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Abstract
This paper aims to introduce and study fuzzy hypersoft contra open, fuzzy hypersoft contra semi open, fuzzy hypersoft

contra closed, and fuzzy hypersoft contra semi closed maps in fuzzy hypersoft topological spaces. Basic properties of fuzzy
hypersoft contra open, contra semi open, contra closed and contra semi closed maps are analyzed with examples. Also, the
relation between fuzzy hypersoft contra open maps, contra semi open maps, contra closed maps and contra semi closed maps is
discussed. It is extended to fuzzy hypersoft contra homeomorphism, contra semi homeomorphism, contra C-homeomorphism
and its related characteristics are also investigated. The fuzzy hypersoft set measure Hamming distance can be applied in real-
world decision-making problems containing more uncertain and inadequate data. By applying Hamming distance between the
Covid-19 patients and the other patients, a better decision can be taken in the Covid-19 diagnosis. This paper proposes a method
to diagnose Covid-19 using Hamming distance of fuzzy hypersoft sets. The association between the patients and the symptoms
is formulated as fuzzy hypersoft sets in which the Hamming distance measure is applied to decide on Covid-19 diagnosis.
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1. Introduction

The real-world decision-making problems in medical diagnosis, engineering, economics, management,
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computer science, artificial intelligence, social sciences, environmental science and sociology contain more
uncertain and inadequate data. Traditional mathematical methods cannot deal with these kinds of prob-
lems due to imprecise data. To deal with the problems with uncertainty, Zadeh [14] introduced the fuzzy
set in 1965 which contains the membership value in [0,1]. A fuzzy set is a set where each element of
the universe belongs to it but with some value or degree of belongingness which lies between 0 and 1
and such values are called the membership value of an element in that set. The topological structure
on fuzzy set was undertaken by Chang [5] as fuzzy topological space. Molodstov [8] introduced a new
mathematical tool, soft set theory in 1999 to deal with uncertainties in which a soft set is a collection of
approximate descriptions of an object. A soft set is a parameterized family of subsets where parameters
are the properties, attributes or characteristics of the objects. The soft set theory has several applications
in different fields such as decision-making, optimization, forecasting, data analysis etc. Shabir and Naz
[11] presented soft topological spaces.

Smarandache [12] extended the notion of a soft set to a hypersoft set and then to plithogenic set by
replacing a function with a multi-argument function described in the Cartesian product with a different
set of attributes. This new concept of hypersoft set is more flexible than the soft set and more suitable
in decision-making issues involving a different kinds of attributes. Saeed et al. [9, 10] studied the fun-
damentals of hypersoft set theory by introducing aggregate operators, relations,functionsn, matrices and
operations on hypersoft matrices. Abbas et al. [1] defined the basic operations on hypersoft sets and
hypersoft point in the fuzzy, intuitionistic and neutrosophic environments. Ajay and Charisma [3] intro-
duced fuzzy hypersoft topology, intuitionistic hypersoft topology and neutrosophic hypersoft topology.
Neutrosophic hypersoft topology is the generalized framework which generalizes intuitionistic hypersoft
topology and fuzzy hypersoft topology. Ajay et al. [4] defined fuzzy hypersoft semi-open sets and devel-
oped an application in multiattribute group decision-making. The concept of contra continuous function
in general topology was introduced by Dontchev [6] in 1996. Vadivel et al. [13] introduced generalized
fuzzy contra e-continuous functions in fuzzy topological spaces. Ahsan et al. [2] studied a theoretical
and analytical approach for fundamental framework of composite mappings on fuzzy hypersoft classes.
Kacprzyk [7] proposed various distance measures like Hamming, Euclidean, normalized Hamming and
normalized Euclidean distances for fuzzy sets.

In this paper, we develop the concept of fuzzy hypersoft contra open mapping, contra semi open
mapping, contra closed mapping and contra semi closed mapping in fuzzy hypersoft topological spaces
and some of their basic properties are analyzed with examples. Added to that, we introduce and dis-
cuss some characterizations and properties of fuzzy hypersoft contra homeomorphisms, fuzzy hypersoft
contra semi homeomorphisms and fuzzy hypersoft contra C-homeomorphisms. Also, an application in
Covid-19 diagnosis is explained with the example using Hamming distance by formulating the associ-
ation between the patients and symptoms as fuzzy hypersoft sets. The Hamming distance is used to
measure the uncertainty in decision making problems.

2. Preliminaries

Definition 2.1 ([14]). Let M be an initial universe. A function λ from M into the unit interval I is called a
fuzzy set in M. For every m ∈ M, λ(m) ∈ I is called the grade of membership of m in λ. Some authors
say that λ is a fuzzy subset of M instead of saying that λ is a fuzzy set in M. The class of all fuzzy sets
from M into the closed unit interval I will be denoted by IM.

Definition 2.2 ([8]). Let M be an initial universe, Q be a set of parameters and P(M) be the power set of
M. A pair (H̃,Q) is called the a soft set over M where H̃ is a mapping H̃ : Q→ P(M). In other words, the
soft set is a parametrized family of subsets of the set M.

Definition 2.3 ([12]). Let M be an initial universe, and P(M) be the power set of M, and q1,q2,q3, . . . ,qn
for n > 1, be n distinct attributes, whose corresponding attribute values are respectively the sets
Q1,Q2, . . . ,Qn with Qi ∩ Qj = ∅, for i 6= j and i, j ∈ {1, 2, . . . ,n}. Consider the cartesian product
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Q1 ×Q2 × · · · ×Qn. Then the pair (H̃, Q1 ×Q2 × · · · ×Qn), where H̃ : Q1 ×Q2 × · · · ×Qn → P(M)
is called a hypersoft set over M.

Definition 2.4 ([1]). Let M be an initial universal set and Q1,Q2, . . . ,Qn be pairwise disjoint sets of
parameters. Let P(M) be the set of all fuzzy sets of M. Let Ei be the nonempty subset of the pair Qi
for each i = 1, 2, . . . ,n. Consider the cartesian products E1 × E2 × · · · × En and Q1 ×Q2 × · · · ×Qn. A
fuzzy hypersoft set (briefly, FHSs) over M is defined as the pair (H̃,E1 × E2 × · · · × En), where H̃ : E1 ×
E2 × · · · × En → P(M) and H̃(E1 × E2 × · · · × En) = {(q, 〈m,µH̃(q)(m)〉 : m ∈M) : q ∈ E1 × E2 × · · · × En ⊆
Q1 ×Q2 × · · · ×Qn}, where µH̃(q)(m) is the membership value such that µH̃(q)(m) ∈ [0, 1].

Definition 2.5 ([1]). Let M be an universal set and (H̃,∧1) and (G̃,∧2) be two FHSs’s over M. Then (H̃,∧1)
is the fuzzy hypersoft subset of (G̃,∧2) if µH̃(q)(m) 6 µG̃(q)(m). It is denoted by (H̃,∧1) ⊆ (G̃,∧2).

Definition 2.6 ([1]). Let M be an universal set and (H̃,∧1) and (G̃,∧2) be FHSs’s over M. (H̃,∧1) is equal
to (G̃,∧1) if µH̃(q)(m) = µG̃(q)(m).

Definition 2.7 ([1]). A FHSs (H̃,∧) over the universe set M is said to be

(i) null fuzzy hypersoft set if µH̃(q)(m) = 0, ∀q ∈ ∧ and m ∈M, it is denoted by 0̃(M,Q);
(ii) absolute fuzzy hypersoft set if µH̃(q)(m) = 1 ∀q ∈ ∧ and m ∈M, it is denoted by 1̃(M,Q).

Clearly, 0̃c(M,Q) = 1̃(M,Q) and 1̃c(M,Q) = 0̃(M,Q).

Definition 2.8 ([1]). Let M be an universal set and (H̃,∧) be FHSs over M. (H̃,∧)C is the complement of
(H̃,∧) if µC

H̃(q)
(m) = 1̃c(M,Q) − µH̃(q)(m), where ∀q ∈ ∧ and ∀m ∈M. It is clear that ((H̃,∧)C)C = (H̃,∧).

Definition 2.9 ([1, 3]). Let M be the universal set and (H̃,∧1) and (G̃,∧2) be FHSs’s over M.

(i) Extended union (H̃,∧1)∪ (G̃,∧2) is defined as

µ((H̃,∧1)∪ (G̃,∧2)) =


µH̃(q)(m), if q ∈ ∧1 −∧2,
µG̃(q)(m), if q ∈ ∧2 −∧1,
max{µH̃(q)(m),µG̃(q)(m)}, if q ∈ ∧1 ∩∧2.

(ii) Extended intersection (H̃,∧1)∩ (G̃,∧2) is defined as

µ((H̃,∧1)∩ (G̃,∧2)) =


µH̃(q)(m), if q ∈ ∧1 −∧2,
µG̃(q)(m), if q ∈ ∧2 −∧1,
min{µH̃(q)(m),µG̃(q)(m)}, if q ∈ ∧1 ∩∧2.

Definition 2.10 ([3]). Let (M,Q) be the family of all FHSs’s over the universe set M and τ ⊆ FHSs(M,Q).
Then τ is said to be a fuzzy hypersoft topology (briefly, FHSt) on M if

(i) 0̃(M,Q) and 1̃(M,Q) belong to τ;
(ii) the union of any number of FHSs’s in τ belongs to τ;

(iii) the intersection of finite number of FHSs’s in τ belongs to τ.

Then (M,Q, τ) is called a fuzzy hypersoft toplogical space (briefly, FHSts) over M. Each member of τ
is said to be fuzzy hypersoft open set (briefly, FHSos). A FHSs (H̃,∧) is called a fuzzy hypersoft closed
set (briefly, FHScs) if its complement (H̃,∧)C is FHSos.

Definition 2.11 ([3]). Let (M,Q, τ) be a FHSts over M and (H̃,∧) be a FHSs in M. Then,

(i) the fuzzy hypersoft interior (briefly, FHSint) of (H̃,∧) is defined as FHSint(H̃,∧) = ∪{(G̃,∧) :
(G̃,∧) ⊆ (H̃,∧), where (G̃,∧) is FHSos};
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(ii) the fuzzy hypersoft closure (briefly, FHScl) of (H̃,∧) is defined as FHScl(H̃,∧) = ∩{(G̃,∧) : (G̃,∧) ⊇
(H̃,∧), where (G̃,∧) is FHScs};

(iii) the fuzzy hypersoft semi interior (briefly, FHSSint) of (H̃,∧) is defined as FHSSint(H̃,∧) = ∪{(G̃,∧) :
(G̃,∧) ⊆ (H̃,∧), where (G̃,∧) is FHSSos};

(iv) the fuzzy hypersoft semi closure (briefly, FHSScl) of (H̃,∧) is defined as FHSScl(H̃,∧) = ∩{(G̃,∧) :
(G̃,∧) ⊇ (H̃,∧), where (G̃,∧) is FHSScs}.

Definition 2.12 ([4]). Let (M,Q, τ) be a FHSts over M and (H̃,∧) be a FHSs in M. Then, (H̃,∧) is called
the fuzzy hypersoft semiopen set (briefly, FHSSos) if (H̃,∧) ⊆ FHScl(int(H̃,∧)).

A FHSs (H̃,∧) is called a fuzzy hypersoft semiclosed set (briefly, FHSScs) if its complement (H̃,∧)c is
a FHSSos.

Definition 2.13 ([2]). Let (M,Q) and (N,R) be classes of FHSs’s over M and N with attributes Q and R,
respectively. Let η : M → N and ζ : Q → R be mappings. Then a FHS mappings k = (η, ζ) : (M,Q) →
(N,R) is defined as follows, for a FHSs (H̃,∧)A in (M,Q), f(H̃,∧)A is a FHSs in (N,R) obtained as follows,
for β ∈ ζ(Q) ⊆ R and n ∈ N, k(H̃,∧)A(β)(n) =

⋃
α∈ζ−1(β)

⋂
A,s∈η−1(n)

(α)µsk(H̃,∧)A is called a fuzzy

hypersoft image of a FHSs (H̃,∧). Hence ((H̃,∧)A, k(H̃,∧)A) ∈ k, where (H̃,∧)A ⊆ (M,Q), k(H̃,∧)A ⊆
(N,R).

Definition 2.14 ([2]). If k : (M,Q)→ (N,R) be a FHS mapping, then FHS class (M,Q) is called the domain
of k and the FHS class (G̃,∧) ∈ (N,R) : (G̃,∧) = k(H̃,∧)) for some (H̃,∧) ∈ (M,Q) is called the range of k.
The FHS class (N,R) is called co-domain of k.

Definition 2.15 ([2]). If k : (M,Q) → (N,R) be a FHS mapping and (G̃,∧)B, a FHSs in (N,R), where η :
M→ N, ζ : Q→ R and B ⊆ R, then k−1(G̃,∧)B is a FHSs in (M,Q) defined as follows, for α ∈ ζ−1(B) ⊆ Q
and m ∈M, k−1(G̃,∧)B(α)(m) = (ζ(α))µp(m)k−1(G̃,∧)B is called a FHS inverse image of (G̃,∧)B.

Definition 2.16 ([2]). Let k = (η, ζ) be a FHS mapping of a FHS class (M,Q) into a FHS class (N,R). Then
k is said to be a

(i) one-one (or injection) FHS mapping if for both η : M→ N and ζ : Q→ R are one-one;
(ii) onto (or surjection) FHS mapping if for both η : M→ N and ζ : Q→ R are onto.

If k is both one-one and onto, then k is called a one-one onto (or bijective) correspondance of FHSmapping.

Definition 2.17 ([2]). If k = (η, ζ) : (M,Q) → (N,R) and g = (m,n) : (N,R) → (O,S) are two FHS
mappings, then their composite g ◦ k is a FHS mapping of (M,Q) into (O,S) such that for every (H̃,∧)A ∈
(M,Q), (g ◦ k)(H̃,∧)A = g(k(H̃,∧)A). For β ∈ n(R) ⊆ N and p ∈ O, it is defined as g(k(H̃,∧)A(β)(p) =⋃
α∈n−1(β)

⋂
k(A),s∈m−1(p)

(α)µs.

Definition 2.18 ([2]). Let k = (η, ζ) be a FHS mapping, where η : M → M and ζ : Q → Q. Then k is said
to be a FHS identity mapping if for both η and ζ are identity mappings.

Definition 2.19 ([2]). A one-one onto FHS mapping k = (η, ζ) : (M,Q) → (N,R) is called FHS invertable
mapping. Its FHS inverse mapping is denoted by k−1 = (η−1, ζ−1) : (M,Q)→ (N,R).

Definition 2.20 ([7]). Consider two fuzzy sets H̃ and G̃ over the fuzzy initial universe M. The hamming

distance for these two sets are given by dH(H̃, G̃) =
n∑
i=1

|µiH − µiG|.

3. Fuzzy hypersoft contra open mapping

In this section, fuzzy hypersoft contra open maps are introduced and their characteristics are studied.

Definition 3.1. Consider any two FHSts (M,Q, τ1) and (N,R, τ2). A map k : (M,Q, τ1) → (N,R, τ2) is
called as fuzzy hypersoft:
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(i) continuous (in short, FHS continuous) if the inverse image of each FHSos in (N,R, τ2) is a FHSos in
(M,Q, τ1);

(ii) semi-continuous (in short, FHS semi continuous) if the inverse image of each FHSos in (N,R, τ2) is a
FHSSos in (M,Q, τ1).

Definition 3.2. A map k : (M,Q, τ1)→ (N,R, τ2) is called a fuzzy hypersoft irresolute map (in short, FHS
irresolute) if k−1(G̃,∧) is a FHSSos in (M,Q, τ1) for every FHSSos (G̃,∧) of (N,R, τ2).

Definition 3.3. A mapping k : (M,Q, τ1)→ (N,R, τ2) is called fuzzy hypersoft

(i) open (in short, FHS open) if the image of every FHSos of (M,Q, τ1) is FHSos in (N,R, τ2);
(ii) semi open (in short, FHS semi open) if the image of every FHSos of (M,Q, τ1) is FHSSos in (N,R, τ2).

Definition 3.4. A mapping k : (M,Q, τ1)→ (N,R, τ2) is called fuzzy hypersoft

(i) contra open (in short, FHS contra open) if the image of every FHSos of (M,Q, τ1) is FHScs in
(N,R, τ2);

(ii) contra semi open (in short, FHS contra semi open) if the image of every FHSos of (M,Q, τ1) is
FHSScs in (N,R, τ2).

Example 3.5. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be Q =
Q1 ×Q2 and R = Q ′1 ×Q ′2 respectively. The attributes are given as:

Q1 = {a1,a2,a3}, Q2 = {b1,b2}, Q ′1 = {c1, c2, c3}, Q ′2 = {d1,d2}.

Let (M,Q) and (N,R) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧3) and (H̃4,∧3)
over the universe M be

(H̃1,∧1) =

{
〈(a1,b1), {

m1
0.8 , m2

0.6 }〉,
〈(a2,b2), {m1

0.7 , m2
0.5 }〉

}
, (H̃2,∧2) =

{
〈(a1,b1), {

m1
0.2 , m2

0.3 }〉,
〈(a1,b2), {m1

0.5 , m2
0.4 }〉

}
,

(H̃3,∧3) =


〈(a1,b1), {

m1
0.2 , m2

0.3 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉,
〈(a1,b2), {m1

0.5 , m2
0.4 }〉

 , (H̃4,∧3) =


〈(a1,b1), {

m1
0.8 , m2

0.6 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉,
〈(a1,b2), {m1

0.5 , m2
0.4 }〉

 ,

τ1 = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧3), (H̃4,∧3)} is FHSts.
Let the FHSs ′s (G̃1,∧1), (G̃2,∧2), (G̃3,∧3) and (G̃4,∧3) over the universe N be

(G̃1,∧1) =

{
〈(c2,d1), {

n1
0.4 , n2

0.2 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉

}
, (G̃2,∧2) =

{
〈(c2,d1), {

n1
0.7 , n2

0.8 }〉,
〈(c2,d2), { n1

0.6 , n2
0.5 }〉

}
,

(G̃3,∧3) =


〈(c2,d1), {

n1
0.7 , n2

0.8 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉,

〈(c2,d2), { n1
0.6 , n2

0.5 }〉

 , (G̃4,∧3) =


〈(c2,d1), {

n1
0.4 , n2

0.2 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉,

〈(c2,d2), { n1
0.6 , n2

0.5 }〉

 ,

τ2 = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1), (G̃2,∧2), (G̃3,∧3), (G̃4,∧3)} is FHSts.
Let k = (η, ζ) : (M,Q)→ (N,R) be a FHS mapping as follows:

η(m1) = n2, η(m2) = n1,
ζ(a1,b1) = (c2,d1), ζ(a2,b1) = (c1,d2), ζ(a1,b2) = (c2,d2),
k(H̃1,∧1) = (G̃1,∧1)

c, k(H̃2,∧2) = (G̃2,∧2)
c,

k(H̃3,∧3) = (G̃3,∧3)
c, k(H̃4,∧3) = (G̃4,∧3)

c,

∴ k = (η, ζ) : (M,Q)→ (N,R) is FHS contra open.

Example 3.6. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be Q =
Q1 ×Q2 and R = Q ′1 ×Q ′2, respectively. The attributes are given as:
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Q1 = {a1,a2,a3}, Q2 = {b1,b2}, Q ′1 = {c1, c2, c3}, Q ′2 = {d1,d2}.

Let (M,Q) and (N,R) be the classes of FHS sets. Let the FHSs (H̃1,∧1) over the universe M be

(H̃1,∧1) =

{
〈(a1,b1), {

m1
0.5 , m2

0.2 }〉,
〈(a2,b1), {

m1
0.5 , m2

0.5 }〉

}
,

τ1 = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1)} is FHSts. Let the FHSs(G̃1,∧1), (G̃2,∧2), (G̃3,∧3), (G̃4,∧3), (G̃5,∧1) and
(G̃6,∧2) be defined as

(G̃1,∧1) =

{
〈(c2,d1), {

n1
0.2 , n2

0.4 }〉,
〈(c1,d2), { n1

0.3 , n2
0.5 }〉

}
, (G̃2,∧2) =

{
〈(c2,d1), {

n1
0.8 , n2

0.7 }〉,
〈(c2,d2), { n1

0.5 , n2
0.5 }〉

}
, (G̃3,∧3) =


〈(c2,d1), {

n1
0.8 , n2

0.7 }〉,
〈(c1,d2), { n1

0.3 , n2
0.5 }〉,

〈(c2,d2), { n1
0.5 , n2

0.5 }〉

 ,

(G̃4,∧3) =


〈(c2,d1), {

n1
0.2 , n2

0.4 }〉,
〈(c1,d2), { n1

0.3 , n2
0.5 }〉,

〈(c2,d2), { n1
0.5 , n2

0.5 }〉

 , (G̃5,∧1) =

{
〈(c2,d1), {

n1
0.8 , n2

0.5 }〉,
〈(c1,d2), { n1

0.5 , n2
0.5 }〉

}
, (G̃6,∧2) =

{
〈(c2,d1), {

n1
0.4 , n2

0.6 }〉,
〈(c2,d2), { n1

0.5 , n2
0.4 }〉

}
,

τ2 = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1), (G̃2,∧2), (G̃3,∧3) and (G̃4,∧3)} is FHSts.
Let k = (η, ζ) : (M,Q)→ (N,R) be a FHS mapping as follows:

η(m1) = n2,η(m2) = n1, ζ(a1,b1) = (c2,d1), ζ(a2,b1) = (c1,d2), ζ(a1,b2) = (c2,d2), k(H̃1,∧1) = (G̃5,∧1)
c,

(H̃1,∧1) is FHSos in M and k(H̃1,∧1) = (G̃5,∧1)
c is FHSScs in N. ∴ k is FHS contra semi open.

Theorem 3.7. Each FHS contra open mapping is a FHS contra semi open mapping. But the converse need not to
be true.

Proof. Let (H̃,∧) be a FHSos in M. Since k is FHS contra open mapping, k(H̃,∧) is a FHScs in N. Since
every FHScs is a FHSScs [4], k(H̃,∧) is a FHSScs in N. Hence k is a FHS contra semi open mapping.

Example 3.8. In Example 3.6, k is FHS contra semi open but not FHS contra open because (H̃1,∧1) is
FHSos in M but k(H̃1,∧1) = (G̃5,∧1)

c is not FHScs in N.

Theorem 3.9. A mapping k : (M,Q, τ1)→ (N,R, τ2) is FHS contra open iff for every FHSs (H̃,∧) of (M,Q, τ1),
k(FHSint(H̃,∧)) ⊇ FHScl(k(H̃,∧)).

Proof.

Necessity: Let k be a FHS contra open mapping and (H̃,∧) be a FHSos in (M,Q, τ1). Now, FHSint(H̃,∧) ⊆
(H̃,∧) implies k(FHSint(H̃,∧)) ⊆ k(H̃,∧). Since, k is a FHS contra open mapping, k(FHSint(H̃,∧)) is
FHScs in (N,R, τ2) such that k(FHSint(H̃,∧)) ⊇ k(H̃,∧). Therefore, k(FHSint(H̃,∧)) ⊇ FHScl(k(H̃,∧)).

Sufficiency: Assume (H̃,∧) is a FHSos of (M,Q, τ1). Then k(H̃,∧) = k(FHSint(H̃,∧)) ⊇ FHScl(k(H̃,∧)).
But FHScl(k(H̃,∧)) ⊇ k(H̃,∧). So, k(H̃,∧) = FHScl(k(H̃,∧)) which implies k(H̃,∧) is a FHScs of (N,R, τ2)
and hence k is a FHS contra open mapping.

Theorem 3.10. If k : (M,Q, τ1) → (N,R, τ2) is a FHS contra open mapping, then FHSint(k−1(G̃,∧)) ⊆
k−1(FHScl(G̃,∧)) for every FHSs (G̃,∧) of (N,R, τ2).

Proof. Let (G̃,∧) be a FHSs of (N,R, τ2). Then, FHSint(k−1(G̃,∧)) is a FHSos in (M,Q, τ1). Since k is
FHS contra open map, k(FHSint(k−1(G̃,∧))) is FHScs in (N,R, τ2) and hence k(FHSint(k−1(G̃,∧))) ⊆
FHScl(k(k−1(G̃,∧))) ⊆ FHScl(G̃,∧). Thus, FHSint(k−1(G̃,∧)) ⊆ k−1(FHScl(G̃,∧)).

Theorem 3.11. A mapping k : (M,Q, τ1) → (N,R, τ2) is FHS contra semi open (resp. FHS contra open) iff for
each FHSs (G̃,∧) of (N,R, τ2) and for each FHSos(H̃,∧) of (M,Q, τ1) containing k−1(G̃,∧), there is a FHSSos
(resp. FHSos) (Ã,∧) of (N,R, τ2) such that (G̃,∧) ⊆ (Ã,∧) and k−1(Ã,∧) ⊆ (H̃,∧).
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Proof.

Necessity: Assume k is a FHS contra semi open mapping. Let (G̃,∧) be the FHSs of (N,R, τ2) and (H̃,∧) is
a FHSos of (M,Q, τ1) such that k−1(G̃,∧) ⊆ (H̃,∧). Then, (Ã,∧) = (k−1(H̃,∧)c)c is FHSSos (resp. FHSos)
of (N,R, τ2) such that k−1(Ã,∧) ⊆ (H̃,∧).

Sufficiency: Assume (H̃,∧) is a FHSos of (M,Q, τ1). Then, k−1((k(H̃,∧))c) ⊆ (H̃,∧)c and (H̃,∧)c is
FHScs in (M,Q, τ1). By hypothesis, there is a FHSSos (resp. FHSos) (Ã,∧) of (N,R, τ2) such that
(k(H̃,∧))c ⊆ (Ã,∧) and k−1(Ã,∧) ⊆ (H̃,∧)c. Therefore, (H̃,∧) ⊆ (k−1(Ã,∧))c. Hence, (Ã,∧)c ⊆
k(H̃,∧) ⊆ k((k−1(Ã,∧))c) ⊆ (Ã,∧)c which implies k(H̃,∧) = (Ã,∧)c. Since, (Ã,∧)c is FHSScs (resp.
FHScs) of (N,R, τ2), k(H̃,∧) is FHSScs (resp. FHScs)in (N,R, τ2) and thus k is FHS contra semi open (resp.
FHS contra open) mapping.

Theorem 3.12. A mapping k : (M,Q, τ1)→ (N,R, τ2) is FHS contra semi open (resp. FHSO) iff

k−1(FHSScl(G̃,∧)) ⊇ FHSint(k−1(G̃,∧))(resp.k−1(FHScl(G̃,∧)) ⊇ FHSint(k−1(G̃,∧)))

for every FHSs(G̃,∧) of (N,R, τ2).

Proof.

Necessity: Assume k is a FHS contra semi open (resp. FHS contra open) mapping. For any FHSs(G̃,∧)
of (N,R, τ2), k−1(G̃,∧) ⊆ FHScl(k−1(G̃,∧)). Therefore, by Theorem 3.11, there exits a FHSSos (resp.
FHSos) (Ã,∧) in (N,R, τ2) such that (G̃,∧) ⊇ (Ã,∧) and k−1(Ã,∧) ⊇ FHSint(k−1(G̃,∧)). Therefore, we
obtain that k−1(FHSScl(G̃,∧)) ⊇ k−1(Ã,∧) ⊇ FHSint(k−1(G̃,∧)) (resp. k−1(FHScl(G̃,∧)) ⊇ k−1(Ã,∧) ⊇
FHSint(k−1(G̃,∧))).

Sufficiency: Assume (G̃,∧) is a FHSs of (N,R, τ2) and (H̃,∧) is a FHScs of (M,Q, τ1) containing k−1(G̃,∧).
Put (Ã,∧) = FHScl(G̃,∧). Then, (G̃,∧) ⊆ (Ã,∧) and (Ã,∧) is FHSScs (resp. FHScs) and k−1(Ã,∧) ⊆
FHSint(k−1(G̃,∧)) ⊆ (H̃,∧). Then, by Theorem 3.11, k is FHS contra semi open (resp. FHS contra open)
mapping.

Theorem 3.13. If k : (M,Q, τ1) → (N,R, τ2) and g : (N,R, τ2) → (O,S, τ3) be two FHS mappings and g ◦ k :
(M,Q, τ1) → (O,S, τ3) is FHS contra open mapping, and if g : (N,R, τ2) → (O,S, τ3) is FHS contra irresolute,
then k : (M,Q, τ1)→ (N,R, τ2) is FHS semi open mapping.

Proof. Let (H̃,∧) be a FHSos in (M,Q, τ1). Then, g ◦ k(H̃,∧) is FHScs of (O,S, τ3) because g ◦ k is FHS
contra open mapping. Since, every FHScs is a FHSScs, g ◦ k(H̃,∧) is a FHSScs of (O,S, τ3). Since, g
is FHS contra irresolute, g−1(g ◦ k(H̃,∧)) = k(H̃,∧) is FHSSos in (N,R, τ2). Hence, k is FHS semi open
mapping.

Theorem 3.14. If k : (M,Q, τ1)→ (N,R, τ2) is FHS open and g : (N,R, τ2)→ (O,S, τ3) is FHS contra semi open
(resp. FHS contra open) mappings, then g ◦ k : (M,Q, τ1)→ (O,S, τ3) is FHS contra semi open (resp. FHS contra
open) map.

Proof. Let (H̃,∧) be a FHSos in (M,Q, τ1), then k(H̃,∧) is a FHSos of (N,R, τ2) because k is a FHS open
mapping. Since g is a FHS contra semi open (resp. FHS contra open), g(k(H̃,∧)) = (g ◦ k)(H̃,∧) is a FHSScs
(resp. FHScs) of (O,S, τ3). Hence, g ◦ k is FHS contra semi open (resp. FHS contra open) mapping.

4. Fuzzy hypersoft contra closed mapping

In this section, fuzzy hypersoft contra closed maps are introduced and its characteristics atre studied.

Definition 4.1. A mapping k : (M,Q, τ1)→ (N,R, τ2) is called fuzzy hypersoft

(i) closed (in short, FHS closed) if the image of every FHScs of (M,Q, τ1) is FHScs in (N,R, τ2);
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(ii) semi closed (in short, FHS semi closed) if the image of every FHScs of (M,Q, τ1) is FHSScs in
(N,R, τ2).

Definition 4.2. A mapping k : (M,Q, τ1)→ (N,R, τ2) is called fuzzy hypersoft

(i) contra closed (in short, FHS contra closed) if the image of every FHScs of (M,Q, τ1) is FHSos in
(N,R, τ2);

(ii) contra semi closed (in short, FHS contra semi closed) if the image of every FHScs of (M,Q, τ1) is
FHSSos in (N,R, τ2).

Example 4.3. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be Q =
Q1 ×Q2 and R = Q ′1 ×Q ′2, respectively. The attributes are given as:

Q1 = {a1,a2,a3}, Q2 = {b1,b2}, Q ′1 = {c1, c2, c3}, Q ′2 = {d1,d2}.

Let (M,Q) and (N,R) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧3), and (H̃4,∧3)
over the universe M be

(H̃1,∧1) =

{
〈(a1,b1), {

m1
0.8 , m2

0.6 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉

}
, (H̃2,∧2) =

{
〈(a1,b1), {

m1
0.2 , m2

0.3 }〉,
〈(a1,b2), {m1

0.5 , m2
0.4 }〉

}
,

(H̃3,∧3) =


〈(a1,b1), {

m1
0.2 , m2

0.3 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉,
〈(a1,b2), {m1

0.5 , m2
0.4 }〉

 , (H̃4,∧3) =


〈(a1,b1), {

m1
0.8 , m2

0.6 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉,
〈(a1,b2), {m1

0.5 , m2
0.4 }〉

 ,

τ1 = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧3), (H̃4,∧3)} is FHSts.
Let the FHSs ′s (G̃1,∧1), (G̃2,∧2), (G̃3,∧3) and (G̃4,∧3) over the universe N be

(G̃1,∧1) =

{
〈(c2,d1), {

n1
0.4 , n2

0.2 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉

}
, (G̃2,∧2) =

{
〈(c2,d1), {

n1
0.7 , n2

0.8 }〉,
〈(c2,d2), { n1

0.6 , n2
0.5 }〉

}
,

(G̃3,∧3) =


〈(c2,d1), {

n1
0.7 , n2

0.8 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉,

〈(c2,d2), { n1
0.6 , n2

0.5 }〉

 , (G̃4,∧3) =


〈(c2,d1), {

n1
0.4 , n2

0.2 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉,

〈(c2,d2), { n1
0.6 , n2

0.5 }〉

 ,

τ2 = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1), (G̃2,∧2), (G̃3,∧3), (G̃4,∧3)} is FHSts.
Let k = (η, ζ) : (M,Q)→ (N,R) be a FHS mapping as follows:

η(m1) = n2, η(m2) = n1,
ζ(a1,b1) = (c2,d1), ζ(a2,b1) = (c1,d2), ζ(a1,b2) = (c2,d2),

k(H̃1,∧1)
c = (G̃1,∧1), k(H̃2,∧2)

c = (G̃2,∧2),
k(H̃3,∧3)

c = (G̃3,∧3), k(H̃4,∧3)
c = (G̃4,∧3),

∴ k = (η, ζ) : (M,Q)→ (N,R) is FHS contra closed.

Example 4.4. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be Q =
Q1 ×Q2 and R = Q ′1 ×Q ′2, respectively. The attributes are given as:

Q1 = {a1,a2,a3}, Q2 = {b1,b2}, Q ′1 = {c1, c2, c3}, Q ′2 = {d1,d2}.

Let (M,Q) and (N,R) be the classes of FHS sets. Let the FHSs (H̃1,∧1) over the universe M be

(H̃1,∧1) =

{
〈(a1,b1), {

m1
0.5 , m2

0.2 }〉,
〈(a2,b1), {

m1
0.5 , m2

0.5 }〉

}
,
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τ1 = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1)} is FHSts. Let the FHSs’s (G̃1,∧1), (G̃2,∧2), (G̃3,∧3), (G̃4,∧3), (G̃5,∧1), and
(G̃6,∧2) be defined as

(G̃1,∧1) =

{
〈(c2,d1), {

n1
0.2 , n2

0.4 }〉,
〈(c1,d2), { n1

0.3 , n2
0.5 }〉

}
, (G̃2,∧2) =

{
〈(c2,d1), {

n1
0.8 , n2

0.7 }〉,
〈(c2,d2), { n1

0.5 , n2
0.5 }〉

}
, (G̃3,∧3) =


〈(c2,d1), {

n1
0.8 , n2

0.7 }〉,
〈(c1,d2), { n1

0.3 , n2
0.5 }〉,

〈(c2,d2), { n1
0.5 , n2

0.5 }〉

 ,

(G̃4,∧3) =


〈(c2,d1), {

n1
0.2 , n2

0.4 }〉,
〈(c1,d2), { n1

0.3 , n2
0.5 }〉,

〈(c2,d2), { n1
0.5 , n2

0.5 }〉

 , (G̃5,∧1) =

{
〈(c2,d1), {

n1
0.8 , n2

0.5 }〉,
〈(c1,d2), { n1

0.5 , n2
0.5 }〉

}
, (G̃6,∧2) =

{
〈(c2,d1), {

n1
0.7 , n2

0.6 }〉,
〈(c2,d2), { n1

0.5 , n2
0.4 }〉

}
,

τ2 = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1), (G̃2,∧2), (G̃3,∧3), (G̃4,∧3)} is FHSts.
Let k = (η, ζ) : (M,Q)→ (N,R) be a FHS mapping as follows:

η(m1) = n2,η(m2) = n1, ζ(a1,b1) = (c2,d1), ζ(a2,b1) = (c1,d2), ζ(a1,b2) = (c2,d2), k(H̃1,∧1)
c = (G̃5,∧1),

(H̃1,∧1)
c is FHScs in M and k(H̃1,∧1)

c = (G̃5,∧1) is FHSSos in N. ∴ k is FHS contra semi closed.

Theorem 4.5. Every FHS contra closed mapping is a FHS contra semi closed mapping. But the converse need not
be true.

Proof. Let (H̃,∧) be a FHScs in M. Since k is a FHS contra closed mapping, k(H̃,∧) is a FHSos in N. Since
every FHSos is a FHSSos, k(H̃,∧) is a FHSSos in N. Hence, k is a FHS contra semi closed mapping.

Example 4.6. In Example 4.4, k is FHS contra semi closed but not FHS contra closed because (H̃1,∧1)
c is

FHScs in M but k(H̃1,∧1)
c = (G̃5,∧1) is not FHSos in N.

Theorem 4.7. A mapping k : (M,Q, τ1) → (N,R, τ2) is FHS contra semi closed (resp. FHS contra closed) iff for
each FHSs (G̃,∧) of (N,R, τ2) and for each FHScs(H̃,∧) of (M,Q, τ1) containing k−1(G̃,∧), there is a FHSScs
(resp. FHScs) (Ã,∧) of (N,R, τ2) such that (G̃,∧) ⊆ (Ã,∧) and k−1(Ã,∧) ⊆ (H̃,∧).

Proof.

Necessity: Assume k is a FHS contra semi closed (resp. FHS contra closed) mapping. Let (G̃,∧) be the
FHSs of (N,R, τ2) and (H̃,∧) is a FHScs of (M,Q, τ1) such that k−1(G̃,∧) ⊆ (H̃,∧). Then, (Ã,∧) =
1̃(N,Q) − k−1((H̃,∧)c) is FHSScs (resp. FHScs) of (N,R, τ2) such that k−1(Ã,∧) ⊆ (H̃,∧).

Sufficiency: Assume (H̃,∧) is a FHScs of (M,Q, τ1). Then, (k(H̃,∧))c is a FHSs of (N,R, τ2) and (H̃,∧)c

is FHSos in (M,Q, τ1) such that k−1((k(H̃,∧))c) ⊆ (H̃,∧)c. By hypothesis, there is a FHSScs (resp.
FHScs) (Ã,∧) of (N,R, τ2) such that (k(H̃,∧))c ⊆ (Ã,∧) and k−1(Ã,∧) ⊆ (H̃,∧)c. Therefore, (H̃,∧) ⊆
(k−1(Ã,∧))c. Hence, (Ã,∧)c ⊆ k(H̃,∧) ⊆ k(k−1(Ã,∧))c ⊆ (Ã,∧)c which implies k(H̃,∧) = (Ã,∧)c. Since,
(Ã,∧)c is FHSSos (resp. FHSos) of (N,R, τ2), k(H̃,∧) is FHSSos (resp. FHSos) in (N,R, τ2) and thus k is
FHS contra semi closed (resp. FHS contra closed) mapping.

Theorem 4.8. If k : (M,Q, τ1) → (N,R, τ2) is FHS closed and g : (N,R, τ2) → (O,S, τ3) is FHS contra semi
closed (resp. FHS contra closed) mappings, then g ◦ k : (M,Q, τ1) → (O,S, τ3) is FHS contra semi closed (resp.
FHS contra closed) map.

Proof. Let (H̃,∧) be a FHScs in (M,Q, τ1) then k(H̃,∧) is a FHScs of (N,R, τ2) because k is a FHS closed
mapping. Since g is a FHS contra semi closed (resp. FHS contra closed), g(k(H̃,∧)) = (g ◦ k)(H̃,∧) is
a FHSSos (resp. FHSos) of (O,S, τ3). Hence, g ◦ k is FHS contra semi closed (resp. FHS contra closed)
mapping.

Theorem 4.9. If k : (M,Q, τ1)→ (N,R, τ2) is

(i) FHS contra closed map, then FHSint(k(H̃,∧)) ⊇ k(FHSint(H̃,∧));
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(ii) FHS contra semi closed map, then FHSSint(k(H̃,∧)) ⊇ k(FHSint(H̃,∧)).

Proof. Obvious.

Theorem 4.10. Let k : (M,Q, τ1) → (N,R, τ2) and g : (N,R, τ2) → (O,S, τ3) be FHS contra semi closed (resp.
FHS contra closed) mappings. If every FHSSos of (N,R, τ2) is FHSos, then g ◦ k : (M,Q, τ1)→ (O,S, τ3) is FHS
semi closed (resp. FHS closed).

Proof. Let (H̃,∧) be a FHScs in (M,Q, τ1). Then, k(H̃,∧) is FHSSos (resp. FHSos) of (N,R, τ2) because k is
FHS contra semi closed (resp. FHS contra closed) mapping. By hypothesis, k(H̃,∧) is FHSos of (N,R, τ2).
Now g(k(H̃,∧)) = (g ◦ k)(H̃,∧) is FHSScs (resp. FHScs) in (O,S, τ3) because g is FHS contra semi closed
(resp. FHS contra closed) mapping. Thus, g ◦ k is FHS semi closed (resp. FHS closed) mapping.

Theorem 4.11. Let k : (M,Q, τ1) → (N,R, τ2) be a bijective mapping. Then the following statements are equiva-
lent.

(i) k is a FHS contra semi open (resp. FHS contra open) mapping.
(ii) k is a FHS contra semi closed (resp. FHS contra closed) mapping.

(iii) k is a FHS contra semi continuous (resp. FHS contra continuous) mapping.

Proof.

(i)⇒ (ii): Let us assume that k is a FHS contra semi open (resp. FHS contra open) mapping. By definition,
if (H̃,∧) is a FHSos in (M,Q, τ1), then k(H̃,∧) is a FHSSos (resp. FHSos) in (N,R, τ2). Here, (H̃,∧) is
FHScs in (M,Q, τ1). Then 1̃(M,Q) − (H̃,∧) is a FHSos in (M,Q, τ1). By assumption, k(1̃(M,Q) − (H̃,∧))

is a FHSSos (resp.FHSos) in (N,R, τ2). Hence, 1̃(N,Q) − k(1̃(M,Q) − (H̃,∧)) is a FHSSos (resp. FHSos) in
(N,R, τ2). Therefore, k is a FHS semi closed (resp. FHS closed) mapping.

(ii)⇒ (iii): Let (H̃,∧) be a FHScs in (M,Q, τ1). By (ii), k(H̃,∧) is a FHSSos (resp. FHSos) in (N,R, τ2).
Hence, k(H̃,∧) = (k−1)−1(H̃,∧). So k−1 is a FHSSos (resp. FHSos) in (N,R, τ2). Hence, k−1 is FHS semi
continuous (resp. FHS continuous).

(iii)⇒ (i): Let (H̃,∧) be a FHSos in (M,Q, τ1). By (iii), (k−1)−1(H̃,∧) = k(H̃,∧) is a FHS semi open (resp.
FHS open) mapping.

5. Fuzzy hypersoft contra homeomorphism

Fuzzy hypersoft contra homeomorphism is introduced and studied in this section.

Definition 5.1. A bijection k : (M,Q, τ1) → (N,R, τ2) is called a fuzzy hypersoft contra homeomorphism
(in short, FHS contra homeomorphism) (resp. fuzzy hypersoft contra semi homeomorphism (in short, FHS
contra semi homeomorphism)) if k and k−1 are FHS contra continuous (resp. FHS contra semi continuous)
mappings.

Example 5.2. In Example 4.3,

k(H̃1,∧1) = (G̃1,∧1)
c, k(H̃2,∧2) = (G̃2,∧2)

c, k(H̃3,∧3) = (G̃3,∧3)
c, k(H̃4,∧3) = (G̃4,∧3)

c

and

k−1(G̃1,∧1) = (H̃1,∧1)
c, k−1(G̃2,∧2) = (H̃2,∧2)

c, k−1(G̃3,∧3) = (H̃3,∧3)
c, k−1(G̃4,∧3) = (H̃4,∧3)

c.

Hence k and k−1 are FHS contra continuous. ∴ k is FHS contra homeomorphism.

Theorem 5.3. Each FHS contra homeomorphism is a FHS contra semi homeomorphism. But not conversely.
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Proof. Let k be FHS contra homeomorphism, then k and k−1 are FHS contra continuous. But every FHS con-
tra continuous function is FHS contra semi continuous. Hence, k and k−1 are FHS contra semi continuous.
Therefore, k is a FHS contra semi homeomorphism.

Example 5.4. Let M = {m1,m2} and N = {n1, n2} be the FHS initial universes and the attributes be Q =
Q1 ×Q2 and R = Q ′1 ×Q ′2, respectively. The attributes are given as:

Q1 = {a1,a2,a3}, Q2 = {b1,b2}, Q ′1 = {c1, c2, c3}, Q ′2 = {d1,d2}.

Let (M,Q) and (N,R) be the classes of FHS sets. Let the FHSs’s (H̃1,∧1), (H̃2,∧2), (H̃3,∧3), (H̃4,∧3), and
(H̃5,∧1) over the universe M be

(H̃1,∧1) =

{
〈(a1,b1), {

m1
0.8 , m2

0.6 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉

}
, (H̃2,∧2) =

{
〈(a1,b1), {

m1
0.2 , m2

0.3 }〉,
〈(a1,b2), {m1

0.5 , m2
0.5 }〉

}
, (H̃3,∧3) =


〈(a1,b1), {

m1
0.2 , m2

0.3 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉,
〈(a1,b2), {m1

0.5 , m2
0.5 }〉

 ,

(H̃4,∧3) =


〈(a1,b1), {

m1
0.8 , m2

0.6 }〉,
〈(a2,b1), {

m1
0.7 , m2

0.5 }〉,
〈(a1,b2), {m1

0.5 , m2
0.5 }〉

 , (H̃5,∧1) =

{
〈(a1,b1), {

m1
0.2 , m2

0.3 }〉,
〈(a2,b1), {

m1
0.2 , m2

0.5 }〉

}
,

τ1 = {0̃(M,Q), 1̃(M,Q), (H̃1,∧1), (H̃2,∧2), (H̃3,∧3), (H̃4,∧3)} is FHSts.
Let the FHSs ′s (G̃1,∧1), (G̃2,∧1), (G̃3,∧2), (G̃4,∧3), and (G̃5,∧3) over the universe N be

(G̃1,∧1) =

{
〈(c2,d1), {

n1
0.7 , n2

0.8 }〉,
〈(c1,d2), { n1

0.5 , n2
0.8 }〉

}
, (G̃2,∧1) =

{
〈(c2,d1), {

n1
0.4 , n2

0.2 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉

}
, (G̃3,∧2) =

{
〈(c2,d1), {

n1
0.7 , n2

0.8 }〉,
〈(c2,d2), { n1

0.5 , n2
0.5 }〉

}
,

(G̃4,∧3) =


〈(c2,d1), {

n1
0.7 , n2

0.8 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉,

〈(c2,d2), { n1
0.5 , n2

0.5 }〉

 , (G̃5,∧3) =


〈(c2,d1), {

n1
0.4 , n2

0.2 }〉,
〈(c1,d2), { n1

0.5 , n2
0.3 }〉,

〈(c2,d2), { n1
0.5 , n2

0.5 }〉

 ,

τ2 = {0̃(N,Q), 1̃(N,Q), (G̃1,∧1)} is FHSts.
Let k = (η, ζ) : (M,Q)→ (N,R) be a FHS mapping as follows:

η(m1) = n2, η(m2) = n1,
ζ(a1,b1) = (c2,d1), ζ(a2,b1) = (c1,d2), ζ(a1,b2) = (c2,d2),
k(H̃1,∧1) = (G̃2,∧1)

c, k(H̃2,∧2) = (G̃3,∧2)
c, k(H̃3,∧3) = (G̃4,∧3)

c,

k(H̃4,∧3) = (G̃5,∧3)
c, k(H̃5,∧1) = (G̃1,∧1)

c, k−1(G̃1,∧1) = (H̃5,∧1)
c.

Here k−1 is FHS contra semi continuous because (H̃1,∧1), (H̃2,∧2), (H̃3,∧3), and (H̃4,∧3) are FHSos’s
in M and k(H̃1,∧1), k(H̃2,∧2), k(H̃3,∧3), and k(H̃4,∧3) are FHSScs’s in N. Also, k is FHS contra semi
continuous because (G̃1,∧1) is FHSos in N and k−1(G̃1,∧1) is FHSScs in M. Hence k is FHS contra semi
homeomorphism. But k is not FHS contra homeomorphism because (G̃1,∧1) is FHSos in N but k−1(G̃1,∧1)
is not FHScs in M.

Theorem 5.5. Let k : (M,Q, τ1) → (N,R, τ2) be a bijective mapping. If k is FHS contra semi continuous (resp.
FHS contra continuous), then the following statements are equivalent:

(i) k is a FHS contra semi closed (resp. FHS contra closed) mapping;
(ii) k is a FHS contra semi open (resp. FHS contra open) mapping;

(iii) k−1 is a FHS contra semi homeomorphism (resp. FHS contra semi homeomorphism).

Proof.

(i)⇒(ii): Assume that k is a bijective mapping and a FHS contra semi closed (resp. FHS contra closed)
mapping. Here, k−1 is a FHS contra semi continuous (resp. FHS contra continuous) mapping. We
knowthat each FHSos in (M,Q, τ1) is a FHSScs (resp. FHScs) in (N,R, τ2). Hence, k is a FHS contra semi
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open (resp. FHS contra open) mapping.

(ii)⇒ (ii): Let k be a bijective and FHS contra semi open (resp. FHS contra open) mapping. Further, k is
a FHS contra semi continuous (resp. FHS contra continuous) mapping. Hence, k and k−1 are FHS contra
semi continuous (resp. FHS contra continuous). Therefore, k is a FHS contra semi homeomorphism (resp.
FHS contra homeomorphism).

(iii)⇒(i): Let k be a FHS contra semi homeomorphism (resp. FHS contra homeomorphism). Then k and
k−1 are FHS contra semi continuous (resp. FHS contra continuous). Since each FHScs in (M,Q, τ1) is a
FHSSos in (N,R, τ2), k is a FHS contra semi closed (resp. FHS contra closed) mapping.

Theorem 5.6. Let k : (M,Q, τ1) → (N,R, τ2) and g : (N,R, τ2) → (O,S, τ3) be two FHS mappings. Then the
following hold.

(i) If g ◦ k is FHS contra semi open (resp. FHS contra open) and k is FHS continuous, then g is FHS contra semi
open (resp. FHS contra open).

(ii) If g ◦ k is FHS open and g is FHS contra semi continuous (resp. FHS contra continuous), then k is FHS contra
semi open (resp. FHS contra open).

Proof. Obvious.

6. Fuzzy hypersoft contra C-homeomorphism

Fuzzy hypersoft contra C-homeomorphism is introduced and studied in this section.

Definition 6.1. A bijection k : (M,Q, τ1)→ (N,R, τ2) is called a fuzzy hypersoft contra C-homeomorphism
(in short, FHS contra C-homeomorphism) if k and k−1 are FHS contra irresolute mappings.

Theorem 6.2. Each FHS contra C-homeomorphism is a FHS contra semi homeomorphism. But not conversely.

Proof. Let us assume that (G̃,∧) is a FHSos in (N,R, τ2). This shows that (G̃,∧) is a FHSSos in (N,R, τ2).
By assumption, k−1(G̃,∧) is a FHSScs in (M,Q, τ1). Hence, k is a FHS contra semi continuous map-
ping. Therefore, k and k−1 are FHS contra semi continuous mappings. Hence, k is a FHS contra semi
homeomorphism.

Example 6.3. Consider the Example 5.4. Let the FHSs (H̃6,∧2) over the universe M be

(H̃6,∧2) =

{
〈(a1,b1), {

m1
0.3 , m2

0.4 }〉,
〈(a1,b2), {m1

0.5 , m2
0.6 }〉

}
.

Let the FHSs (G̃6,∧2) over the universe N be

(G̃6,∧2) =

{
〈(c2,d1), {

n1
0.6 , n2

0.7 }〉,
〈(c2,d2), { n1

0.4 , n2
0.5 }〉

}
, k(H̃6,∧2) = (G̃6,∧2)

c, and k−1(G̃6,∧2) = (H̃6,∧2)
c.

Here k is FHS contra semi homeomorphism but not FHS contra C-homeomorphism because (G̃6,∧2) is
FHSSos in N but k−1(G̃6,∧2) is not FHSScs in M.

Theorem 6.4. If k : (M,Q, τ1) → (N,R, τ2) is a FHS contra C-homeomorphism, then FHSSint(k−1(G̃,∧)) ⊆
k−1(FHScl(G̃,∧)) for each FHSs (G̃,∧) in (N,R, τ2).

Proof. Let (G̃,∧) be a FHSs in (N,R, τ2). Then, FHScl(G̃,∧) is a FHScs in (N,R, τ2) and every FHScs is a
FHSScs in (N,R, τ2). Assume k is FHS contra irresolute and k−1(FHScl(G̃,∧)) is a FHSSos in (M,Q, τ1).
Then FHSSint(k−1(FHScl(G̃,∧))) = k−1(FHScl(G̃,∧)). Here,

FHSSint(k−1(G̃,∧)) ⊆ FHSSint(k−1(FHScl(G̃,∧))) = k−1(FHScl(G̃,∧)).

Therefore, FHSSint(k−1(G̃,∧)) ⊆ k−1(FHScl(G̃,∧)) for every FHSs (G̃,∧) in (N,R, τ2).
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Theorem 6.5. Let k : (M,Q, τ1) → (N,R, τ2) be a FHS contra C-homeomorphism. Then FHSSint(k−1(G̃,∧)) ⊆
k−1(FHSScl(G̃,∧)) for each FHSs (G̃,∧) in (N,R, τ2).

Proof. Since k is a FHS contra C-homeomorphism, k is a FHS contra irresolute mapping. Let (G̃,∧) be a
FHSs in (N,M,σ). Clearly, FHSScl(G̃,∧) is a FHSScs in (N,R, τ2). Since, k−1(G̃,∧) ⊆ k−1(FHSScl(G̃,∧)),
FHSSint(k−1(G̃,∧)) ⊆ FHSSint(k−1(FHSScl(G̃,∧))) ⊆ k−1(FHSScl(G̃,∧)). Hence, FHSSint(k−1(G̃,∧)) ⊆
k−1(FHSScl(G̃,∧)).

Theorem 6.6. If k : (M,Q, τ1) → (N,R, τ2) and g : (N,R, τ2) → (O,S, τ3) are FHS contra C-homeomorphisms,
then g ◦ k is FHS C-homeomorphism.

Proof. Let k and g be two FHS contra C-homeomorphisms. Assume (G̃,∧) is a FHSScs in (O,S, τ3). Then,
g−1(G̃,∧) is a FHSSos in (N,R, τ2). Then, by hypothesis, k−1(g−1(G̃,∧)) is a FHSScs in (M,Q, τ1). Hence,
(g ◦ k)−1 is a FHS irresolute mapping. Now, let (H̃,∧) be a FHSScs in (M,Q, τ1). Then, by presumption,
k(g) is a FHSSos in (N,R, τ2). Then, by hypothesis, g(k(H̃,∧)) is a FHSScs in (O,S, τ3). This implies that
g ◦ k is a FHS irresolute mapping. Hence, g ◦ k is a FHS C-homeomorphism.

7. Application in Covid-19 diagnosis using Hamming distance

In this section, Hamming distance is applied in an example to diagnose Covid-19.

Definition 7.1. Consider two FHSs’s (H̃,∧1) and (G̃,∧2) over M. The Hamming distance for these two

sets is given by dH((H̃,∧1), (G̃,∧2)) =
n∑
i=1

|µiH − µiG|.

Example 7.2. Consider 2 patients visiting a hospital with the following symptoms: Fever, Dry cough,
Headache, Body pain, Difficulty in breathing and Chest pain. The symptoms of Covid-19 patients can be
categorized as

• Severe symptoms = Difficulty in breathing, Chest pain.

• Most common symptoms = Fever, Dry cough.

• Less common symptoms = Headache, Body pain.

Using the fuzzy hypersoft model problem, the examination can be done whether the patients have the
possibility of suffering from Covid-19 or not. Let M be the universal set M = {m1,m2} = {Covid-19, No
Covid-19}. The attributes are given as:

Q1 = {a1 = Difficulty in breathing,a2 = Chest pain},
Q2 = {b1 = Fever,b2 = Dry cough},
Q3 = {c1 = Headache, c2 = Body pain}.

We define the fuzzy hypersoft sets which give the degree of association between the Covid-19 patients
and the Covid-19 symptoms and between the 2 patients visited and their symptoms. The FHSs (H̃,∧)
describes the evaluation of the Covid-19 patients and their symptoms as per the hospital records.

(H̃,∧) =



〈(a1,b1, c1), {
m1
1.0 , m2

0.2 }〉,
〈(a1,b1, c2), {m1

0.9 , m2
0.1 }〉,

〈(a1,b2, c1), {
m1
0.9 , m2

0.2 }〉,
〈(a1,b2, c2), {m1

0.8 , m2
0.2 }〉,

〈(a2,b1, c1), {
m1
0.9 , m2

0.1 }〉,
〈(a2,b2, c1), {

m1
0.8 , m2

0.1 }〉,
〈(a2,b2, c2), {m1

0.8 , m2
0.1 }〉,

〈(a2,b1, c2), {m1
0.9 , m2

0.1 }〉


.
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The FHSs ’s (G̃,∧), (P̃,∧) describe the evaluation of the 2 patients visited and their symptoms, respec-
tively.

(G̃,∧) =



〈(a1,b1, c1), {
m1
0.1 , m2

0.9 }〉,
〈(a1,b1, c2), {m1

0.1 , m2
0.9 }〉,

〈(a1,b2, c1), {
m1
0.0 , m2

0.9 }〉,
〈(a1,b2, c2), {m1

0.1 , m2
0.9 }〉,

〈(a2,b1, c1), {
m1
0.2 , m2

0.9 }〉,
〈(a2,b2, c1), {

m1
0.1 , m2

0.8 }〉,
〈(a2,b2, c2), {m1

0.1 , m2
0.9 }〉,

〈(a2,b1, c2), {m1
0.1 , m2

0.9 }〉


, (P̃,∧) =



〈(a1,b1, c1), {
m1
0.8 , m2

0.3 }〉,
〈(a1,b1, c2), {m1

0.7 , m2
0.2 }〉,

〈(a1,b2, c1), {
m1
0.8 , m2

0.4 }〉,
〈(a1,b2, c2), {m1

0.6 , m2
0.4 }〉,

〈(a2,b1, c1), {
m1
0.8 , m2

0.2 }〉,
〈(a2,b2, c1), {

m1
0.8 , m2

0.3 }〉,
〈(a2,b2, c2), {m1

0.7 , m2
0.3 }〉,

〈(a2,b1, c2), {m1
0.7 , m2

0.2 }〉


.

Using hamming distance, we get dH((H̃,∧), (G̃,∧)) = 12.2 and dH((H̃,∧), (P̃,∧)) = 2.3. As the distance
between the Covid-19 patient and the 2nd patient is lesser than 1st patient, there is larger possibility for
the 2nd patient suffering from Covid-19.

8. Conclusion

In this paper, FHS contra open, FHS contra semi open, FHS contra closed and FHS contra semi closed
maps are introduced and their properties are analyzed with the examples. Then FHS contra open and FHS
contra semi open maps are compared with FHS contra closed and FHS contra closed maps. In addition,
these maps are extended to FHS contra homeomorphism, FHS contra semi homeomorphism and FHS

contra C-homeomorphism. Further, an application in diagnosing Covid-19 using Hamming distance is
discussed with an example. The shorter the distance between the Covid-19 patients and the other patients,
the larger possibility of the other patients suffering from Covid-19. These findings will be helpful in the
medical field in an attempt to make better decisions.
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