23]), the split common fixed point problem
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(SCFPP) (see [12, 25]), the split variational inequality problem (SVIP) (see [10]), and the split common null
point problem (SCNPP) (see [6, 30–32]).

Given two real Hilbert spaces H1 and H2, let S : H1 −→ H1 and T : H2 −→ H2 be nonlinear mappings
and let A : H1 −→ H2 be a bounded linear operator. We usually denote the set of fixed points of T by F(T)
and that of S by F(S). The split common fixed point problem (SCFPP) is given by the following:

x? ∈ F(S) such that Ax? ∈ F(T). (1.1)

This problem is originated from Censor and Segal [12] and was studied by employing the following
algorithm:

xn+1 = T(xn − τnA
∗(I− S)Axn),n > 1,

where S and T are quasi-firmly nonexpansive mappings and τn ∈ (0, 2
||A||2

) for all n > 1. The generated
sequence has been shown to converge weakly towards a solution of (1.1) in the setting of Hilbert spaces.
Motivated by the result of Censor and Segal [12], Wang [41] proved a weak convergence theorem for a
solution of SCFPP using the following algorithm:

xn+1 = xn − τn[(I− T)xn +A∗(I− S)Axn], (1.2)

where S and T are firmly nonexpansive mappings and {τn} ⊂ (0,+∞) satisfying some mild conditions.
We observe that the step size τn in algorithm (1.2) is independent of the norm of the bounded linear
operator A.

In [25] and [24], Moudafi extended this algorithm to the case of quasi-nonexpansive mappings and
the case of demicontractive mappings, respectively, in Hilbert spaces. Since then, there has been growing
interests in the split common fixed point problem in the setting of Hilbert spaces. More specifically, in
[48], Yao et al. remarked that problem (1.1) can be viewed as solving the following fixed-point equation

x? = Sx? −A?(I− T)Ax?.

Consequently, they proposed a new algorithm for solving the problem in the setting of Hilbert spaces and
they obtained a weak convergence result under some mild assumptions.

In an attempt to solve the SCFPP (1.1) in the setting of Banach spaces, several authors (see, for instance,
[13, 21, 22, 37, 39]) have introduced and studied algorithms for solving the problem in a p-uniformly
smooth Banach space for 1 < p < +∞.

In 2015, Takahashi and Yao [36] considered and investigated the SCNPP in the setting of one Hilbert
space and one Banach space by using a hybrid projection method. Their method is described as follows.
Let H be a Hilbert space and let F be a uniformly convex Banach space whose norm is Frechet differen-
tiable. Let JF be the duality mapping on F and let A : H → 2H and B : F → 2F

∗
be maximal monotone

operators. Let Jλ be the resolvent of A for λ > 0 and let Qµ be the metric resolvent of B for µ > 0. Let
T : H −→ F be a bounded linear operator such that T 6= 0 and let T? be the adjoint operator of T . Suppose
that A−10∩ T−1(B−10) 6= ∅. Let {un} be a sequence in H such that un −→ u. Let x1 ∈ H, C1 = H, and {xn}

be a sequence generated by 
zn = Jλn(xn − λnT

?JF(Txn −QuTxn)),
Cn+1 = {z ∈ H : ||zn − z|| 6 ||xn − z||}∩Cn,
xn+1 = PCn+1un+1, ∀n ∈N,

where 0 6 c 6 λn||T ||
2 6 2 and λn ∈ (0,+∞) for some c ∈ R. They proved that the sequence {xn}

converges strongly to a point z0 ∈ A−10∩ T−1(B−10), where z0 = PA−10∩T−1(B−10)u.
This result has been extended to the case of two Banach spaces in [35].
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Recently, Liu et al. [19] constructed an iterative method for solving the SCFPP for λ-strict quasi-φ-
pseudocontractive mappings in the setting of two Banach spaces. They proved that the sequence gener-
ated by the proposed iterative algorithm converges strongly to a solution of the SCFPP.

Motivated and inspired by the work of Liu et al. [19], we propose an algorithm for approximating
solutions of SCFPP involving λ-strict quasi-Gf-pseudocontractive mappings in the setting of two Banach
spaces using functional G(., .). In addition, we prove that the sequence generated by the proposed algo-
rithm converges strongly to a solution of the SCFPP. Finally, we provide some applications of our method
and give a numerical experiment to explain the results.

2. Preliminaries

Let E? be the dual space of a real Banach space E with norm ||.||. We denote the value of f? ∈ E? at
x ∈ E by 〈x, f?〉. For a sequence {xn} in E, we denote the strong convergence of {xn} to x ∈ E by xn → x

and its weak convergence by xn ⇀ x.
A Banach space E is said to be strictly convex if ||x+y||

2 < 1 for all x,y ∈ SE = {z ∈ E : ||z|| = 1} with
x 6= y. The modulus of convexity δE of E is defined by

δE(ε) = inf
{

1 −
||x+ y||

2
: ||x|| 6 1, ||y|| 6 1, ||x− y|| > ε

}
for all ε ∈ [0, 2]. If δE(ε) > 0 for all 0 < ε 6 2, then E is said to be uniformly convex. It is well known
that the Banach space E is uniformly convex if and only if for any two sequences {xn} and {yn} in E if
limn→+∞ ||xn|| = lim

n→+∞ ||yn|| = 1, and lim
n→+∞ ||xn + yn|| = 2, then

lim
n→+∞ ||xn − yn|| = 0.

It is also known that if a Banach space is uniformly convex, then it is strictly convex and reflexive (see,
for instance, [14, 29]).

The modulus of smoothness of E is a map ρE : [0,+∞) −→ [0,+∞) defined by

ρE(t) = sup
{

1
2
(||x+ y||+ ||x− y||) − 1 : x ∈ SE, ||y|| 6 t

}
.

If ρE(t)/t → 0 as t → 0, then the Banach space E is said to be uniformly smooth. A typical example of
uniformly smooth Banach space is the Lp space, where 1 < p < +∞. The normalized duality mapping
J : E→ 2E

?
is defined by

J(x) =
{
f? ∈ E? : 〈x, f?〉 = ||x||2 = ||f?||2

}
, ∀x ∈ E.

From the Hahn-Banach theorem, it follows that J(x) is nonempty (see [34]). If E is smooth, then J is
single-valued and hemi-continuous, that is, J is continuous from the strong topology of E to the weak
star topology of E∗. It is also known that E is reflexive if and only if J is surjective, and E is strictly
convex if and only if J is one-to-one. Therefore, if E is smooth, strictly convex, and reflexive, then J is a
single-valued bijective map. In this case, the inverse mapping J−1 coincides with the normalized duality
mapping J? on E? (see, for instance, [14, 15, 26, 29, 34]). If E = H is a Hilbert space, then J = I, where I is
the identity mapping.

A Banach space E is said to have Kadec-Klee property if for any sequence {xn} ⊂ E, xn ⇀ x and
||xn||→ ||x||, we have xn → x. Note that every uniformly convex Banach space is strictly convex, reflexive
and has Kadec-Klee property.

Proposition 2.1 ([44]). Let s > 0 and let E be a Banach space. Then E is uniformly convex if and only if there
exists a continuous, strictly increasing, and convex function g : [0,+∞) −→ [0,+∞), g(0) = 0, such that

||x+ y||2 > ||x||2 + 2〈y, j〉+ g(||y||),

for all x,y ∈ {z ∈ E : ||z|| 6 s} and j ∈ Jx.



D. Jenber, H. Zegeye, M. H. Takele, A. R. Tufa, J. Math. Computer Sci., 30 (2023), 173–189 176

Let E be a smooth real Banach space. For any fixed ρ > 0, let Gf : E× E −→ R be functional defined
as follows:

Gf(x,y) = ||x||2 − 2〈x, Jy〉+ ||y||2 + 2ρf(x), ∀x,y ∈ E, (2.1)

where f : E −→ R is convex, lower semicontinuous and bounded from below. From the definition of Gf
and property of f it is easy to see that Gf(x,y) is convex and lower semicontinuous with respect to x when
y is fixed. In (2.1) if we consider f = 0 (a zero function), then Gf reduces to

G0(x,y) = ||x||2 − 2〈x, Jy〉+ ||y||2 = φ(x,y), ∀x,y ∈ E, (2.2)

where φ(x,y) is a Lyapunov function introduced by Alber [1]. Now, we consider the generalized f-
projection operator in a Banach space which is analogous to the generalized f-projection operator dis-
cussed in Wu et al. ([43]).

Definition 2.2. Let C be a nonempty, closed and convex subset of a real smooth Banach space E. We say
that ΠfC : E −→ 2C is a generalized f-projection operator if

ΠfCx =

{
u ∈ C : Gf(u, x) = inf

ξ∈C
Gf(ξ, x)

}
, ∀x ∈ E.

Remark 2.3. The generalized projection operator defined by Alber [1, 2] and Li [17] is the special case of
the generalized f-projection operator when f(x) = 0 for all x ∈ E.

Following the results in Li et al. [18], we obtain the following lemma.

Lemma 2.4. Let C be a nonempty closed convex subset of a real reflexive and smooth Banach space E. The following
statements hold:

(i) ΠfCx is a nonempty closed convex subset of C for all x ∈ E;
(ii) for all x ∈ E, x? ∈ ΠfCx if and only if

〈x? − y, Jx− Jx?〉+ ρf(y) − ρf(x?) > 0, ∀y ∈ C;

(iii) if E is strictly convex, then ΠfC is a single valued mapping.

It is easy to verify that for each x,y, z,w ∈ E,

(||x||− ||y||)2 + 2ρf(x) 6 Gf(x,y) 6 (||x||+ ||y||)2 + 2ρf(x), (2.3)
2〈x− y, Jz− Jw〉 = Gf(x,w) +Gf(y, z) −Gf(x, z) −Gf(y,w),

Gf(x,y) = 2ρf(x)⇐⇒ x = y. (2.4)

It is also easy to observe that, in a Hilbert space H, Gf(x,y) = ||x− y||2 + 2ρf(x) for all x,y ∈ H.

Lemma 2.5. Let E be a uniformly convex and smooth Banach space and let {yn}, {zn} be two sequences of E. If
Gf(yn, zn) − 2ρf(yn)→ 0 as n→ +∞ and either {yn} or {zn} is bounded, then ||yn − zn||→ 0 as n→ +∞.

Proof. Since Gf(yn, zn)− 2ρf(yn)→ 0 as n→ +∞, the sequence {Gf(yn, zn)− 2ρf(yn)} is bounded. Then
it follows from (2.3) that if one of the sequences {yn} and {zn} is bounded, so is the other. Therefore,
since E is uniformly convex by Proposition 2.1, there exists a continuous, strictly increasing, and convex
function g : [0,+∞) −→ [0,+∞), g(0) = 0, such that

g(||yn − zn||) 6 ||zn + (yn − zn)||
2 − ||zn||

2 − 2〈yn − zn, Jzn〉
= ||yn||

2 − ||zn||
2 − 2〈yn, Jzn〉+ 2||zn||2 = Gf(yn, zn) − 2ρf(yn).

Then it follows from Gf(yn, zn) − 2ρf(yn) → 0 that g(||yn − zn||) −→ 0. Then the continuity of g and
g(0) = 0 yield that ||yn − zn||→ 0 as n→ +∞.
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Lemma 2.6. Let C be a nonempty closed convex subset of a reflexive and smooth Banach space E, and let x ∈ E.
Then

Gf(y,ΠfCx) +Gf(Π
f
Cx, x) − 2ρf(y) 6 Gf(y, x) for all y ∈ C.

Proof. By definition, we have

Gf(y, x) −Gf(ΠfCx, x) −Gf(y,ΠfCx) + 2ρf
(
ΠfCx

)
= ||y||2 − 2〈y, Jx〉+ ||x||2 − ||ΠfCx||

2 + 2〈ΠfCx, Jx〉− ||x||2 − ||y||2 + 2〈y, JΠfCx〉− ||ΠfCx||
2

= −2〈y, Jx〉+ 2〈ΠfCx, Jx〉+ 2〈y, JΠfCx〉− 2||ΠfCx||
2

= 2
[
〈y, JΠfCx− Jx〉+ 〈ΠfCx, Jx〉− 〈ΠfCx, JΠfCx〉

]
= 2

[
〈y, JΠfCx− Jx〉− 〈ΠfCx, JΠfCx− Jx〉

]
= 2〈y−ΠfCx, JΠfCx− Jx〉.

(2.5)

Adding 2ρf(y) − 2ρf
(
ΠfCx

)
to both sides of (2.5) and using Lemma 2.4, we get

Gf(y, x) −Gf(ΠfCx, x) −Gf(y,ΠfCx) + 2ρf(y) = 2〈y−ΠfCx, JΠfCx− Jx〉+ 2ρf(y) − 2ρf
(
ΠfCx

)
> 0,∀y ∈ C.

This completes the proof.

Recall that a point p ∈ C is called a fixed point of a mapping T : C→ C if Tp = p. The set of fixed points
of T is denoted by F(T).

Definition 2.7. Let C be a nonempty, closed, and convex subset of a smooth and reflexive Banach space
E. Let φ : E× E −→ [0,+∞) be a functional given by (2.2). A mapping T : C −→ C is said to be

(i) nonexpansive if ||Tx− Ty|| 6 ||x− y|| for all x,y ∈ C;
(ii) quasi-nonexpansive if F(T) 6= ∅ and ||Tx− x?|| 6 ||x− x?||, ∀x ∈ C, x? ∈ F(T);

(iii) quasi-φ-firmly nonexpansive (see [16]) if F(T) 6= ∅ and

φ(x?, Tx) +φ(Tx, x) 6 φ(x?, x), ∀x? ∈ F(T), x ∈ C;

(iv) quasi-φ-nonexpansisve (see [27, 49]) if F(T) 6= ∅ and

φ(x?, Tx) 6 φ(x?, x), ∀x? ∈ F(T), x ∈ C;

(v) λ-strict quasi-φ-pseudocontractive (see [28]) if F(T) 6= ∅, and there exists a constant λ ∈ [0, 1) such
that

φ(x?, Tx) 6 φ(x?, x) + λφ(x, Tx), ∀x ∈ C, x? ∈ F(T);

(vi) λ-strict quasi-Gf-pseudocontractive if F(T) 6= ∅ and there exists λ ∈ [0, 1) such that

Gf(x
?, Tx) 6 Gf(x?, x) + λ(Gf(x, Tx) − 2ρf(x?)) (2.6)

or equivalently

〈x− x?, Jx− JTx〉+ ρf(x) − λρf(x?) > 1 − λ

2
Gf(x, Tx), ∀x ∈ C, x? ∈ F(T), (2.7)

where Gf is as defined in (2.1). We note that an analogous definition is assumed in [40];
(vii) closed if for any sequence {xn} ⊂ C with xn → x ∈ C and Txn → y ∈ C as n→ +∞, then Tx = y.

From the above definitions, we observe that if T is a λ-strict quasi-φ-pseudocontractive, then T is a λ-
strict quasi-Gf-pseudocontractive with f = 0. An example of λ-strict quasi-Gf-pseudocontractive mapping
which is not λ-strict quasi-φ-pseudocontractive mapping is given below.
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Example 2.8. Let T : R −→ R be given by

T(x) = 3x, ∀x ∈ R.

Then, we show that T is not λ-strict quasi-φ-pseudocontractive but it is λ-strict quasi-Gf-pseudocontractive
mapping. Suppose there exists λ ∈ [0, 1) such that

φ(x?, Tx) 6 φ(x?, x) + λφ(x, Tx), ∀x ∈ H = R, x? ∈ F(T).

This implies that

|0 − Tx|2 6 |0 − x|2 + λ|x− Tx|2,

and hence

9x2 6 x2 + 4λx2,∀x 6= 0 if and only if λ > 2,

which is a contradiction to our assumption. Therefore, T is not λ-strict quasi-φ-pseudocontractive map-
ping.

Next, we show that T is λ-strict quasi-Gf-pseudocontractive mapping.
It is easy to see that for any λ ∈ (0, 1), we have λφ(x, Tx) > 0. Now, for any ρ > 0, take

f(x) =
8
ρ
x2, and λ = 1

2 .

Then, we have

Gf(0, Tx) = ||0||2 − 2〈0, JTx〉+ ||Tx||2 + 2ρf(0)

= 9x2 = x2 + 8x2 6 x2 + 8x2 +
1
2
φ(x, Tx) = Gf(0, x) − 2ρf(0) +

1
2
(φ(x, Tx) + 2ρf(x)).

(2.8)

Thus, from (2.8), we obtain that

Gf(0, Tx) 6 Gf(0, x) + λ(Gf(x, Tx) − 2ρf(0)), ∀x ∈ C,

where λ = 1
2 and f(x) = 8

ρx
2. Therefore, T is λ-strict quasi-Gf-pseudocontractive mapping.

Lemma 2.9. Let C be a nonempty, closed, and convex subset of a smooth and reflexive Banach space E. If T : C −→
C is a closed and λ-strict quasi-Gf-pseudocontractive, then F(T) is closed and convex.

Proof. First, we show that F(T) is closed. Let {xn} be a sequence in F(T) such that xn → x as n → +∞.
We need to show that x ∈ F(T). From the definition of T and the lower semicontinuity of f, we have

1 − λ

2
φ(x, Tx) + (1 − λ)ρf(x) =

1 − λ

2
Gf(x, Tx)

6 lim inf
n−→+∞

(
〈x− xn, Jx− JTx〉+ ρf(x) − λρf(xn)

)
6 lim sup
n−→+∞

(
〈x− xn, Jx− JTx〉+ ρf(x) − λρf(xn)

)
6 〈x− x, Jx− JTx〉+ ρf(x) − λρ lim inf

n−→+∞ f(xn)
6 ρf(x) − λρf(x),

which implies that φ(x, Tx) = 0. Hence, we get

Gf(x, Tx) − 2ρf(x) = 0.
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Thus, from (2.4), we obtain that x = Tx and hence F(T) is closed. Next, we show that F(T) is convex. Let
z1, z2 ∈ F(T) and z = tz1 + (1 − t)z2, where t ∈ (0, 1). We show that z = Tz. From the definition of T we
have

1 − λ

2
Gf(z, Tz) 6 〈z− z1, Jz− JTz〉+ ρf(z) − λρf(z1), (2.9)

and

1 − λ

2
Gf(z, Tz) 6 〈z− z2, Jz− JTz〉+ ρf(z) − λρf(z2). (2.10)

Multiplying inequalities (2.9) and (2.10) by t and (1 − t), respectively, yields that

t(1 − λ)

2
Gf(z, Tz) 6 t〈z− z1, Jz− JTz〉+ tρf(z) − tλρf(z1), (2.11)

and

(1 − t)(1 − λ)

2
Gf(z, Tz) 6 (1 − t)〈z− z2, Jz− JTz〉+ (1 − t)ρf(z) − (1 − t)λρf(z2). (2.12)

Adding inequalities (2.11) and (2.12) and using the convexity of f, we get

1 − λ

2
φ(z, Tz) + (1 − λ)ρf(z) =

1 − λ

2
Gf(z, Tz)

6 t〈z− z1, Jz− JTz〉+ (1 − t)〈z− z2, Jz− JTz〉+ ρf(z) − λρtf(z1)

− λρ(1 − t)f(z2)

6 〈z− (tz1 + (1 − t)z2, Jz− JTz〉+ ρf(z) − λρf(tz1 + (1 − t)z2)

= 〈z− z, Jz− JTz〉+ ρf(z) − λρf(z) = (1 − λ)ρf(z),

which implies that

Gf(z, Tz) − 2ρf(z) = 0.

Thus, from (2.4), we get z = Tz and hence F(T) is convex.

3. Main result

In this section, we present precise statement of our algorithm for the approximation of the split com-
mon fixed point problem (1.1). We will make use of the following assumptions for the convergence of the
proposed algorithm.

Conditions:

C1. Let E and F be smooth and uniformly convex real Banach spaces. Let JE and JF be the normalized
duality mappings on E and F, respectively.
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C2. Let f : E −→ R and h : F −→ R be convex and lower semicontinuous functionals that are bounded
from below.

C3. Let S : E −→ E be a closed λ1-strict quasi-Gf-pseudocontractive mapping with F(S) 6= ∅, and
T : F −→ F be a closed λ2-strict quasi-Gh-pseudocontractive mapping with F(T) 6= ∅.

C4. Let A : E −→ F be a bounded linear operator with adjoint A?.
C5. Let Ω := {x∗ : x∗ ∈ F(S) and Ax∗ ∈ F(T)} be nonempty.
C6. Let ρ1 and ρ2 be positive real numbers.

Theorem 3.1. Assume that conditions C1-C6 hold. Let C0 = E and for any given x0 ∈ C0, let {xn} be a sequence
generated by

yn = J−1
E [JESxn −A?(JFAxn − JFTAxn)],

Cn+1 =

{
z ∈ Cn : 〈xn − z, JExn − JEyn〉+ ρ1f(xn) − λ1ρ1f(z) + ρ2h(Axn) − λ2ρ2h(Az)

> 1−λ1
2 Gf(xn,Sxn) + 1−λ2

2 Gh(Axn, TAxn)
}

,

xn+1 = ΠfCn+1
x0,∀n > 0,

where ΠfCn+1
is the generalized f-projection of E onto Cn+1 for all n > 0. Then, the sequence {xn} converges

strongly to x? ∈ Ω, where x? = ΠfΩx0.

Proof. We split the proof into six steps.

Step 1. We show that Ω is closed and convex. Since F(S) and F(T) are closed and convex, and A is a
bounded linear operator, Ω is closed and convex.

Step 2. We show that Cn is convex for each n > 0. It is obvious that C0 = E is convex. Suppose that
Ck is convex for some k > 0. We show that Ck+1 is convex for the same k. Let z1, z2 ∈ Ck+1 and
z = tz1 + (1 − t)z2, where t ∈ (0, 1). It follows that

〈xk − z1, JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(z1) + ρ2h(Axk) − λ2ρ2h(Az1)

>
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk),

and

〈xk − z2, JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(z2) + ρ2h(Axk) − λ2ρ2h(Az2)

>
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk).

These two inequalities imply that

〈xk − z1, JExk − JEyk〉 >
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk),

− ρ1f(xk) + λ1ρ1f(z1) − ρ2h(Axk) + λ2ρ2h(Az1)
(3.1)

and

〈xk − z2, JExk − JEyk〉 >
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk)

− ρ1f(xk) + λ1ρ1f(z2) − ρ2h(Axk) + λ2ρ2h(Az2).
(3.2)

Now, from inequalities (3.1) and (3.2) and the convexity of f and h, we have

〈xk − z, JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(z) + ρ2h(Axk) − λ2ρ2h(Az)
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= 〈txk + (1 − t)xk − (tz1 + (1 − t)z2), JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(z) + ρ2h(Axk) − λ2ρ2h(Az)

= t〈xk − z1, JExk − JEyk〉+ (1 − t)〈xk − z2, JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(z) + ρ2h(Axk) − λ2ρ2h(Az)

> t

(
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk) − ρ1f(xk) + λ1ρ1f(z1) − ρ2h(Axk) + λ2ρ2h(Az1)

)
+ (1 − t)

(
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk)

− ρ1f(xk) + λ1ρ1f(z2) − ρ2h(Axk) + λ2ρ2h(Az2)

)
+ ρ1f(xk) − λ1ρ1f(z) + ρ2h(Axk) − λ2ρ2h(Az)

=
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk)

+ λ1ρ1(tf(z1) + (1 − t)f(z2)) + λ2ρ2(th(Az1) + (1 − t)h(Az2)) − λ1ρ1f(z) − λ2ρ2h(Az)

>
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk) + λ1ρ1f(z) + λ2ρ2h(Az) − λ1ρ1f(z) − λ2ρ2h(Az)

=
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk).

Therefore,

〈xk − z, JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(z) + ρ2h(Axk) − λ2ρ2h(Az)

>
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk),∀z ∈ Ck.

Then we obtain that z ∈ Ck+1. Hence, Ck+1 is convex. Thus, by induction, Cn is convex for all n > 0.

Step 3. We show that Cn is closed for each n > 0. We proceed by induction. Since C0 = E, C0 is closed.
Suppose that Ck is closed for some k > 0. We show that Ck+1 is also closed for the same k. Let {zm} be
a sequence in Ck+1 such that zm → z as m → +∞. Since Ck+1 ⊂ Ck and Ck is closed, z ∈ Ck. We show
that z ∈ Ck+1. Note that zm ∈ Ck+1 implies that

〈xk − zm, JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(zm) + ρ2h(Axk) − λ2ρ2h(Azm)

>
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk).

(3.3)

On the other hand, since A is continuous and f and h are lower semicontinuous, we have

−f(z) > − lim inf
m−→+∞ f(zm) = lim sup

m→∞ −f(zm)

and
−h(Az) > − lim inf

m→+∞h(Azm) = lim sup
m→∞ −h(Azm).

Thus, taking lim sup as m → +∞ on both sides of (3.3), we get z ∈ Ck+1. Therefore, Cn is closed for all
n > 0. Moreover, the fact that Cn is also convex implies that it is weakly closed for all n > 0.

Step 4. We show that Ω ⊂ Cn for each n > 0. It is obvious that Ω ⊂ C0 = E. Suppose that Ω ⊂ Ck for
some k > 0. For any z ∈ Ω ⊂ Ck, the definition of S and T imply that

〈xk − z, JExk − JESxk〉+ ρ1f(xk) − λ1ρ1f(z) >
1 − λ1

2
Gf(xk,Sxk), (3.4)

and

〈Axk −Az, JFAxk − JFTAxk〉+ ρ2h(Axk) − λ2ρ2h(Az) >
1 − λ2

2
Gh(Axk, TAxk). (3.5)
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Furthermore, from (3.4) and (3.5), we have

〈xk − z, JExk − JEyk〉+ ρ1f(xk) − λ1ρ1f(z) + ρ2h(Axk) − λ2ρ2h(Az)

= 〈xk − z, JExk − JESxk +A?(JFAxk − JFTAxk)〉+ ρ1f(xk) − λ1ρ1f(z) + ρ2h(Axk) − λ2ρ2h(Az)

= 〈xk − z, JExk − JESxk〉+ ρ1f(xk) − λ1ρ1f(z) + 〈xk − z,A?(JFAxk − JFTAxk)〉+ ρ2h(Axk) − λ2ρ2h(Az)

= 〈xk − z, JExk − JESxk〉+ ρ1f(xk) − λ1ρ1f(z) + 〈Axk −Az, JFAxk − JFTAxk〉+ ρ2h(Axk) − λ2ρ2h(Az)

>
1 − λ1

2
Gf(xk,Sxk) +

1 − λ2

2
Gh(Axk, TAxk),

which implies that z ∈ Ck+1. This shows that Ω ⊂ Ck+1 and hence Ω ⊂ Cn for each n > 0.

Step 5. We show that the sequence {xn} is bounded and ||xn+1 − xn||→ 0 as n→ +∞. Since xn = ΠfCnx0
and Ω ⊂ Cn, for all y ∈ Ω, it follows from Lemma 2.6 that

Gf(xn, x0) = Gf(Π
f
Cn
x0, x0) 6 Gf(y, x0) −Gf(y, xn) + 2ρ1f(y)

= Gf(y, x0) −φ(y, xn) 6 Gf(y, x0), ∀y ∈ Cn.

This implies that the sequence {Gf(xn, x0)} is bounded. Then, it follows from (2.3) that the sequence {xn}

is also bounded. In addition, from Lemma 2.6, we obtain that

Gf(xn, x0) − 2ρ1f(xn+1) 6 Gf(xn+1, x0) −Gf(xn+1, xn) = Gf(xn+1, x0) −φ(xn+1, xn) − 2ρ1f(xn+1),

which implies that
Gf(xn, x0) 6 Gf(xn+1, x0), ∀n > 0.

Hence, {Gf(xn, x0)} is increasing and so lim
n→+∞Gf(xn, x0) exists.

Furthermore, from Lemma 2.6, we get

Gf(xn+1, xn) = Gf(xn+1,ΠCnx0) 6 Gf(xn+1, x0) −Gf(xn, x0) + 2ρ1f(xn+1),

which implies that

Gf(xn+1, xn) − 2ρ1f(xn+1) 6 Gf(xn+1, x0) −Gf(xn, x0)→ 0, as n→ +∞.

Therefore, by Lemma 2.5, we get that

||xn+1 − xn||→ 0 as n→ +∞. (3.6)

Step 6. We show that xn → x? as n → +∞, where x? = ΠfΩx0. In fact, since {xn} is bounded and E is
reflexive, there exists a subsequence {xni} of {xn} such that xni ⇀ x as i → +∞. Since Cni is weakly
closed, we get x ∈ Cni for all i > 1. It follows from Lemma 2.6 that

Gf(xni , x0) = Gf(Π
f
Cni
x0, x0) 6 Gf(x, x0) −Gf(x, xni) + 2ρ1f(x) = Gf(x, x0) −φ(x, xni) 6 Gf(x, x0). (3.7)

On the other hand, from the weak lower semicontinuity of the norm and f together with inequality (3.7),
we have

φ(x, x0) = ||x||2 − 2〈x, JEx0〉+ ||x0||
2

6 lim inf
i→+∞ (||xni ||

2 − 2〈xni , JEx0〉+ ||x0||
2)

= lim inf
i→+∞ φ(xni , x0) 6 lim sup

i→+∞ φ(xni , x0)

= lim sup
i→+∞ (Gf(xni , x0) − 2ρ1f(xni))
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6 lim sup
i→+∞ (Gf(xni , x0) + lim sup

i→+∞ (−2ρ1f(xni))

6 Gf(x, x0) − 2ρ1 lim inf
i→+∞ f(xni)

6 Gf(x, x0) − 2ρ1f(x) = φ(x, x0),

which implies that

lim
i→+∞φ(xni , x0) = φ(x, x0). (3.8)

Hence, we have ||xni || → ||x|| as i → +∞. Then by the Kadec-Klee property of E, we obtain xni → x as
i→ +∞.

Moreover, the weak lower semicontinuity of f together with (3.7) and (3.8) yield

2ρ1f(x) 6 lim inf
i→+∞ 2ρ1f(xni) 6 lim sup

i→+∞ 2ρ1f(xni) = lim sup
i→+∞ (Gf(xn, x0) −φ(xn, x0))

6 lim sup
i→+∞ Gf(xni , x0) + lim sup

i→+∞ (−φ(xni , x0))

= lim sup
i→+∞ Gf(xni , x0) − lim inf

i→+∞ φ(xni , x0)

6 Gf(x, x0) −φ(x, x0) = 2ρ1f(x).

Hence, we obtain

f(xni)→ f(x) as i→ +∞. (3.9)

Since, Axni → Ax as i→ +∞, one can also easily show that

h(Axni)→ h(Ax) as i→ +∞. (3.10)

Furthermore, the fact that xni+1 = ΠfCni+1
x0 ∈ Cni+1 implies

1 − λ1

2

[
Gf(xni ,Sxni) − 2ρ1f(xni)

]
+

1 − λ2

2

[
Gh(Axni , TAxni) − 2ρ2h(Axni)

]
=

1 − λ1

2
Gf(xni ,Sxni) +

1 − λ2

2
Gh(Axni , TAxni) − (1 − λ1)ρ1f(xni) − (1 − λ2)ρ2h(Axni)

6 〈xni − xni+1, JExni − JEyni〉+ ρ1f(xni) − λ1ρ1f(xni+1) + ρ2h(Axni) − λ2ρ2h(Axni+1)

− (1 − λ1)ρ1f(xni) − (1 − λ2)ρ2h(Axni)

= 〈xni − xni+1, JExni − JEyni〉+ λ1ρ1f(xni) − λ1ρ1f(xni+1) + λ2ρ2h(Axni) − λ2ρ2h(Axni+1).

This together with (3.6), (3.9), and (3.10) imply that

Gf(xni ,Sxni) − 2ρ1f(xni)→ 0 and Gh(Axni , TAxni) − 2ρ2h(Axni)→ 0 as i→ +∞.

In view of Lemma 2.5, we arrive at

||Sxni − xni ||→ 0 and ||TAxni −Axni ||→ 0. (3.11)

Now, the fact that xni → x and Axni → Ax as i→ +∞, and

||Sxni − x|| 6 ||Sxni − xni ||+ ||xni − x||, and ||TAxni −Ax|| 6 ||TAxni −Axni ||+ ||Axni −Ax||,

with inequality (3.11), we obtain that

Sxni → x and TAxni → Ax as i→ +∞.
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Thus, from the closedness of S and T , we get x = Sx, that is, x ∈ F(S) and Ax = TAx and hence Ax ∈ F(T).
Therefore, x ∈ Ω. Finally, we show that x = x∗ = ΠfΩx0. Indeed, we obtain from xni = Π

f
Cni
x0 that

〈xni − y, JEx0 − JExni〉+ ρ1f(y) − ρ1f(xni) > 0, ∀y ∈ Cni .

In particular, we have

〈xni −ω, JEx0 − JExni〉+ ρ1f(ω) − ρ1f(xni) > 0, ∀ω ∈ Ω. (3.12)

Taking the limit as i→ +∞ in (3.12), we obtain that

〈x−ω, JEx0 − JEx〉+ ρ1f(ω) − ρ1f(x) > 0, ∀ω ∈ Ω.

Hence, we obtain from Lemma 2.4 that x = ΠfΩx0. Since {xni} is arbitrary subsequence of {xn}, we
conclude that xn → x = x∗ = ΠfΩx0. This completes the proof.

Corollary 3.2. Assume that conditions C1,C4, and C5 hold. Let h : F −→ R be convex, lower semicontinuous
functional bounded from below. Let S : E −→ E be a closed λ1-strict quasi-φ-pseudocontractive mapping, and
T : F −→ F be a closed λ2-strict quasi-Gh-pseudocontractive mapping. Let ρ > 0 and C0 = E. For any given
x0 ∈ C0, let {xn} be a sequence generated by

yn = J−1
E [JESxn −A?(JFAxn − JFTAxn)],

Cn+1 =

{
z ∈ Cn : 〈xn − z, JExn − JEyn〉+ ρh(Axn) − λ2ρh(Az)

> 1−λ1
2 φ(xn,Sxn) + 1−λ2

2 Gh(Axn, TAxn)
}

,

xn+1 = ΠCn+1x0, ∀n > 0,

where ΠCn+1 is the generalized projection of E onto Cn+1 for all n > 0. Then, the sequence {xn} converges strongly
to x? ∈ Ω, where x? = ΠΩx0.

Proof. The conclusion follows from Theorem 3.1 with f = 0.

In Theorem 3.1, if we take h = f = 0, we obtain the following corollary.

Corollary 3.3. Assume that conditions C1,C4, and C5 hold. Let S : E −→ E be a closed λ1-strict quasi-φ-
pseudocontractive mapping and T : F −→ F be a closed λ2-strict quasi-φ-pseudocontractive mapping. Let C0 = E

and for any given x0 ∈ C0, let {xn} be a sequence generated by
yn = J−1

E [JESxn −A?(JFAxn − JFTAxn)],

Cn+1 =

{
z ∈ Cn : 〈xn − z, JExn − JEyn〉 > 1−λ1

2 φ(xn,Sxn) + 1−λ2
2 φ(Axn, TAxn)

}
,

xn+1 = ΠCn+1x0, ∀n > 0,

where ΠCn+1 is the generalized projection of E onto Cn+1 for all n > 0. Then, the sequence {xn} converges strongly
to x? ∈ Ω, where x? = ΠΩx0.

Corollary 3.4. Assume that conditions C1,C2, and C4-C6 hold. Let S : E −→ E and T : F −→ F be closed 0-strict
quasi-Gf-pseudocontractive and 0-strict quasi-Gh-pseudocontractive mappings, respectively. Let C0 = E and for
any given x0 ∈ E, let {xn} be a sequence generated by
yn = J−1

E [JESxn −A?(JFAxn − JFTAxn)],

Cn+1 =

{
z ∈ Cn : 〈xn − z, JExn − JEyn〉+ ρ1f(xn) + ρ2h(Axn) > 1

2Gf(xn,Sxn) + 1
2Gh(Axn, TAxn)

}
,

xn+1 = ΠfCn+1
x0, ∀n > 0,

where ΠfCn+1
is the generalized f-projection of E onto Cn+1 for all n > 0. Then, the sequence {xn} converges

strongly to x? ∈ Ω, where x? = ΠfΩx0.
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Proof. The conclusion follows from Theorem 3.1 with λ1 = λ2 = 0.

In Corollary 3.4, if we take h = f = 0, we obtain the following corollary.

Corollary 3.5. Assume that conditions C1,C4, and C5 hold. Let S : E −→ E and T : F −→ F be closed quasi-φ-
nonexpansive mappings. Let C0 = E and for any given x0 ∈ E, let {xn} be a sequence generated by

yn = J−1
E [JESxn −A?(JFAxn − JFTAxn)],

Cn+1 =

{
z ∈ Cn : 〈xn − z, JExn − JEyn〉 > 1

2φ(xn,Sxn) + 1
2φ(Axn, TAxn)

}
,

xn+1 = ΠCn+1x0,∀n > 0,

where ΠCn+1 is the generalized projection of E onto Cn+1 for all n > 0. Then, the sequence {xn} converges strongly
to x? ∈ Ω, where x? = ΠΩx0.

We observe that in the definition of λ-strict quasi-Gf-pseudocontractive mapping, if we assume f(x?) =
0 for all x? ∈ F(T), then (2.6) reduces to

φ(x?, Tx) 6 φ(x?, x) + λGf(x, Tx)

and (2.7) reduces to

〈x− x?, Jx− JTx〉+ ρf(x) > 1 − λ

2
Gf(x, Tx), ∀x ∈ C, x? ∈ F(T).

4. Applications

4.1. Application to the split common null point problem
Let E be a reflexive, strictly convex, and smooth Banach space. Let M : E −→ 2E

?
be a maximal

monotone mapping such that M−1(0) is nonempty. For any r > 0, the generalized resolvent of M (see
[16, 35]) is defined by

Jrx = (JE + rM)−1JEx, ∀x ∈ E.

We remark that Jr is closed and quasi-φ-nonexpansive from E onto dom(M) with F(Jr) = M−1(0) 6= ∅,
where dom(M) is the domain of M (see, for example, [16]). Notice that quasi-φ-nonexpansive mapping is
a special case of λ-strict quasi-Gf-pseudocontractive mappings with λ = 0 and f = 0 (the zero function).

Let E and F be two real Banach spaces, and M : E → 2E
∗

and N : F → 2F
∗

be two maximal monotone
mappings such that M−1(0) 6= ∅ and N−1(0) 6= ∅, respectively. Let A : E −→ F be a bounded linear
operator. The so-called split common null point problem is to

find x∗ ∈ E such that 0 ∈Mx? and 0 ∈ N(Ax?). (4.1)

The following theorem approximates the solution of common null point problem given in (4.1).

Theorem 4.1. Let E and F be smooth and uniformly convex real Banach spaces. Let JE and JF be the normalized
duality mappings on E and F, respectively. Let M : E→ 2E

∗
and N : F→ 2F

∗
be two maximal monotone mappings.

Let Jr andQt be the generalized resolvents of M for r > 0 and N for t > 0, respectively. LetA : E −→ F be a bounded
linear operator with the adjoint operator A?. Suppose that Ω2 = {x? ∈ E : x? ∈M−1(0) and Ax? ∈ N−1(0)} 6= ∅.
Let C0 = E and for any given x0 ∈ E, let {xn} be a sequence generated by

yn = J−1
E [JEJrxn −A?(JFAxn − JFQtAxn)],

Cn+1 =

{
z ∈ Cn : 〈xn − z, JExn − JEyn〉 > 1

2φ(xn, Jrxn) + 1
2φ(Axn,QtAxn)

}
,

xn+1 = ΠCn+1x0,∀n > 0,

where ΠCn+1 is the generalized projection of E onto Cn+1 for all n > 0. Then, the sequence {xn} converges strongly
to x? ∈ Ω2, where x? = ΠΩ2x0.

Proof. Since Jr and Qt are both closed and 0-strict quasi-G0 pseudocontractive mappings and F(Jr) =
M−1(0), F(Qt) = N−1(0), the conclusion follows from Theorem 3.1.
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4.2. Application to the split quasi-inclusion problem
Let E be a reflexive real Banach space with E∗ as its dual space. Let M : E → 2E

∗
be a maximal

monotone mapping. Then the resolvent ResλM : E→ E of M for λ > 0, is defined by

ResλM = (JE + λM)−1 ◦ JE,

where JE denotes the normalized duality mapping on E. The mapping M is called Bregman inverse
strongly monotone if for any x,y ∈ E and each u ∈Mx, v ∈My, we have

〈u− v, J∗E(JE(x) − u) − J
∗
E(JE(y) − v)〉 > 0.

For any operator M : E→ E∗, the anti-resolvent Mλ : E→ E of M, for λ > 0, is defined by

Mλ = J∗E ◦ (JE − λM).

We have the following lemma due to Tang et al. [38].

Lemma 4.2 ([38]). Let E be smooth, strictly convex and reflexive real Banach spaces. Let M1 : E → E∗ be a
Bregman inverse strongly monotone mapping and M2 : E → 2E

∗
be a maximal monotone mapping. Define a

mapping Tλ by Tλx := ResλM2 ◦M1λ(x) for x ∈ E and λ > 0 such that F(Tλ) is nonempty. Then, the following
holds:

(i) F(Tλ) = (M1 +M2)
−1(0);

(ii) Tλ is quasi φ-nonexpansive mapping.

Let E be smooth, strictly convex and reflexive real Banach spaces, and JE and JF are the duality
mappings on E and F, respectively. Let M1 : E −→ 2E

∗
and M2 : F −→ 2F

∗
be maximal monotone mappings

with the resolvent mappings ResrM1 for r > 0 and RestM2 for t > 0, respectively. Let B1 : E −→ E∗ and
B2 : F −→ F∗ be Bregman inverse strongly monotone mappings, A : E −→ F be a bounded linear mapping
with the adjoint operator A?. The so-called split quasi-inclusion problem is to find a point x? ∈ E such
that

0 ∈M1x
? +B1x

? and 0 ∈M2Ax
? +B2Ax

?. (4.2)

The following theorem approximates the solution of split quasi-inclusion problem given in (4.2).

Theorem 4.3. Let E and F be smooth and uniformly convex real Banach spaces. Let JE and JF be the normalized
duality mappings on E and F, respectively. Let M1 : E −→ 2E

∗
and M2 : F −→ 2F

∗
be maximal monotone

mappings. Let B1 : E −→ E∗ and B2 : F −→ F∗ be Bregman inverse strongly monotone mappings, A : E −→ F be
a bounded linear operator with adjoint A?. Let Tλx := ResλM1 ◦ J∗E(JE − λB1)(x) for x ∈ E and λ > 0 and Srx :=
ResrM2 ◦ J∗F(JF − rB2)(x) for x ∈ F and r > 0. Suppose that Ω3 = {x? ∈ E : x? ∈ (M1 + B1)

−1(0) and Ax? ∈
(M2 +B2)

−1 (0)} 6= ∅. Let C0 = E and for any given x0 ∈ E, let {xn} be a sequence generated by
yn = J−1

E [JETλxn −A?(JFAxn − JFSrAxn)],

Cn+1 =

{
z ∈ Cn : 〈xn − z, JExn − JEyn〉 > 1

2φ(xn, Tλxn) + 1
2φ(Axn,SrAxn)

}
,

xn+1 = ΠCn+1x0, ∀n > 0,

where ΠCn+1 is the generalized projection of E onto Cn+1 for all n > 0. Then the sequence {xn} converges strongly
to x? ∈ Ω3, where x? = ΠΩ3x0 .

Proof. Note that by Lemma 4.2, we have

F (Tλ) = (M1 +B1)
−1(0) and F (Sr) = (M2 +B2)

−1 (0).

Moreover, we observe that Tλ and Sr are quasi-φ-nonexpansive mappings and hence they are 0-strict
quasi-G0-pseudocontractive mappings. Therefore, the conclusion follows from Theorem 3.1.
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5. Numerical example

Example 5.1. Let H1 = R and H2 = R2. Let S : H1 −→ H1, f : H1 −→ [0,+∞), T : H2 −→ H2 and
h : H2 −→ [0,+∞) be defined by

S(x1) = 3x1, f(x1) =
8
ρ1
x2

1, T
(
x1
x2

)
=

(
3x1
0

)
, h

(
x1
x2

)
=

8
ρ2
x2

1.

Let A : R→ R2 be a bounded linear mapping defined by

A =

(
1
1

)
.

Then, it is easy to see that A? =
(
1 1

)
, S and T are 1

2 -quasi-Gf-pseudocontractive and 1
2 -quasi-Gh-

pseudocontractive mappings, respectively. It is also easy to observe that 0 ∈ Ω = {x? ∈ F(S) : Ax? ∈ F(T)}.

For any given x0 ∈ C0 = R, the sequence {xn} generated by (3.1) reduces to:

yn = 4xn, Cn+1 =
{
z ∈ Cn : 3|z||xn|+ 13x2

n − 8z2 >
41
4
x2
n

}
, xn+1 = PfCn+1

x0,∀n > 0.

The numerical experiments were carried out using MATLAB R2020a version and we obtain the following
table and graph.

Table 1: Some values of xn in the experiment.
Number of iteration=n Values of xn

0 rand(1)=x0
10 4.2251e− 04
20 1.3675e− 07
30 3.1706e− 10
40 8.6405e− 13
50 4.9055e− 16
60 3.3583e− 19
70 1.1166e− 21
80 1.1535e− 25
90 3.0344e− 27
100 2.7840e− 30
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6. Conclusion

In this paper, an iterative algorithm for approximating the solution of the split common fixed point
problem involving λ-strict quasi-Gf-pseudocontractive mappings is constructed in the setting of two Ba-
nach spaces using functional Gf(., .). Strong convergence results of the proposed algorithm to a solution
of the split common fixed point problem is established. Furthermore, some applications of the proposed
method and numerical experiments are presented. The results obtained in this paper extend, unify and
complement many of the results in the literature. For instance, the results in this paper enhances and
generalizes the work of Takahashi and Yao [36] to Banach spaces more general than Hilbert spaces. In
addition, the results in this paper improve and generalize the work of Liu et al. [19] in the sense that
the results in this paper are valid for the class of λ-strict quasi-Gf-pseudocontractive mappings which
properly includes the class of λ-strict quasi-φ-pseudocontractive mappings.
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