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Abstract
In the present paper, we consider a special hierarchy of equations comprising the short pulse equation, the sine-Gordon

integrable hierarchy and the elastic beam equation. These equations are highly non-linear and rely on transformations to arrive
at solutions. Previously, recursion operators and hodograph mappings were successful in reducing these equations. However,
we show that via the conservation laws or the one-parameter Lie group, the special hierarchy may be integrated and will admit
the exact solutions that feature elliptical functions.
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1. Introduction

In the world of nonlinear partial differential equations, hierarchies of equations are of superior interest
[12, 23]. While there are many reasons for this, the primary reason that hierarchical equations attract so
much interest is due to its admission of a recursion operator. We consider one such equation, viz. the
well known short pulse equation (SPE)

uxt = u+
1
6
(u3)xx, (1.1)

where u = u(t, x) represents the magnitude of an electric field, that appeared in [27], associated with
ultra-short pulses in a nonlinear medium. A recursion operator may be constructed to build a hierarchy
containing Eq. (1.1) (see [5]), and also, a second related equation

uxt =
1
4

(
uxx

(1 + ux2)

3
2
)
xx

, (1.2)

known as the elastic beam equation (EBE) [9]. The EBE is a significant model in the theory of nonlinear
waves and describes the evolution of nonlinear transverse oscillations of elastic beams under tension. The
EBE can also be embedded in the Wadati-Konno-Ichikawa system [29].
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Moreover, it was shown in [25], that Eq. (1.1) is related, through a hodograph transformation [8], to
the sine-Gordon (SG) equation. We consider the full hierarchy that contains the sine-Gordon equation,
viz.

utt − uxx =

N∑
i=1

βi sin (iu). (1.3)

The hodograph transformation connecting (1.1) and (1.3) was further explored [17] to construct solitonic
and quasi-periodic solutions. The SG equation offers a variety of physical applications and is structural
similarity to the linear relativistic Klein-Gordon equation. SG equations have wide applications and admit
many interesting computational results [10, 11]. The double SG equation (DSG) equation, with N = 2
supports the study of charge density waves and ferromagnetic materials (refer to [14] and references
therein), while the triple SG equation (TSG) equation (N = 3) is frequently studied in the propagation of
optical pulses [7]. Since the short pulse equation (1.1) and the SG equation both admit the bi-Hamiltonian
feature [6, 16, 26], each of them is associated with the corresponding infinite bi-Hamiltonian integrable
hierarchy due to Magri’s theory [15].

In this paper, we study the corresponding solutions between the two equations with deep connections
to the short-pulse integrable hierarchy, namely, the classical SG integrable hierarchy and the EBE equation.
More precisely, in view of the correspondence between the SPE and the SG equation, it is anticipated that
the respective solutions may be related in a certain manner.

Lie symmetries and conservation laws are important tools for analysis [2–4], and many recent studies
have relied on these methods [18–22].

The structure of the paper is as follows. In Section 2, some preliminary notation and theory is defined.
Section 3 contains the exact solutions and conservation laws of all equations under study, whereby we
search for commonality between the equations, their symmetries, conserved values and derived solutions.
Lastly, Section 4 concludes the paper.

2. Preliminary discussion

Let
Gα

(
x,u(k)

)
= 0, (2.1)

be a system of nonlinear differential equations, where u(k) represents the kth derivative of u with respect
to x, where x = (x1, . . . , xp). We consider the symmetry vector field

X = ξi∂xi + η
α∂uα , (2.2)

where the infinitesimal criterion for invariance is given by [24]

X
[
Gα

(
x,u(k)

)]
= 0, when Gα

(
x,u(k)

)
= 0. (2.3)

The operator in Eq. (2.2) can be used to define the Lagrange system

dxi

ξi
=
duα

ηα
,

whose solution provides the zero-order invariants that reduce the equation,

W[0](xi,uα).

A current T = (T 1, . . . , Tn) is conserved if it satisfies

Di T
i = 0, (2.4)

along the solutions of (2.1). If X and T satisfy

X(T i) + T iDj(ξ
j) − T jDj(ξ

i) = 0, (2.5)

then X is said to be associated with T [13].
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3. Exact solutions and conservation laws

In this section, we derive the solutions and conservation laws of the SPE and its two associated models,
the SG hierarchy and EBE model.

3.1. The short pulse equation
Suppose we consider

X = ξ1(x, t,u)∂x + ξ2(x, t,u)∂t + η1(x, t,u)∂u,

to be the symmetry generator for equation (1.1). The Lie symmetry for condition from equation (2.3),
solves to provide the following individual symmetries

X1 = ∂x, X2 = ∂t, X3 = −x∂x + t∂t − u∂u, (3.1)

which form a 3-dimensional algebra and have the commutator relations as Table 1.

Table 1: Lie commutator table of (3.1).
[, ] X1 X2 X3

X1 0 0 X1
X2 0 0 −X2

X3 −X1 X2 0

As defined above, for us to calculate the conserved vector we use the multiplier approach. Therefore,
we find that there exists nontrivial differential functions Λ(x, t,u), called multipliers, such that

Λ(1.1) = DtTt +DxTx, (3.2)

and
δ

δu
(LHS of (3.2)) = 0,

where δ
δu is the standard Euler operator which annihilates divergence expressions.

In each case, we have the conserved vector T = (Tt, Tx), where Tt is the conserved density and Tx is
the conserved flux.

The conservation laws of the SPE, are calculated to be

T1
t =

1
2

uxx
2

(ux2 + 1)
5
2

, T1
x =

1
4
u2uxx

2 + 4uux2uxx + 4ux4 + 4uuxx − 4uxtuxx + 8ux2 + 4

(ux2 + 1)
5
2

,

given by

Λ(x, t,u) =
1
2

2ux2uxxx − 5uxu2
xx + 2uxxx

(ux2 + 1)
7
2

,

and

T2
t = −

√
ux2 + 1, T2

x =
u2

2

√
ux2 + 1,

given by
Λ(x, t,u) =

ux√
ux2 + 1

.

In testing for association between the symmetries and the conserved vector T2, we find that X1 and X2
meet the association condition (2.5). Now, considering a linear combination X = X1 + cX2 (c is an arbitrary
constant), yielding the transformations

s = x, r = cx− t.

Hence we proceed to find the reduced conservation law Tr, which is given by:
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Tr =
TtDt(r) + T

xDx(r)

Dx(s)Dt(r) −Dt(s)Dx(r)
, (3.3)

and using Tr, along with the transformations obtained, we can derive the analytical solutions of the
equations understudy [28].

Now transforming the component of the conserved vector using (3.3) gives that

Tr = −
√
c2ur2 + 1

(
1 +

cu2

2

)
.

Since DrTr = 0, which implies that Tr = k,k ∈ R, we get the ODE

k+
√
c2u ′2 + 1

(
1 +

cu2

2

)
= 0. (3.4)

Solving Eq. (3.4) gives the implicit solution

r±
∫u(r) (

a2c+ 2
)
c

√
−a4c2 − 4a2c+ 4k2 − 4

da−C1 = 0,

where C1 is an arbitrary constant. The integral may be evaluated, and we have the solution

r± c
(
(k+ 1)EllipticE

(
u (r)

√
2

2

√
c

k− 1
,

√
−
k− 1
k+ 1

)
− EllipticF

(
u (r)

√
2

2

√
c

k− 1
,

√
−
k− 1
k+ 1

)
k
)

×

√
c (u (r))2 + 2k+ 2

k+ 1

√
−2 c (u (r))2 + 4k− 4

c

1√
−(u (r))4 c2 − 4 c (u (r))2 + 4k2 − 4

−C1 = 0,

where EllipticF is the Elliptic integral of the first kind and EllipticE is the Elliptic integral of the second
kind [1]. We leave the solution in implicit form, and when inverting the transformation, for the SPE
solution we have

cx− t± c
(
(k+ 1)EllipticE

(
u (x, t)

√
2

2

√
c

k− 1
,

√
−
k− 1
k+ 1

)
− EllipticF

(
u (x, t)

√
2

2

√
c

k− 1
,

√
−
k− 1
k+ 1

)
k
)

×

√
c (u (x, t))2 + 2k+ 2

k+ 1

√
−2 c (u (x, t))2 + 4k− 4

c

1√
−(u (x, t))4 c2 − 4 c (u (x, t))2 + 4k2 − 4

−C1 = 0.

3.2. The SG equations

Considering the vector field (2.2) for Eq. (1.3), the Lie symmetry for condition from equation (2.3),
solves to provide the symmetries

X1, X2, X4 = t∂x + x∂t,

which form a 3-dimensional Lie algebra with commutator relations as in Table 2.

Table 2: Lie commutator table.
[, ] X1 X2 X4
X1 0 0 −X2

X2 0 0 −X1
X4 X2 X1 0
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The components that satisfy the conservation law (2.4) of (1.3), are calculated to be

Tt = utux, ∀ N,

for all conserved densities, and the first few corresponding fluxes are

N = 1 : Tx = β1 cosu−
1
2
(u2
t − u

2
x),

N = 2 : Tx = β2cos2u+β1 cosu−
1
2
ut

2 −
1
2
ux

2 −β2,

N = 3 : Tx =
4
3
β3cos3u+β2cos2u−β3 cosu+β1 cosu−

1
2
ut

2 −
1
2
ux

2 −β2.

Similar to the previous case, X1 and X2 meet the association condition, and via the same transforma-
tions, gives that for N = 1,

Tr =

(
c3

2
−
c

2

)
u2
r − cβ1 cosu,

hence we get the ODE in r

k−

(
c3

2
−
c

2

)
u ′

2
− cβ1 cosu = 0. (3.5)

For k, c,β1 ∈ R, equation (3.5) has the solution

u(r) = 2am

[
1
4

(
2C1

√
k+ cβ1 +

r
√

2
√
c
√
(c− 1)(c+ 1)

√
k+ cβ1

1 − c

+
2r
√

2
√
(c− 1)(c+ 1)

√
k+ cβ1√

c
−

√
2
√
c
√

(c− 1)(c+ 1)r
√
k+ cβ1

c+ 1

)∣∣∣∣ 2cβ1

k+ cβ1

]
.

(3.6)

The function am[µ|κ] is the Jacobi amplitude. The above solution maps back to

u(x, t) = 2am

[
1
4

(
2C1

√
k+ cβ1 +

(cx− t)
√

2
√
c
√
(c− 1)(c+ 1)

√
k+ cβ1

1 − c

+
2(cx− t)

√
2
√
(c− 1)(c+ 1)

√
k+ cβ1√

c
−

√
2
√
c
√

(c− 1)(c+ 1)(cx− t)
√
k+ cβ1

c+ 1

)∣∣∣∣ 2cβ1

k+ cβ1

]
,

(3.7)

for a solution of (1.3).

(a) (b)

Figure 1: Graphical illustration of the analytical solutions are depicted, we select the parameter values C1 = 0, c = 3,β1 = 1,k = 1:
(a) 2D Plot of Eq. (3.6); and (b) 3D Plot of Eq. (3.7).
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(a) (b)

Figure 2: Graphical illustration of the analytical solutions are depicted, we select the parameter values k = 0, c = 2, β1 = 3
2 ,

C1 = 0: (a) 2D Plot of Eq. (3.6); and (b) 3D Plot of Eq. (3.7).

For N = 2, we have the reduced conservation law

Tr = cβ2 +
1
2
(
c2 − c

)
u2
r − cβ2 cos2 u− cβ1 cosu,

so that the ODE in r is

β2 +
(c− 1)

2
u ′

2
−β2 cos2 u−β1 cosu−

k

c
= 0. (3.8)

For k, c,β1,β2 ∈ R, Eq. (3.8) has a constant solution. However, in solving Eq. (3.8), some special cases
exist for particular values for β1, β2, c, and k.

For β1 = 1, k = 0, c = 3, and β2 = 1, we have the solution

u(r) = −2i tanh−1
(√√

5 + 2sn
[
i
√

1
2

(√
5 − 2

) (
C1 ± r√

2

)
|− 4
√

5 − 9
])

, (3.9)

where the function sn[µ|κ] is used in Jacobi elliptic functions. Reverting to the original variables, the
solution for Eq. (1.3), the DSG is

u(x, t) = −2i tanh−1
(√√

5 + 2sn
[
i
√

1
2

(√
5 − 2

) (
C1 ± (3x−t)√

2

)∣∣∣∣− 4
√

5 − 9
])

. (3.10)

(a) (b)

Figure 3: Graphical illustration of the analytical solutions are depicted, we select the parameter value C1 = 0: (a) 2D Plot of Eq.
(3.9); and (b) 3D Plot of Eq. (3.10).

As for N = 3, the conservation law is

Tr = c

(
β2 +

1
2
(
c2 − 1

)
u2
r −

4
3
β3 cos3 u−β2 cos2 u+β3 cosu−β1 cosu

)
.
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Setting this Tr = 0, and solving in general with β1, β2, β3, c, and k as arbitrary yields the implicit solutions

0 = r∓
∫u(r) √

6ρda

2
√
ρ
(

4β3 (cos (a))3 c+ 3β2 (cos (a))2 c− 3β3 cos (a) c+ 3β1 cos (a) c− 3βc+ 3k
) − C1,

where ρ = c (c− 1) (c+ 1). Solving for particular values for β1, β2, β3, c, and k yields some interesting
solutions. For example, where C1 = 0,β2 = 0, c = 2,β3 = 1,β1 = 0,k = 1/3, the solution becomes

u(r) =
2
3
sn

[√
2(r−C2)

4

∣∣∣∣43
]

, (3.11)

in original variables, the solution for the TSG is

u(x, t) =
2
3
sn

[√
2(2x− t−C2)

4

∣∣∣∣43
]

. (3.12)

(a) (b)

Figure 4: Graphical illustration of the analytical solutions are depicted, we select the parameter value C2 = 0: (a) 2D Plot of Eq.
(3.11); and (b) 3D Plot of Eq. (3.12).

3.3. The elastic beam equation
Next, we turn our attention to the EBE (1.2). The individual symmetries of the EBE (1.2) are

X1, X2, X5 = x∂x + 3t∂t + u∂u,

which form a 3-dimensional algebra and have the commutator relations as in Table 3.

Table 3: Lie commutator table.
[, ] X1 X2 X5

X1 0 0 −1
3 X1

X2 0 0 −X2

X5
1
3X1 X2 0

Conservation laws are challenging to find and not very useful in obtaining solutions to the EBE,
therefore we use the traditional Lie symmetry reduction method. A reduction of (1.2) by cX2 − X1 leads
to the reduced equation

(3c6 − 12c8(F ′(z))2)(F ′′(z))3 + c(1 + (cF ′(z))2)(F ′′(z))(4
√

1 + (cF ′(z))2 + 8(cF ′(z))2
√

1 + (cF ′(z))2
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+ 4(cF ′(z))4
√

1 + (cF ′(z))2 + 9c5(F ′(z))F ′′′(z)) − c4(1 + (cF ′(z))2)2F ′′′′(z) = 0,

where u(x, t) = F(z), z = t+ cx.
The solution here is F(z) =

∫
G(z)dz+C4, where G(z) is given by the expression

∫G(z) ±
√

2c3√
−c
(
−C1 f2c7 +C2

√
f2c2 + 1c5f−C1 c5 + 4

√
f2c2 + 1

)
(f2c2 + 1)

df+ 2C3 + 2 z = 0.

A simpler result is found if we set c = −1,C1 = C2 = 0 in the above. The integral equals

−
G(z)

4
√
G(z)2 + 1

+
1
2
G(z) 2F1

(
1
4

,
1
2

;
3
2

; −G(z)2
)

,

where 2F1 is a Hypergeometric function. Hence G(z) satisfies

±
√

2

−
G(z)

4
√
G(z)2 + 1

+
1
2
G(z) 2F1

(
1
4

,
1
2

;
3
2

; −G(z)2
)+ 2C3 + 2 z = 0.

The solutions of Eq. (1.2) are dependent on the Hypergeometric function and influenced by the
function G(z). Note that the Hypergeometric function is expressible in terms of an elliptical integral.

4. Conclusion

It is indeed very surprising that the SPE shares strong mathematical links with the EBE and the
SGEs. Whilst the SPE describes the evolution of very short pulses in nonlinear media, the EBE describes
nonlinear transverse oscillations of elastic beams under tension and the SGE has applications to waves and
pulses. This study explored the conservation law properties of the above-mentioned equations, except the
EBE which admits complicated expressions. In searching for solutions through conservation laws, we
exploited the association between the conservation laws and the space and time translation symmetries.
Most of the equations admit multipliers that generate conserved components, that is, the densities and
fluxes. The SPE possesses two conservation laws, the class of SGEs all admit one conservation law each,
all with the same conserved density but different fluxes as expected.

The SPE conservation law was reduced from second-order to first-order, and the resulting ODE when
solved produced an implicit solution with elliptical functions. The family of SGEs were analyzed using
first-order ODEs; this family had varying solution types. In the case of N = 1, the solutions were found
explicitly. In the case of N = 2 and N = 3, some solutions were in the implicit form expressed as
integrals, while other solutions involved special functions such as the elliptical integral of the first kind or
a sinusoidal function. The EBE was reduced from fourth-order PDE to a fourth-order ODE via an invariant
function related to a travelling wave transformation. It is found that the resulting ODE, is extremely
non-linear and difficult to solve. However, it has an integral solution that consists of a hypergeometric
function.

In the literature, the recursion operator that connects the SPE to the EBE and the hodograph transfor-
mation in the case of the SGE, are used to find solutions of these above mentioned equations. We have
shown that solutions may be achieved either via symmetries or conservation laws, and interestingly, all
solutions are elliptical in nature.
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