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Abstract
Cancer is the most dangerous disease in the world. Therefore, this paper is devoted to studying a mathematical model of

diffusive cancer and the effect of its treatments. One of the cancer treatments currently being explored is stem cell transplant,
which works to stimulate and strengthen the immune system while the patient receives chemotherapy. This work introduces a
mathematical system for the temporal and spatial interactions between the tumor, stem cells and effector cells during chemother-
apy and the extent of the spread of these interactions within the tissue. Also, we study the stability of the system through the
equilibrium points of the reaction-diffusion model. In addition, the existence, uniqueness, positivity, and boundedness are
proven. We found a numerical simulation by the finite difference method and observed a dynamic of the solutions. Also, we
described the tumor behaviour before and after the treatments and the effect of its diffusion.
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1. Introduction

Cancer is a disease that killed millions of people globally and becomes one of the causes of death
in the world. It starts from the abnormal growth of cells in different organs in the body and these cells
divide and spread inside the human body without control and are able to penetrate and damage tissues.
It is generated by a mutation in a chain of deoxyribonucleic acid-DNA found in cells. This chain in the
human body contains a set of instructions prepared for the cells of the body that determine how to grow,
develop and divide. While uninfected cells sometimes tend to make changes in their DNA, but they are
still able to correct the bulk of these changes. But if they cannot make these corrections, the distorted cells
often die. However, some of these deviations are not correctable, which leads to the growth of these cells
and their transformation into cancerous cells. These deviations can extend the life of some cells more
than their normal life average, this phenomenon causes the accumulation of cancer cells. It is known
that many types of treatments are currently available for cancer such as surgery, chemotherapy, radiation
therapy, stem cells transplantation, biological (immunotherapy), hormonal therapy, drug therapy, and
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clinical trials. There are many articles that have studied the effect of these treatments on tumor cells by
describing the interaction between the tumor and its treatment as a mathematical model [1, 12, 17, 24].
For example, references [15, 18] introduced a mathematical model to describe the interaction between
the tumor and the immune therapy. Suddin et al. [22] studied the interactions between the tumor,
the immune system, effector cells and the cytokine Interleukine-2 ( IL-2) treatment with spread cells by
modeling a three-dimensional system of partial differential equations (PDEs) that subjects to initial and
boundary conditions. The reference [26] studied the cancer model with immune therapy that containing
interleukine-10 (IL-10) and anti-PD-L1 inhibitor. Mathemtically speaking, the cancer model has been
examined by fuzzy logic in order to reduce tumor uncertainty and achieve a degree of realism [21].
The interaction between immune system and cancer cells by adding IL-12 cytokine and anti-PD-L1 was
studied by considering the system of equations in term of Caputo and Caputo–Fabrizio (CF) derivative
[25].

Stem cells have become a great scientific revolution in the treatment of many diseases because they are
supporting body cells by differentiation and proliferation in tissue [3, 4, 9, 14, 16, 23]. Researchers believe
that it is one of the important solutions in the future to help medical scientists [11]. The mathematical
model can describe the dynamics of cancer and help physicians to predict the optimal treatments and
control cancer growth by using stem cell and chemotherapy [8]. Practically, we know the ability of the
tumor to spread in cells and weaken them, but the stem cells work to develop within tissues during
chemotherapy and reduce the destroyed cells [13].

The mathematical model [8] is the first model that combined the cancer mathematical model with
stem cell therapy. The model is also represented by fractional order differential equations [19]. However,
this model is a system of ordinary differential equations (the functions are only dependent on time). The
solutions of this system indicate that the stem cell therapy increase the immune system response and
reduce the tumor growth. It is very important to study the effect of spread the tumor or its treatments
in the model. The novelty of this work is to study the effect of a diffusion of tumor and treatments.
Thus, this article is devoted to extend the mathematical model in reference [8] by accounting the diffusion
terms in the mathematical model. In this case, the mathematical model is converted to a system of partial
differential equations (PDEs). The article will study the stability, existence and uniqueness of the diffusive
mathematical model as well as prove the positivity and boundedness of the solutions. The finite difference
method (FDM) will be applied to obtain the numerical simulation. Then, we will explain the dynamic of
the solutions and the behavior of tumor cells before and after treatments.

2. The model formulation

We formulated a mathematical model of tumor interactions with chemotherapy and stem cells. The
model consists of four populations: S(t) is stem cells, E(t) is effector cells, T(t) is tumor cells, and M(t)
is chemotherapy concentration drug of PDEs system, we set the spatial domain B = (a,b), and the space-
time domain Ω = B× (0, t∗) as below form:

∂S

∂t
= −µ1S−α1MS+ d1

∂2S

∂x2 , ∀x, t ∈ Ω ,

∂E

∂t
= c− λE+

ΓES

S+ 1
− p(T +M)E+ d2

∂2E

∂x2 , ∀x, t ∈ Ω,

∂T

∂t
= β(1 − bT)T − (σE+α2M)T + d3

∂2T

∂x2 , ∀x, t ∈ Ω,

∂M

∂t
= −µ2M+ V(t) + d4

∂2M

∂x2 , ∀x, t ∈ Ω.

(2.1)

The description of the parameters are proposed in Table 1.
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Table 1: Descriptions and values of the parameters in system (2.1), see [8].
Initial/Parameters Description Estimated values
S(0) The initial concentration of stem cells 1
E(0) The initial concentration of effector cells 1
T(0) The initial density of tumors 1
M(0) The initial concentration of chemotherapy drug 0
µ1 The decay rate of the stem cells 0.02825
c The growth rate of the effector cells 0.17
λ The natural death rate of the effecror cells 0.03
b Carrying capacity of tumor cells 1× 10−9

α1 Parts stem cells killed by chemotherapy 1
Γ Maximum proliferation rate of effector cells 0.1245
β The growth rate of tumor base in the stability condition

p
Decay rate of the effector cells 1killed tumor cells and chemotherapy

α2 Parts tumor cells killed by chemotherapy 0.9

σ
Decay rate of the tumor cells 0.9killed by the effector cells

µ2 Decay rate of chemotherapy drug 6.4

V(t)
The time refer to external flow of 1chemotherapy drug

V(0) The initial value of V(t) 0

3. Description of the model

The system of PDEs (2.1) explains the relationship between stem cells S(t) proliferation, tumor cells
T(t) and the interaction of effector cells E(t), as well as the effect of chemotherapy compounds M(t). In
addition, the system includes the effect of diffusion term which is expressed by the second-order partial
derivatives with respect to x. The first equation shows the rate change of the stem cells, they can decay
naturally at the rate µ1 and by the chemotherapy at the rate α1. In the second equation, the rate change
of effector cells can be effected positively by the natural growth (c) and the stem cells differentiation (Γ ).
Also, they can be decayed by the natural death (λ) and by chemotherapy or cancer (p). The third equation
is the rate change of tumor cells which grow by natural growth (β). Also, tumor T decays based on its
carrying capacity b and by the effect of chemotherapy (σ) and effector cells (α2). In the last equation, it
shows the rate change of chemotherapy which decreases by the rate µ2 and increase by the effect of the
function V(t) which is dependent external influx of chemotherapy. Then, d1,d2,d3, and d4 are diffusion
coefficients of stem cells, effector cells, tumor cells, and chemotherapy, respectively. Also, they show the
random motility and supposed to be positive. The diagram in Fig. 1 describes the interactions between
the components in aforementioned mathematical model.

Figure 1: The diagram of the mathematical model (2.1).
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4. Equilibrium points and stability

In general, the stability analysis of equilibrium points is important to determine the behavior of the
system in the neighborhood of each equilibrium point. The system of equations (2.1) can be rewritten as
following:

∂S

∂t
− d1

∂2S

∂x2 = −µ1S−α1MS,
∂E

∂t
− d2

∂2E

∂x2 = c− λE+
ΓES

S+ 1
− p(T +M)E,

∂T

∂t
− d3

∂2T

∂x2 = β(1 − bT)T − (σE+α2M)T ,
∂M

∂t
− d4

∂2M

∂x2 = −µ2M+ V(t).
(4.1)

The equilibrium points for two cases as in [8], are as follows:

Free-cancer: In case of free cancer, we have no treatments (i.e., S = 0, M = 0), and the equilibrium positive
point is given by:

P0 = (E, T) = (
c

λ
, 0).

This point is defined if λ 6= 0 and indicates the case of free cancer. The Jacobin matrix for this point is:

JB(P0) =

(
−λ −cpλ
0 β− cσ

λ

)
.

The eigenvalues are: −λ and β− cσ
λ . The eigenvalues have negative real part if β < cσ

λ , i.e., R0 < 1, where
R0 = βλ

cσ . Therefore, the point is asymptotically stable if R0 < 1.

Endemic point before treatment: The endemic point before treatment is: P1 = (E, T) = ( c
λ+pT∗ , T∗),

where

T∗ =
(βp− bβλ) +

√
(βp− bβλ)2 − 4(βbp)(cσ−βλ)

2bβp
.

The point is positive if R0 = βλ
cσ > 1. The Jacobin matrix at P1 is:

JB(P1) =

(
−(λ+ pT∗) − cp

λ+pT∗

−σT∗ β(1 − 2bT∗) − cσ
λ+pT∗

)
.

The eigenvalues of JB(P1) is in the form

−A1 ±
√
A2

1 − 4A2

2σ
,

where A2 = λ
(
β(2bT∗ − 1) + cσ

λ+pT∗

)
+ βpT∗(2bT∗ − 1) and A1 = β(2bT∗ − 1) + cσ

λ+pT∗ + λ+ pT
∗. Thus,

if A2 = 0, we have

−A1 ±
√
A2

1

2σ
,

there is one eigenvalue. If A2 > 0, we have two eigenvalues with negative real parts, if A2 < 0, we have
at least one positive eigenvalue. Therefore, P1 is asymptotically stable if A2 > 0. Therefore, the point is
stable if T∗ > 1

2b and R0 > 1.

Endemic point after treatment: The third positive equilibrium point for system is:

P2 = (S,E, T ,M) = (0,
c

λ+M2p+ pT2
, T2,M2),
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where

T2 =
−B1 +

√
B2

1 − 4βb
(
cµ2

2pσ+ p (α2 −βµ2) (λµ2 + p)
)

2bβµ2p
,

M2 = 1
µ2

, B1 = (bβλµ2 + bβp+α2p−βµ2p) . The point P2 exists if

β >
cµ2

2σ+α2 (λµ2 + p)

µ2 (λµ2 + p)
.

The Jacobin matrix at the point P2 (JA(P2)) is as follows:
−α1M2 − µ1 0 0 0

cΓ
λ+M2p+pT2

−λ− p(M2 + T2) − cp
λ+M2p+pT2

− cp
λ+M2p+pT2

0 −σT2 −2bβT2 +β− cσ
λ+M2p+pT2

−α2M2 −α2T2
0 0 0 −µ2

 .

The characteristic polynomial of JA(P2) satisfies:

(−µ2 − L)(−α1M2 − µ1 − L)(L
2 +D1L+D2),

where L denotes the eigenvalues, D1 = β (2bT2 − 1) + cσ
λ+M2p+pT2

+ λ +M2 (α2 + p) + pT2 and D2 =

(2bT2 − 1) +M2

(
β (2bT2 − 1)p+ cpσ

λ+M2p+pT2
+α2 (λ+ pT2)

)
+ cλσ
λ+M2p+pT2

+ α2M
2
2p + β

(
λ+ pT2

)
. The

point is asymptotically stable if : T2 >
1

2b , and β > cµ2
2σ+α2(λµ2+p)
µ2(λµ2+p)

.

Cure of cancer: The fourth positive equilibrium point for system (4.1) is:

P3 = (S,E, T ,M) = (0,
cµ2

λµ2 + p
, 0,

1
µ2

).

This point indicates cure of cancer. The point is defined if µ2 6= 0, and p 6= 0. The Jacobin matrix for this
point is:

JA(P3) =


−α1
µ2

− µ1 0 0 0
cΓµ2
λµ2+p

−λ− p
µ2

− cµ2p
λµ2+p

− cµ2p
λµ2+p

0 0 −α2
µ2

+β− cµ2σ
λµ2+p

0
0 0 0 −µ2

 .

The characteristic polynomial of L satisfies:

det(JA(P3) − LI) = (−µ2 − L)(−
α1

µ2
− µ1 − L)(L

2 +C1L+C2) ,

where C1 = −β+ cµ2σ
λµ2+p

+ λ+ α2+p
µ2

, and C2 = −βλ+ cσ+ α2(λµ2+p)

µ2
2

− βp
µ2

. The point is asymptotically

stable if: λ > β, and 1 > R0 +
βp
cµ2σ

(i.e., R0 <
λµ2
p+1 ).

5. Numerical simulation

In literature there are many numerical methods to solve system of PDEs [5–7, 10, 20]. In this section,
we will use the Finite Difference Method (FDM) with exponential technique. Assume the real numbers
a,b, t∗ such that a > b and t∗ > 0. We fix the spatial domain B = (a,b) and the space-time domain
Ω = B × (0, t∗), where ∂B is the boundary of B. The PDEs in the system (2.1) are two-dimensional
equations subjected to the initial-boundary conditions. In this section, we proposed numerical simulations
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by applying the finite-difference method [2]. Beforehand, notice that the discrete model is an explicit
scheme and the initial and boundary conditions are as follows:

S(x, 0) = GS(x), ∀x ∈ B, E(x, 0) = GE(x), ∀x ∈ B,
T(x, 0) = GT (x), ∀x ∈ B, M(x, 0) = GM(x), ∀x ∈ B,

and the boundary conditions are:

S(x, t) = ωS, ∀x, t ∈ ∂B× [0, t∗], E(x, t) = ωE, ∀x, t ∈ ∂B× [0, t∗],
T(x, t) = ωT , ∀x, t ∈ ∂B× [0, t∗], M(x, t) = ωM, ∀x, t ∈ ∂B× [0, t∗].

We consider that S,E, T , and M are positive vectors of solution of system (2.1), and let ξ ∈ R+ be a
constant. Dividing both sides of each equation in the system by S(x, t) + ξ, E(x, t) + ξ, T(x, t) + ξ, and
M(x, t) + ξ, respectively, and using the chain rule at the left-hand side of each equation we obtain the
following form:

∂

∂t
ln(S+ ξ) =

1
(S+ ξ)

[
−µ1S−α1MS+ d1

∂2S

∂x2

]
,

∂

∂t
ln(E+ ξ) =

1
(E+ ξ)

[
c− λE+

ΓES

S+ 1
− p(T +M)E+ d2

∂2E

∂x2

]
,

∂

∂t
ln(T + ξ) =

1
(T + ξ)

[
β(1 − bT)T − (σE+α2M)T + d3

∂2T

∂x2

]
,

∂

∂t
ln(M+ ξ) =

1
(M+ ξ)

[
−µ2M+ V(t) + d4

∂2M

∂x2

]
.

(5.1)

For fixed N,K ∈ N, define the sets Ip = 1, 2, . . . ,p for each p ∈ {N,K}, and Ip = {0} ∪ Ip, where Ip is the
closure of Ip. Also, we define ∂J = IN ∩ ∂B. Assume the discrete partition for the t and x on the domain
[a,b], and [0, t∗] as following:

a = x0 < x1, . . . , xn < xn+1 < · · · < xN = b, ∀n ∈ IN,
0 = t0 < t1, . . . , tk < tk+1 < · · · < tK = t∗, ∀k ∈ IK.

The discrete operators for each n ∈ IN−1,k ∈ IK−1 are

δtW
k
n =

Wk+1
n −Wk

n

τ
, δ2

xW
k
n =

Wk
n+1 − 2Wk

n +Wk
n−1

h2 ,

where W = {S,E, T ,M}. Substituting these discrete operators at the time tk into model (5.1) gives:

δtln(S
k
n + ξ) =

1
(Skn + ξ)

[−µ1S
k
n −α1M

k
nS
k
n + d1δ

2
xS
k
n],

δtln(E
k
n + ξ) =

1
(Ekn + ξ)

[c− λEkn +
ΓEknS

k
n

Skn + 1
− p(Tkn +Mk

n)E
k
n + d2δ

2
xE
k
n],

δtln(T
k
n + ξ) =

1
(Tkn + ξ)

[β(1 − bTkn)T
k
n − (σEkn +α2M

k
n)T

k
n + d3δ

2
xT
k
n],

δtln(M
k
n + ξ) =

1
(Mk

n + ξ)
[−µ2M

k
n + V(t) + d4δ

2
xM

k
n].

We have obtained an exponential mathematical system that can be rewritten as follows:

Sk+1
n = FS = (Skn + ξ) exp (φS) − ξ, Ek+1

n = FE = (Ekn + ξ) exp (φE) − ξ,

Tk+1
n = FT = (Tkn + ξ) exp (φT ) − ξ, Mk+1

n = FM = (Mk
n + ξ) exp (φM) − ξ,

(5.2)
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where

φS =
τ((−µ1S

k
n −α1M

k
nS
k
n + d1δ

2
xS
k
n)

Skn + ξ
,

φE =
τ(c− λEkn + ΓEknS

k
n

Skn+1 − p(Tkn +Mk
n)E

k
n + d2δ

2
xE
k
n)

Ekn + ξ
,

φT =
τ((β(1 − bTkn)T

k
n − (σEkn +α2M

k
n)T

k
n + d3δ

2
xT
k
n)

Tkn + ξ
,

φM =
τ(−µ2M

k
n + V + d4δ

2
xM

k
n)

Mk
n + ξ

,

subjected to:

S0
n = GS(xn) ,E0

n = GE(xn) , T 0
n = GT (xn) ,M0

n = GM(xn), ∀n ∈ IN ,

also,

Skn = wS(xn, tk), ∀(n,k) ∈ ∂J× IK, Ekn = wE(xn, tk), ∀(n,k) ∈ ∂J× IK,

Tkn = wT (xn, tk), ∀(n,k) ∈ ∂J× IK, Mk
n = wM(xn, tk), ∀(n,k) ∈ ∂J× IK,

and define the (N+ 1)-dimensional real vectors as

Wk = (Wk
0 ,Wk

1 ,Wk
2 , . . . ,Wk

n, . . . ,Wk
N−1,Wk

N).

Theorem 5.1 (Existence and uniqueness). Let Wk
n > 0 and ξ > 0. Then, the discrete model (5.2) has a unique

solution WK+1
n .

Proof. Since Wk
n > 0, ξ > 0, and Wk+1

n is defined uniquely in the system (5.2), the solution exists and is
unique.

Theorem 5.2 (Constant solutions). Let Wk
n be the zero vectors for fixed k ∈ Īk. Then, the sequence (Wk

n)
K
k=0 is

a solution for the system (5.2) if GW ≡ 0, ωW ≡ 0, and c = 0.

Proof. Assume the vectors W0
n = 0 satisfy the system (5.2) and the initial and boundary conditions. For

some k ∈ ĪK−1, if Wk
n = 0, then GW = 0 and ωW = 0, by the system (5.2) becomes: Wk+1

n = FW(0) = 0,
for each n ∈ IN−1. Therefore, the zero vector is the constant solution.

Lemma 5.3. Define the function FW(w) = gW exp(φW) − ξ, where gW(w) = w+ ξ as in (5.2). Assume FW ,φ
and g are mapping from [0, 1] to R, φ and gW are differential for each w ∈ [0, 1] and for some ξ ∈ R, then FW(w)
is increasing in [0, 1] if F ′W(w) = gW(w)φ ′(w) + g ′W(w) > 0.

Theorem 5.4 (Increasing functions). Assume the function FW(w) is as defined in Lemma 5.3. Then, FS(w),
FE(w), FT (w), and FM(w) are increasing functions if they satisfy the following conditions respectively:

τBS < ξ, τBE < ξ
(
ΓSτ

S+ 1
+ 1
)

, τBT < ξ(β+ 1), τBM < ξ,

where

BS = d1

(
akS,n + ekS,n +

2ξ
h2

)
+ ξ

(
µ1 +α1M

k
n

)
,

BE = c+ d2
(
akE,n + ekE,n

)
+ ξ

(
2d2

h2 + λ+ pMk
n + pTkn

)
,

BT = d3
(
akT ,n + ekT ,n

)
+ ξ

(
bβTkn +

2d3

h2 +α2M
k
n + σEkn

)
,

BM = d4
(
akM,n + ekM,n

)
+ ξ

(
2d4

h2 + µ2

)
+ V(t).
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Proof. Let HW(w) = gW(w)φ ′(w) + g ′W(w), where gW(w) = w+ ξ and g ′W(w) = 1, and for each W ∈
{S,E, T ,M}, HW(w) can be found as

HS(w) =
RS(w)

w+ ξ
, HE(w) =

RE(w)

w+ ξ
, HT (w) =

RT (w)

w+ ξ
, HM(w) =

RM(w)

w+ ξ
, ∀w ∈ [0, 1],

where

RS(w) = w+ ξ− τBS, ∀w ∈ [0, 1], RE(w) = w+ ξ− τBE +
ξΓSτ

S+ 1
,

RT (w) = w+ ξ− τBT + ξβ, RM(w) = w+ ξ− τBM,

where

BS = d1

(
akS,n + ekS,n +

2ξ
h2

)
+ ξ

(
µ1 +α1M

k
n

)
,

BE = c+ d2
(
akE,n + ekE,n

)
+ ξ

(
2d2

h2 + λ+ pMk
n + pTkn

)
,

BT = d3
(
akT ,n + ekT ,n

)
+ ξ

(
bβTkn +

2d3

h2 +α2M
k
n + σEkn

)
,

BM = d4
(
akM,n + ekM,n

)
+ ξ

(
2d4

h2 + µ2

)
+ V(t).

It is obvious that HS(w) > 0 , HE(w) > 0, HT (w) > 0, and HM(w) > 0, if they satisfy the following
conditions, respectively,

τBS < ξ, τBE < ξ
(
ΓSτ

S+ 1
+ 1
)

, τBT < ξ(β+ 1), τBM < ξ.

By Lemma 5.3 the functions FkWn
(w) are increasing functions for ∀ w ∈ [0, 1], ∀ n ∈ IN−1 and k ∈ ĪK−1.

Using the hypotheses, the vectors akW and ekW are defined as follows: | akWn
|6 1

h2 and | ekWn
|6 1

h2 for
each k ∈ ĪK and W ∈ {S,E, T ,M}.

Theorem 5.5 (Boundedness). Let w ∈ [0, 1], ξ > 0. If c+ Γ/2 < λ+ 2p, β < bβ+ σ+ α2, and V(t) < µ2
hold, then there are unique sequences of vectors (Wk)Kk=0 that satisfies 0 < Wk < 1, for each W ∈ {S,E, T ,M}.

Proof. Let FW is a mapping function in the domain [0, 1]. Then, we have the initial value at w = 0 as

FS(0) = ξ exp (0) − ξ, FE(0) = ξ exp (
τ

ξ
c) − ξ, FT (0) = ξ exp (0) − ξ, FM(0) = ξ exp (

τ

ξ
V(t)) − ξ.

Thus FW(0) = 0 if c = 0 and V(t) = 0. On other hand, we get

φS(1) <
τ

1 + ξ
(−µ1 −α1), φE(1) <

τ

1 + ξ
(c− λ+ Γ/2 − 2p),

φT (1) <
τ

1 + ξ
(β(1 − b) − σ−α2), φM(1) <

τ

1 + ξ
(−µ2 + V(t)).

Thus, φW(1) < 0 if c+ Γ/2 < λ+ 2p, β < bβ+ σ+ α2, V(t) < µ2. If φW(1) < 0, then FW(1) < 1. Since
the functions are increasing in [0, 1], and 0 < FW(0) < FW(1) < 1, then FW(w) is bounded in [0, 1]. Let the
sequence Wk

n such as 0 < Wk
n < 1, we have Wk+1

n = FW(Wk
n), therefore 0 < Wk+1

n < 1.
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6. Dynamics of the system

6.1. Before treatment
First, we study the system (2.1) before starting the treatments (i.e., M = S = 0). Assume the initial

conditions of system (5.2) as follows:

T(x, 0) = T0e
x, E(x, 0) = E0e

1−x.

The value of β has been chosen based on stability condition and the other value of parameters are in
Table 1. Figure 2 Shows decrease in the concentration of effector cell E0 to fight cancer, and tumor cell T0
grows fast. The parameters used are β = 5.2, c = 0.17, ξ = 0.1, τ = 0.0001, and N = 1000, with diffusion
coefficients: d2 = 0.1, and d3 = 0.98111. Figure 2 indicates that the tumor cells are expected to grow and
the effector cells decay.

6.2. After treatment
Next, we study the diffusive system which includes stem cells transplant and chemotherapy. In this

case, we consider S > 0 and M > 0. We assume the initial conditions of the system (5.2) as follows:

S(x, 0) = S0e
−x, T(x, 0) = T0e

x, E(x, 0) = E0e
1−x, M(x, 0) =M0e

x.

The stem cells decay because of their ability to differentiate, the chemotherapy drug and effector cells
increase in space while the tumor cells decay as we can see in Figure 3. Also, the numerical solutions
at the time t = 1, 3, 5 are plotted in Figure 3. However, Figures 2 and 3 present the biological meaning.
Before the treatment, tumor infection starts in Figure 2, the concentration of effector cells tends to decrease
because interaction with tumor cells into the tissue, while tumor cells increasing. While after treatment,
the stem cells decrease because they differentiate into other type of cells or another stem cells. Also,
the tumor cells decrease as a results of the treatments effects, which means an infected cell could die or
return to being an uninfected cell. As a result, the infected cells, and the concentration of chemotherapy
decreases as we see in Figure 4.
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Figure 2: The plots present the beginning of infection where no therapy started (S = 0, M = 0).
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Figure 3: The plot of S,E, T ,M at t = 1 graph (e), t = 3 graph (f), t = 5 graph (g); with diffusion coefficients: d1 = 0.1,d2 =
0.1,d3 = 0.5, and d4 = 0.1.

Figure 4: The 3D-plot of S,E, T ,M, d1 = 0.1,d2 = 0.1,d3 = 0.5, and d4 = 0.1.
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7. Conclusion

In this paper, we reviewed a new mathematical model and studied the interaction between cancer cells,
chemotherapy and stem cells, and the effect of effector cells by their diffusion terms. As well, we deduced
the numerical simulation by (FDM) with helping an exponential type technique. Also, We observed the
dynamics of the mathematical system of two cases with proposed conditions. So that, the first case is
that the cancer is present and free of treatment as a result the previously used parameters and coefficients
indicate that the cancer continues its attack inside the tissue cells and spreads despite the resistance of the
effector cells. Finally, in the second case, the treatment is present (under the initial conditions) so that the
stem cells with effector cells are supportive of the chemotherapy, which strengthens the resistant immune
system and can eliminate cancer and reduce its spread. As a results of this work, we are able to notice
the behavior of the components of the system with respect to the space (x) as following: (i) the stem cell
decay in the body as a result of its ability to differentiate to different type of cell; (ii) the concentration of
chemotherapy increase in cells; (iii) the tumor decays; and (iv) the concentration of effector cell decreases
in space x because the effect of chemotherapy.
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