
 
 
 

 

 

 

 

  

Commuting Graphs on Dihedral Group 
 

T. Tamizh Chelvama, K. Selvakumar and S.  Raja 
 

Department of Mathematics, Manonmanian Sundaranar,  

University Tirunelveli   627 012, Tamil Nadu, India 

 
Tamche_ 59@yahoo.co.in,  selva_ 158@yahoo.co.in,  nellairajaa@yahoo.com  

 

Abstract 
 

Let Γ be a non-abelian  group  and  Ω ⊆ Γ.  The  commuting  graph C(Γ, Ω), has Ω 

as its vertex  set with  two distinct  elements  of Ω joined by an edge when they  

commute  in Γ.  In this  paper  we discuss certain properties  of  commuting  graphs  

constructured on the  dihedral  group D2n with respect  to some specific subsets.  

More specifically we obtain the chromatic  number  and clique number  of these 

commuting  graphs. 
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1  Introduction 
 

The study  of algebraic structures,  using the  properties  of graphs,  becomes an 

exciting research topic in the last twenty years, leading to many fascinating results 

and questions. For example, the study zero-divisor graphs, total  graph of 

commutative  rings  and  commuting  graph  of groups  has  attracted many 

researchers towards this dimension. One can refer [2, 3] for such studies.  The 

concept of non-commuting  graph has been studied in [1], where as the concept of 

commuting  graph  has  been  found  in [4]. For  basic  definitions  one can refer  [5, 

6]. For any integer n ≥ 3, the Dihedral  group 2n is given by D2n = <r,  s  :  s2  = 

rn = 1, rs = sr−1>. For  any  subset  Ω of D2n , the  commuting graph  C(D2n , 

Ω) has  Ω as its  vertex  set  with  two  distinct  vertices  in Ω are adjacent if they 

commute with each other  in D2n . 

The center of a group Γ is denoted by Z (Γ).  Let Ω be any nonempty subset of Γ.  

The  centralizer  of Ω in Γ is the  set of elements of Γ which commutes with every 

element of Ω and it is denoted  by CΩ (Γ). 

We consider simple graphs which are undirected, with no loops or multiple edges.  
For any graph  G, we denote  the  sets of the  vertices and  edges of G 
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by V (G) and E(G), respectively. The degree degG(v) of a vertex v in G is
the number of edges incident to v. The order of G is defined |V (G)| and its
maximum and minimum degrees will be denoted, respectively, by ∆(G) and
δ(G). A graph G is regular if the degrees of all vertices of G are the same. A
subset Ω of the vertices of G is called a clique if the induced subgraph of Ω is
a complete graph. The maximum size of a clique in a graph G is called the
clique number of G and denoted by ω(G). Let k > 0 be an integer. A k-vertex
coloring of a graph G is an assignment of k colors to the vertices of G such that
no two adjacent vertices have the same color. The chromatic number χ(G) of
a graph G, is the minimum k for which G has a k-vertex coloring. If u and v
are vertices in G, the d(u, v) denotes the length of the shortest path between
u and v. The largest distance between all pairs of the vertices of G is called
the diameter of G, and is denoted by diam(G). A graph G is defined to be
split if there is a partition V = S +K of its vertex set into a independent set
S and a complete set K.

2 Main Results

Throughout this section, n ≥ 3 is an integer and D2n =< r, s : s2 = rn = 1,
rs = sr−1 >, Ω1 = {r1, r2, . . . , rn} and Ω2 = {sr1, sr2, . . . , srn} are subsets
of D2n. In this section we obtain certain properties of the commuting graph
constructed on the dihedral group D2n. More specifically, we discuss properties
about commuting graphs constructed on D2n, with respect to Ω1 and Ω2.

Lemma 2.1. Let Ω be any subset of D2n and let G = C(D2n,Ω) be a com-
muting graph. Then for any a ∈ Ω, degG(a) = |CΩ(a)| − 1.

Proof. Let a ∈ Ω. Then a ∈ CΩ(a), CΩ(a) is the set of elements in Ω which
commutes with a and hence deg(a) = |CΩ(a)| − 1.

Lemma 2.2. Let n ≥ 3 be an even integer. Let G = C(D2n, D2n). Then
(i). degG(sri) = 3 for all i, 1 ≤ i ≤ n

(ii). degG(ri) =

{
2n− 1 if i = n, n

2

n− 1 otherwise

Proof. (i) Since CD2n(sri) = {e, r n
2 , sri, sr

n
2

+i} for all i, 1 ≤ i ≤ n, we can see
that degG(sri) = 3 for all i, 1 ≤ i ≤ n.
(ii) Suppose i = n, n

2
. Then CD2n(ri) = D2n and so degG(ri) = 2n − 1. If

i 6= n, n
2
, then CD2n(ri) = {ri : 1 ≤ i ≤ n} and so degG(ri) = n− 1.

Lemma 2.3. Let n ≥ 3 be an odd integer. Let G = C(D2n, D2n). Then
(i). degG(sri) = 1 for all i, 1 ≤ i ≤ n

(ii). degG(ri) =

{
2n− 1 if i = n

n− 1 otherwise
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Proof. (i) Since CD2n(sri) = {e, sri} for all i, 1 ≤ i ≤ n, it follows that
degG(sri) = 1 for all i, 1 ≤ i ≤ n.
(ii) Suppose i = n. Then CD2n(ri) = D2n and so degG(ri) = 2n− 1. If i 6= n,
then CD2n(ri) = {ri : 1 ≤ i ≤ n} and so deg(ri) = n− 1.

Theorem 2.4. Let G = C(D2n,Ω) be a commuting graph, where Ω is a subset
of D2n and n ≥ 3. Then the following are true:
(i) If Ω is an abelian subgroup of D2n, then diam(G) = 1.
(ii) If Ω is a subgroup of D2n, then diam(G) = 2.
(iii) If Ω = D2n − Z(D2n), then diam(G) =∞.

Proof. (i) If Ω is an abelian subgroup of D2n, then G is a complete graph and
so diam(G) = 1.
(ii) Let Ω be a subgroup of D2n. Note that G is connected. Since Ω is not
abelian, xy 6= yx for some x, y ∈ Ω and so diam(G) ≥ 2. Since e ∈ Ω, x−e−y
is a path of length 2 and hence diam(G) = 2.
(iii) Let Ω = D2n−Z(D2n). Then G is disconnected and so diam(G) =∞.

In view of Lemma 2.4, we have following corollary.

Corollary 2.5. Let G = C(D2n,Ω), where Ω is a subset of D2n.
(i) If n is odd and Ω = {ri, srj : for any 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n}, then
diam(G) =∞.
(ii) If n is even and Ω = {ri, srj : for any 1 ≤ i ≤ n − 1 , i 6= n

2
and 1 ≤

j ≤ n}, then diam(G) =∞.

Theorem 2.6. Let n ≥ 3 be an integer and G = C(D2n,Ω), where Ω is a
subset of D2n and n ≥ 3. Then G = Kn if and only if Ω = Ω1.

Proof. Suppose Ω = {ri : 1 ≤ i ≤ n}. Then Ω is a cyclic subgroup of D2n

and so G is a complete graph on n vertices. Conversely, suppose G = Kn. By
Lemma 2.2 and Lemma 2.3, hence Ω = {r1, r2, . . . , rn}.

By Lemmas 2.2 and 2.3, in any commuting graph G = C(D2n,Ω), the
degree of vertices sri for 1 ≤ i ≤ n can be either 1 or 3. Hence from the above
Lemma 2.6, we have following corollary.

Corollary 2.7. Let n ≥ 3. Then there exists no subset Ω of D2n such that
C(D2n,Ω) is n regular.

Theorem 2.8. Let n ≥ 3 be an integer and C(D2n,Ω), where Ω is any
subset of D2n. If n is odd, then C(D2n,Ω) = K1, n if and only if Ω =
{e, sr1, sr2, . . . , srn}.

Proof. Suppose Ω = {e, sr1, sr2, . . . , srn}. Then CΩ(sri) = {e} and CΩ(e) = Ω
and so C(D2n,Ω) = K1, n. Conversely, suppose C(D2n,Ω) = K1, n. Then by
Lemma 2.3, Ω = {e, sr1, sr2, . . . , srn}.
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Corollary 2.9. Let n ≥ 3 be an odd integer and C(D2n, D2n). Then G is split
graph.

Proof. This proof follows from Theorem 2.6 and Theorem 2.8.

Theorem 2.10. For any integer n ≥ 2, let G = C(D2n, D2n). Then the

number of edges in G, ε(G) =

{
n(n+1)

2
if n is odd

n(n+4)
2

otherwise.

Proof. Note that Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = D2n.
Case 1. Suppose n is even. Clearly the subgraph induced by Ω1 is complete
and the subgraph induced by Ω2 is n

2
K2. Therefore the number of edges in

G is sum of the number of edges in < Ω1 > , the number edges in < Ω2 >
and the number of edges from {rn, r

n
2 } to set of vertices in Ω2. Thus ε(G) =

n(n−1)
2

+ n
2

+ 2n = n(n+4)
2

.
Case 2. Suppose n is odd. In this case, the subgraph induced by Ω1 is
complete and the subgraph induced by Ω2 has no edges. Therefore the number
of edges in G is sum of the number of edges in < Ω1 > and the number of
edges from rn to set of vertices in Ω2. Thus ε(G) = n(n−1)

2
+ n = n(n+1)

2
.

Theorem 2.11. Let n ≥ 3 be any integer. Then there exists no subset Ω of
D2n such that G = C(D2n,Ω) = C4.

Proof. Suppose C(D2n,Ω) = C4 for some subset Ω of D2n. If n is odd, then by
Lemma 2.3, sri /∈ Ω for all i, 1 ≤ i ≤ n and so Ω ⊂ Ω1. From this C(D2n,Ω)
is an induced subgraph of C(D2n,Ω1),. Since C(D2n,Ω1) is complete graph,
C(D2n,Ω) is complete, a contradiction.
Assume that n is even. Then Ω contains at least two vertices from Ω2, otherwise
it will contain at least three vertices from Ω1 and those vertices will induce at
least K3, a contradiction. Suppose Ω ⊂ Ω2. Then every vertex in C(D2n,Ω)
is of degree 1 , a contradiction. Suppose Ω contains three vertices from Ω2.
Then Ω contains one vertex from Ω1 and it could be either e ∈ Ω or r

n
2 ∈ Ω

and not both. In both the cases the degree of that vertex is 3 and hence we
get a contradiction. Thus Ω contains two vertices from Ω2 and another two
vertices from Ω1. From this we have Ω = {e, r n

2 , sri, srj} with i 6= j. From
this we get that degG(e) = degG(r

n
2 ) = 3, a contradiction.

As prove above, one can prove the following:

Lemma 2.12. Let n ≥ 3 be any integer. Then there exists no subset Ω of
D2n such that C(D2n,Ω) = P4.

Theorem 2.13. Let n ≥ 2 be any integer and let G = C(D2n, D2n). Then
ω(G) = χ(G) = n.
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Proof. Consider Ω1 = {r1, r2, . . . , rn} ⊂ D2n. As observed earlier, C(D2n,Ω1)
is a maximal complete subgraph of G. Hence ω(G) = n.
Case 1. If n is even, then one needs n colors to color < Ω1 >⊂ G and
so χ(G) ≥ n. Note that e and r

n
2 are adjacent to all vertices and so colors

assigned to theses vertices cannot be assigned to any other vertex. e given to
any other vertices. The remaining n − 2 vertices in Ω1 are not adjacent to
any of the remaining vertices in C(D2n, D2n)−Ω1 and so these vertices can be
colored one of the remaining n− 2 colors. Hence χ(C(G,Ω)) = n.
Case 2. When n is odd, one can use the colors of ri except e = rn to the
vertices in Ω2 and hence the proof follows.

Theorem 2.14. Let n ≥ 2 be any even integer. Then G = C(D2n, D2n) has a
perfect matching.

Proof. Since n is even as observed in the proof of Lemma 2.10, 〈Ω1〉 is a
complete subgraph ofG and 〈Ω2〉 = n

2
K2, where Ω1 = {r1, r2, . . . , rn} and Ω2 =

{sr1, sr2, . . . , srn}. Since n is even, 〈Ω1〉 and 〈Ω2〉 have perfect matchings.

Corollary 2.15. Let n ≥ 2 be any even integer and n = 2k. Then number
of perfects matchings in G = C(D2n, D2n) is n!

2nk!
+ 1.

Proof. As in the proof of Lemma 2.14, the number of perfect matchings in 〈Ω〉
is n!

2nk!
and the number of perfect matchings in 〈Y 〉 is 1. Hence the number of

perfect matching in G is n!
2nk!

+ 1.
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