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Abstract 
In this paper, the sine-cosine, the extended tanh method has been used to obtain 
solutions of the modified KdV(mKdV) equation. New periodic solutions are formally 
derived. 
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1    Introduction 
The investigation of exact traveling wave solutions to nonlinear evolutions equations plays an 
important  role in the study of nonlinear physical phenomena. Applications of the results 
obtained for the mKdV equation in this paper is to description of ion-acoustic waves in an 
unmagnetized plasma. 
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The aim of the present paper is to extend the sine-cosine and the extended tanh methods to 
finding new exact solutions for mKdV equation

 
where is expressed as follows[7] 
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 2   Analysis of method 
For the sine-cosine and the extended tanh methods, we first unite the independent  variable x 
and t into one wave variable ξ=x-ct, to carry out a PDE in two independent variables 
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into an ODE 
                                                                  Q(u,u',u'',u''',...).
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Eq.(3) is then integrated as long as all  terms contain derivative. Usually the integration 
constants are considered to be zeros in view of the localized solutions. 
 2.1. The sine-cosine method 
For this method the solutions of  the reduced ODE equation can be expressed in the form  
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Where λ, μ, β are parameters that will be determined. [2,3,4,5] 
Substituting the cosine assumption and their derivatives into the reduce ODE gives a 

trigonometric equation of )(cos k  or  )(sin k terms. The parameters are then determined by 

first balancing  the exponents of each pair of cosine determine k. We next collect all coefficients 

of the same power in )(cos k  or  )(sin k where these coefficients have to vanish. This gives a 

system of algebraic equations among the unknowns c, λ, μ, ξ that will be determined. 
2.2. The extended tanh method 
The extended tanh method introduces a new independent variable )tanh(Y , that leads to the 

changes of derivatives: 
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The solutions for the extended tanh method can be proposed as a finite power series in Y  in the 
form 
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Where the parameter M is a positive, in most cases, that will be determined. To determine the 
parameter M, we usually balance the linear terms of highest order in the resulting equation with 
the highest order nonlinear terms. We then collect all coefficients of powers of Y in the resulting 
equation where these coefficients have to vanish. This will give a system of algebraic equations 
involving the parameters ,,),,...,1(),,...,0( MkbMka kk  and c. Having determined these 

parameters we obtain an analytic solution u(x,t) in a closed form. [1,6] 

3   Application of methods 
3.1. Using the sine-cosine method  
Substituting u(x,t)=u(ξ), where the wave variable is ξ=x-ct, carries out the mKdV equation(1) to 
the ODE  
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Once integrating (7), setting the constant of integrating to zero, we obtain 
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Substituting cosine anstaz (4) into (8) gives 
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Equating the exponents of the second and the last cosine functions in above equation, collecting 
coefficients of each pair of cosine functions of like exponents, and setting it equal to zero, we 
obtain the following system of algebraic equations: 
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so that this gives 
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and μ is any real number. 
Substituting (11) into (4), we find the following solution for modified KdV equation: 
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3.1. Using  the extended tanh method 
As shown before, the mKdV equation(1) can be transformed to the ODE 
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Balancing u'' with 3u gives M+2=3M, so that M=1, therefore  the extended tanh method assumes 
that finite expansion  
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where ).tanh(Y

 
Substituting (13) into (12) and using (5), collecting the coefficients of 

)33(  jY j  and equating this coefficients to zero and solving the system of algebraic for 

,,, 110 baa  and c we find the following set of 
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and μ is any real number.  Substituting (14), into (6) gives 

)}2({tanh),( 21 txstxu   
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Conclusions  
The sine-cosine,  the extended tanh methods were used to investigate nonlinear mKdV equation. 
The work emphasized our belief  the two methods are powerful technique to handle nonlinear 



S. R. Mousavian, H. Jafari, C. M. Khalique and  S. A. Karimi/ TJMCS Vol .2 No.3 (2011) 413-416 

416 
 

digestive equation, hence these methods can be used in a wider context. The validity of these 
methods has been tested by applying to modified KdV equation. Finally it is a promising and 
powerful method for other nonlinear equations in mathematical physics. 
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