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Abstract: In this paper a new approach for finding optimal path planning in a plane with 
stationary obstacles is discussed. At first, we consider a movable rigid object in a plane with 
stationary obstacles. The goal is to find the shortest path planning which brings rigid object 
from a given initial point to a given final point such that the length of path be minimized and 
distance between object and obstacles be maximized. By considering the length of path and the 
distance between rigid object with obstacles as objective functions, we obtain a multi-objective 
problem. Because of the imprecise nature of decision maker's judgment, these multiple 
objectives are viewed as fuzzy variables. Then we determine intervals for the value of objective 
functions such that these intervals for the distance between rigid object and obstacles are 
given by decision maker, and for the length of path is achieved by solving two optimal non-
linear problems (ONP). Now, we define a decreasing or increasing membership function for 
any objective functions on achieved intervals. Then the optimal   
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policy is to find an optimal path which maximize all of membership functions, simultaneously. 
After a little calculation, we obtain an ONP. By solving this ONP, a (local) Pareto optimal 
solution for original goal is attained. Numerical example is also given. 
 
Keywords: Optimal path planning; multi-objective problem; Optimal non-linear problem; 
Pareto optimal solution. 

 
1. introduction    

 
The problem of finding an optimal path planning for a movable rigid object in a plane with 
stationary obstacles is one of the most applicable problems, especially in robot and recently 
surgery planning and etc. Latombe [1] has gathered novel methods for path planning in the 
present of obstacles and some extensions of them. In reference [2] two novel approaches, 
constrained optimization and semi-infinite constrained optimization, for unmanned under 
water vehicle are considered. In reference [3] is presented a new approach based on measure 
theory for finding approximation optimal path planning problem in the present of obstacles. In 
all of above references the distance between rigid object and obstacles are assumed crisp 
values. But, in practice we desire to achieve the shortest path with the greatest distance 
between rigid object and obstacles, simultaneously. All of these objectives are contradictory. 
Then, we need a multi-objective decision making technique to look for a satisfying solution 
from these conflict objectives. Optimization for a multi-objective problem is a procedure 
looking for a compromise policy. The result, called a Pareto optimal that consists of an infinite 
number of alternatives. In references [4,5] there are many methods according to different 
criteria. For example, Cohon [5] categorized two methods generating and preference-base. The 
generating methods produce a set of Pareto optimal and then the decision maker select one of 
them on a basis of subjective value judgment. The preference-base methods, contain decision 
maker's preference as the solution process goes on, and the best solution of decision maker's 
preference is selected. Thus, all of these multi-objective optimization methods for finding a  
Pareto optimal solution are filled with fuzzy properties [6]. Then we consider the length of 
path planning and the distance between rigid object and obstacles as objective functions which 
are fuzzy goals. Now we determine intervals for the value of objective functions such that these 
intervals for the distance between object and obstacles are given and for the shortest path is 
achieved by solving two optimal non-linear problems (ONP). Now, we defined a decreasing or 
increasing membership function for any objective functions on achieved intervals. Then, the 
optimal policy is to find an optimal path planning which maximize all of membership functions, 
simultaneously. After a little calculation, we attain an ONP. Finally, by solving ONP we achieve 
the approximation of a (local) Pareto optimal solution for original problem such that if the 
solution of ONP is unique, a (local) Pareto optimal solution is attained. 

 
2. Problem statement 

 
Consider a movable rigid object as a disk with r radius and ))(),(()( 21 txtxtx  center in a plane 

with stationary obstacles which are disks with ir radius and ),( ii  centers, qi ,...,1 . Set  
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2 2

1 2
0

T

I( x( t )) x ( t ) x ( t ) dt    , 

 
Where objective function ))(( txI  is the length of  the path  which must be minimized.  

Now, the distance between object and the i th obstacle is is defined as follows: 

0
i ix(.) i

t [ ,T ]
( x( t )) min ( x( t )) 


 ,  

where 
ix(.)t  is the time in 0[ ,T ]  that minimized i( x( t )) , clearly this time depends on x(.) . 

Then, 
i ix(.)( x( t ))  should be maximized to obtain a path as safe as possible. 

Set  1 2 0 i fx( t ) ( x ( t ),x ( t ))|x( ) x ,x(T ) x     , where ix  and 
fx as the first and final points 

are given. 
Now, the goal is to find an optimal path planning which minimizes the length of path, 

fI( x( t )) , and maximizes the distance between object   and obstacle i , 1i ix(.)( x( t )),i ,...,q  . 

That is 
 

1 2

f
x(.)

i ix(.)
x(.)

min I( x( t )),

max ( x( t )),i , ,...,q.











                                                                                                                                      

 
or in a more compact form 
 

 1 q
x(.)
min Z( x(.)) I( x(.)) , ( x(.)) ,..., ( x(.)) 


                                                                                   (1) 

 
These objective functions are conflicted with together. The optimization of one objective 
implies the sacrifice of other target. Therefore, we must make some compromise among these 
goals. In contrast to the optimality used in single objective optimization problems, Pareto 
optimality characterizes the solutions in a multi-objective optimization problems [4,5].  
 

Definition 1. )(* tx  is said to be Pareto optimal for problem (1), if and only if there are not 

)(tx  such that ))(())(( * txItxI    and ))(())(( txtx ii   for all  qi ,...,1 and for some 

 qj ,...,1 , ))(())(( txtx ii   or ))(())(( * txItxI   . 

 
From the above definition, the number of solutions satisfying Pareto optimality in a multi-
objective optimization problem can be infinite. It is difficult to achieve a solution of Pareto 
optimal solutions without sufficient knowledge of objective. Then, we define a fuzzy problem 
for finding a Pareto optimal solution. 
 
3. Formulation of  the fuzzy problem 
 

By determining intervals 1l u

i i[d ,d ],i ,...,q,  by decision maker, and solving the following of 

ONPs, interval ],[ 21 II  for the length of the shortest path is obtained.  
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2 2

1 1 2
0

1

T

l

i i

min I ( x( t )) x ( t ) x ( t ) dt

( x( t )) d i ,...,q

x( t )



 

 



  

                                                                                       (2) 

 
2 2

2 1 2
0

1

T

u

i i

min I ( x( t )) x ( t ) x ( t ) dt

( x( t )) d i ,...,q

x( t )



 

 



  

                                                                                      (3) 

 

Now, we determine fuzzy goals I
~

and qii ,...,1,~  on intervals ],[ 21 II  and ],[
l

i

u

i dd   for  

Objective  functions ))(( txI   and ))(( txi , respectively.  

 

1

1 2 1 1 2

2

1

1

0

I

I( x(.)) I

( I( x(.))) ( I( x(.)) I ) /( I I ) I I( x(.)) I

I( x(.)) I






     
 





 



 
 

1

1 1

0
i

u

i i

u u l u l

i i i i i i i i

l

i i

( x(.)) d

( ( x(.))) ( d ( x(.))) /( d d ) d ( x(.)) d ; i ,...,q.

( x(.)) d





   





   


         
  



 

Where 
I

  and 1
i
,i ,...,q  , on intervals ],[ 21 II and ],[

l

i

u

i dd   are strictly monotonic 

decreasing, respectively. The original problem (1) is now equivalent to look for a suitable path 
planning policy that can provide the maximal degree of  membership  for the below multiple 
fuzzy objectives. 
 

 
1 1 q qIx( t )

max ( x( t )) ( I( x( t ))) , ( ( x( t ))) ,... , ( ( x( t )))       


                                               (4) 

 
The fuzzy optimization problem (4) is equivalent to the following problem: 
 

  1 1 q qI
x( t )
max ( I( x( t ))) , ( ( x( t ))) ,... , ( ( x( t )))      


     . 

 
Where    is a T-norm. By using Zadeh-min as a T-norm, we have:  
 

  1 1 q qI
x( t )
max min ( I( x( t ))) , ( ( x( t ))) ,... , ( ( x( t ))) ,      


    , 

 
or  
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1
i

I

i

max

( I( x( t )))

( ( x( t ))) ; i ,...,q

x( t )





 

  



  







                                                                                                     

 
After a little calculation, we achieve the following ONP: 
 

2 2

1 2 2 2 1
0

1

T

l u l

i i i i

max

x ( t ) x ( t ) dt I ( I I )

( x( t )) d ( d d ) ; i ,...,q

x( t )





 

   

   



  
                                                                            (5) 

 
Theorem 1 . Let *x (.) be a (local) optimal solution for ONP (5) such that 

I
~ and 1

i
,i ,...,q  , 

beings decreasing membership function, then )(* tx is a (local) Pareto for problem (1) (original 

problem) if  )(* tx be the unique solution of problem (5)  

 
Proof. See [7]. 
 
4. The solution of ONP’s 
 
There are many methods for solving ONP (2),(3) and (5) [1-3]. For example Borzabadi [3] 
defines the artificial control function u( t ) as x( t ) u( t ) and achieves an optimal control 

problem. Then, by using of measure theory that was established by Rubio [8], obtains an 
approximation solution. But, we use a new approach for solving these ONPs. 

 

Theorem 2. l

i i( x( t )) d  if and only if   0))(())((
0

 dtdtxdtx
T l

ii

l

ii  . 

Proof. The proof is trivial. 
 
By using theorem (2), the ONP (2) is equivalent to the following ONP: 
 

 

2 2

1 1 2
0

0

1 2 1 2

0 1

0 0

T

T
l l

i i i i

i f

min I ( x( t )) x ( t ) x ( t ) dt

( x( t )) d ( x( t )) d dt ; i ,...,q

( x ( ),x ( )) x , ( x (T ),x (T )) x

 

 

    

 





  

                                                    (6) 

 
Now, we partition interval ],0[ T  to n equal parts where n  is arbitrary fixed positive integer, 

and the  first derivative is approximated as follows:  
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1,...,02,1;))()((/))()(()( 11   nkjtxtxnttxtxtx kjkjkkjkjkj
 , 

 
where 0 0t   and Ttn  . Thus, by substituting in the problem (6), we have:  

 
1 21

2 2

1 1 1 1 2 1 2

0

1

0

1 2 1 2

0 1

0 0

/n

k k k k

k

n
l l

i k i i k i

k

i f

min I ( x( t )) (( x ( t ) x ( t )) ( x ( t ) x ( t )) )

( x( t )) d ( x( t )) d ; i ,...,q

( x ( ),x ( )) x , ( x (T ),x (T )) x

 



 







   

    

 







                                                  (7) 

 

Remark. As we know, an approximate value of integral 
b

a
f ( x )dx  is (b a ) f ( a ) . 

 
With the same method, the two ONPs (3) and (5) are obtained as follows: 
 

1 21
2 2

2 1 1 1 2 1 2

0

1

0

1 2 1 2

0 1

0 0

/n

k k k k

k

n
u u

i k i i k i

k

i f

min I ( x( t )) (( x ( t ) x ( t )) ( x ( t ) x ( t )) )

( x( t )) d ( x( t )) d ; i ,...,q

( x ( ),x ( )) x , ( x (T ),x (T )) x

 



 







   

    

 







                                                       (8) 

 
 

1 21
2 2

1 1 1 2 1 2 2 2 1

0

1

0

1 2 1 2

0 1

0 0

/n

k k k k

k

n
l u l l u l

i k i i i i k i i i

k

i f

min

(( x ( t ) x ( t )) ( x ( t ) x ( t )) ) I ( I I )

( x( t )) d ( d d ) ( x( t )) d ( d d ) ; i ,...,q

( x ( ),x ( )) x , ( x (T ),x (T )) x





   



 







     

        

 




                    (9) 

Theorem 3. The ONPs (7),(8) and (9) are equivalent to the ONPs (2),(3) and (5), respectively, 
if in the ONPs (7),(8) and (9) n tend to infinity. 
 
Proof. Is trivial.  
 
Thus, we can solve the ONPs (7),(8) and (9) by many packages such as Lingo, Matlab, Gino and 
etc. Finally, by solving the ONPs, we recognize the value of unknown pairs 

1 2 0k k( x ( t ),x ( t )) ,k ,...,n  and construct optimal path planning by joining 

points nktxtx kk ,...,0,))(),(( 21   together. Also, we may fit a curve by these points as an 

optimal path planning. 
 

5. Numerical example 
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Example . Consider a movable rigid object and five stationary obstacles as disks in a plane 
with below information: 
 
Object :    0 01r . ,  

 
Obstacles: 

 

1 1 2 2

3 3 4 4 5 5

1 2 3 4

5

1 8 1 5 0 5 0 5 0 7 0 85

0 2 0 2 0 3 0 8 0 85 0 2

0 1 5 0 2 0 1 0 2 0 1

0 015 0 0 1 1 40

i

l u u u u

i

u

i f

r / , i ,..., , ( , ) ( . , . ) , ( , ) ( . , . ) ,

( , ) ( . , . ) , ( , ) ( . , . ) , ( , ) ( . , . )

d ,i ,..., , d . , d . , d . , d . ,

d . ,x ( , ) , x ( , ) , n .

   

     

   

  

     

   

 

  
By solving the ONP (7) we achieve 4597.11 I such that in reference [3] is 1.4641. By solving 

the ONP (8) we obtain  7298.12 I . Finally, by solving the ONP (9), the optimal path planning 

with the length 5748.1* I  is achieved ( 0 5741.  ). The following figure shows the optimal 
path planning for the ONPs. 
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