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Abstract

Discrete Nicholson’s blowflies systems with patch structure and mortality terms are considered in this
paper. Based on certain discrete inequalities, we prove the boundedness of the systems. Using this result,
sufficient conditions are then established to guarantee the exponential extinction for the systems. We provide
numerical examples verified by illustrative figures to demonstrate the validity of the proposed results. c©2016
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1. Introduction and preliminaries

One of the most celebrated population models which was introduced by Gurney et al. in [7] to describe
the laboratory population of the Australian sheep–blowfly and to agree with Nicholson’s experimental data
obtained in [18] is the so called Nicholson’s blowflies model

x′(t) = −αx(t) + γx(t− τ)e−δx(t−τ). (1.1)

In biomedical terms, x is the density of the population at time t, α is the pair capita daily adult death rate, γ
is the maximum per capita daily egg production, 1/δ is the size at which the blowfly population reproduces
at its maximum rate and τ is the generation time or the time taken from birth to maturity. The dynamical
behavior of solutions for various modifications of this model has been extensively studied by many authors
during the last decades. We suggest the reader to consult some relevant papers [1, 11–13, 19, 22].
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It is well known that the optimal management of renewable resources has direct relationship to the
sustainable development of exploitation of population. The recent studies has also indicated that the con-
sideration of population models with density–dependent mortality will be more accurate at low densities.
One way to handle these two phenomena is to study population models with harvesting and mortality
terms. In his remarkable paper [5], Berezansky et al. has put forward an open problem about the dynamical
behavior of Nicholson’s blowflies models of the forms

x′(t) = −H(x)− αx(t) + γx(t− τ)e−δx(t−τ) (1.2)

and
x′(t) = −M(x) + γx(t− τ)e−δx(t−τ), (1.3)

where H and M denote the harvesting and mortality terms, respectively. The papers [4, 6, 8, 9, 14–17, 21, 26]
have given an affirmative answer to the problem raised by Berezansky et al. for equations (1.2) and (1.3). In
comparison to the extensive investigation of these two equations in the literature, the study of the discrete
Nicholson’s model is considered to be seldom [10, 20, 24, 25]. Indeed, the discrete counterpart of equation
(1.2) has been lately attacked by the current authors in [2, 3, 23]. To the best of authors’ observation,
however, the discrete analogue of equation (1.3) has not been considered yet.

Motivated by the reality that the difference equations provide more adequate and accurate descriptions
for population models, we study the discrete analogue of equation (1.3) which can be formulated as

∆x(n) = −M(x) + γx(n− τ)e−δx(n−τ), (1.4)

where ∆x denotes the difference x(n+ 1)− x(n). The mortality term M might take the forms

M(x) = αx/β + x or M(x) = α− βe−x, α, β > 0. (1.5)

Taking into account, moreover, the migration rates of populations from one patch to another one, it would
be more realistic to carry out our investigations for equation (1.4) under certain patch structure. We shall
consider the following generalized Nicholson’s blowflies systems with patch structure and mortality terms of
the forms

∆xi(n) =− αii(n)xi(n)

βii(n) + xi(n)
+

l∑
j=1,j 6=i

αij(n)xj(n)

βij(n) + xj(n)

+

m∑
j=1

γij(n)xi(n− τij(n))e−δij(n)xi(n−τij(n))

(1.6)

and

∆xi(n) =− αii(n) + βii(n)e−xi(n) +

l∑
j=1,j 6=i

αij(n)− βij(n)e−xj(n)

+
m∑
j=1

γij(n)xi(n− τij(n))e−δij(n)xi(n−τij(n)),

(1.7)

where αij , βij , γik, δik, and τik ≥ 0 are all nonnegative bounded sequences, i, j = 1, 2, . . . , l, k = 1, 2, . . . ,m.
It is known that the ecosystems in real life are often facing unpredictable circumstances which might

result in changing their biological behavior. This has urged many authors to investigate the models that
describe these systems. Indeed, they studied the dynamical behavior of their solutions such as the existence
and uniqueness, existence of periodic and almost periodic solutions, oscillation and asymptotic stability of
solutions. Although it is considered as an important topic for the study of mathematical biology, it is noticed
that not much research has been achieved in the direction of the extinction dynamic. A primary purpose of
this paper is to establish sufficient conditions for the boundedness and the exponential extinction of systems
(1.6) and (1.7). Numerical examples corresponding to (1.6) and (1.7) are provided at the end of each section
to support the main results.
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2. Exponential extinction

Let Z and Z+ denote the sets of integer and nonnegative integer numbers, respectively. For a bounded
sequence g defined on Z, we define g+ and g− as follows

g+ = sup
n∈Z

g(n) and g− = inf
n∈Z

g(n).

Denote by |x|, the absolute value vector and let τi = max1≤j≤m{supn∈Z τij(n)}. We consider systems (1.6)
and (1.7) together with the following initial conditions:

xi(s) = ϕi(s) ≥ 0, ϕi(0) > 0, s ∈ I = {−τi,−τi + 1, . . . , 0}, i = 1, 2, . . . , l. (2.1)

One can easily show that the solutions of systems (1.6) or (1.7) with the initial conditions (2.1) are defined
and remain positive for n ∈ Z+.

Definition 2.1. The system (1.6) (or (1.7)) with the initial conditions (2.1) is said to be exponentially
extinct if there are constants L and κ such that

|xi(n, n0, ϕi)| ≤ Le−κ(n−n0), i = 1, 2, . . . , l.

Throughout this section, we assume that there exists a positive constant Γ1 such that

(I)
α−
ii

β+
ii+Γ1

>
∑l

j=1,j 6=i
α+
ij

β−
ij

+
∑m

j=1

γ+ij
δ−ijeΓ1

, i = 1, 2, . . . , l;

(II)
α−
ii

β+
ii+Γ1

− 1 >
∑l

j=1,j 6=i
α+
ij

β−
ij

+
∑m

j=1 γ
+
ij , i = 1, 2, . . . , l.

Define
C0 := {ϕi : ϕi(0) > 0 and 0 ≤ ϕi(n) < Γ1 ∀ n ∈ I}, i = 1, 2, . . . , l.

Lemma 2.2. Let (I) hold. Then, the solution xi(n, n0, ϕi) of (1.6) with ϕi ∈ C0 satisfies

0 ≤ xi(n, n0, ϕi) < Γ1 ∀ n ∈ [n0,∞), i = 1, 2, . . . , l. (2.2)

Proof. Set xi(n) = xi(n, n0, ϕi) for all n ∈ [n0,∞). Let [n0, T ) ⊆ [n0,∞) be an interval such that

xi(n) > 0 ∀ n ∈ [n0, T ). (2.3)

We claim that
0 ≤ xi(n) < Γ1 ∀ n ∈ [n0, T ). (2.4)

For the sake of contradiction, we assume that (2.4) is not true. Then, one can find n1 ∈ (n0, T ) such that

xi(n1) = Γ1 and 0 ≤ xj(n) < Γ1, j = 1, 2, . . . , l (2.5)

for all n ∈ [n0 − τ+
j , n1). In view of (1.6), (I), (2.5) and the facts that αii(n)x

βii(n)+x ≤
αii(n)x
βii(n) and

supu≥0 ue
−u = 1

e , we have

0 ≤∆xi(n1)

=− αii(n1)xi(n1)

βii(n1) + xi(n1)
+

l∑
j=1,j 6=i

αij(n1)xj(n1)

βij(n1) + xj(n1)

+
m∑
j=1

γij(n1)xi(n1 − τij(n1))e−δij(n1)xi(n1−τij(n1))
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≤− αii(n1)xi(n1)

βii(n1) + xi(n1)
+

l∑
j=1,j 6=i

αij(n1)xj(n1)

βij(n1)
+

m∑
j=1

γij(n1)

δij(n1)

1

e

≤
[
−

α−ii
β+
ii + Γ1

+

l∑
j=1,j 6=i

α+
ij

β−ij
+

m∑
j=1

γ+
ij

δ−ijeΓ1

]
Γ1 < 0,

which is a contradiction. This implies that (2.4) holds. Based on the validity of (2.4), it follows that relation
(2.2) is true. The proof is complete.

Theorem 2.3. Let (I) and (II) hold. Then, the solution xi(n, n0, ϕi) of system (1.6) with ϕi ∈ C0 is
exponentially extinct as n tends to ∞.

Proof. Define the functions Φi(u) by setting

Φi(u) = eu −
α−iie

u

β+
ii + Γ1

+

l∑
j=1,j 6=i

α+
ije

u

β−ij
+

m∑
j=1

γ+
ije

u(τ+i +1) (2.6)

for u ∈ [0, 1], i = 1, 2, . . . , l. It is clear that Φi are continuous on [0, 1]. Then, by (II) we have

Φi(0) = 1−
α−ii

β+
ii + Γ1

+
l∑

j=1,j 6=i

α+
ij

β−ij
+

m∑
j=1

γ+
ij < 0, i = 1, 2, . . . , l,

which implies that there exists a constant λ > 0 such that

Φi(λ) = eλ −
α−iie

λ

β+
ii + Γ1

+

l∑
j=1,j 6=i

α+
ije

λ

β−ij
+

m∑
j=1

γ+
ije

λ(τ+i +1) < 0, i = 1, 2, . . . , l. (2.7)

We consider the functions
yi(n) = xi(n)eλ(n−n0), i = 1, 2, . . . , l. (2.8)

Calculating the difference of yi(n) along the solution xi(n) of (1.6), we have

∆yi(n) =∆
(
xi(n)eλ(n−n0)

)
=∆xi(n)eλ(n+1−n0) + xi(n)∆eλ(n−n0)

=
(
− αii(n)xi(n)

βii(n) + xi(n)
+

l∑
j=1,j 6=i

αij(n)xj(n)

βij(n) + xj(n)

)
eλ(n+1−n0) + xi(n)

(
eλ(n+1−n0) − eλ(n−n0)

)
≤xi(n)eλ(n+1−n0) − αii(n)xi(n)

βii(n) + xi(n)
eλ(n+1−n0) +

l∑
j=1,j 6=i

αij(n)xj(n)

βij(n) + xj(n)
eλ(n+1−n0)

+

m∑
j=1

γij(n)xi(n− τij(n))e−δij(n)xi(n−τij(n))eλ(n+1−n0), i = 1, 2, . . . , l

(2.9)

for all n ≥ n0.
Let L1 be a positive number such that L1 > yi(n) ∀ n ∈ [n0 − τ+

i , n0], i = 1, 2, . . . , l. We claim that

yi(n) = xi(n)eλ(n−n0) < L1 ∀ n ≥ n0, i = 1, 2, . . . , l. (2.10)

Assume, on the contrarily, that there exists n2 > n0 such that

yi(n2) = L1 and yj(n) < L1 ∀ n ∈ [n0 − τ+
i , n2), j = 1, 2, . . . , l. (2.11)
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Then, from (2.2) and (2.9), we obtain

0 ≤∆yi(n2)

≤xi(n2)eλ(n2+1−n0) − αii(n2)xi(n2)

βii(n2) + xi(n2)
eλ(n2+1−n0)

+

l∑
j=1,j 6=i

αij(n2)xj(n2)

βij(n2) + xj(n2)
eλ(n2+1−n0)

+

m∑
j=1

γij(n2)xi(n2 − τij(n2))e−δij(n2)xi(n2−τij(n2))eλ(n2+1−n0)

≤yi(n2)eλ −
α−ii

β+
ii + Γ1

yi(n2)eλ +

l∑
j=1,j 6=j

αij(n2)

βij(n2)
yj(n2)eλ

+
m∑
j=1

γ+
ijyi(n2 − τij(n2))e−δij(n2)xi(n2−τij(n2))eλ(n2+1−n0)e−λ(n2−τ+i −n0)

≤
(
eλ −

α−iie
λ

β+
ii + Γ1

+
l∑

j=1,j 6=i

α+
ije

λ

β−ij
+

m∑
j=1

γ+
ije

λ(τ+i +1)
)
L1.

Thus,

eλ −
α−iie

λ

β+
ii + Γ1

+
l∑

j=1,j 6=i

α+
ije

λ

β−ij
+

m∑
j=1

γ+
ije

λ(τ+i +1) ≥ 0,

which contradicts by (2.7). Hence, (2.10) holds. It follows that xi(n) < L1e
−λ(n−n0) for all n ≥ n0,

i = 1, 2, . . . , l. The proof is complete.

Example 2.4. Consider the system corresponding to (1.6)

∆x1(n) =− (15 + | cosn|)x1(n)

(2 + | sinn|) + x1(n)
+

(1 + | sinn|)x2(n)

(6 + | cosn|) + x2(n)
+

(1 + | cosn|)x3(n)

(6 + | sinn|) + x3(n)

+
1

4
(1 + cos2 n)x1(n− 2| sinn|)e−x1(n−2| sinn|)

+
1

4
(1 + sin2 n)x1(n− 2| cosn|)e−x1(n−2| cosn|),

∆x2(n) =− (15 + | sinn|)x2(n)

(2 + | cosn|) + x2(n)
+

(1 + | cosn|)x1(n)

(6 + | sinn|) + x1(n)
+

(1 + | sinn|)x3(n)

(6 + | cosn|) + x3(n)

+
1

4
(1 + sin2 n)x2(n− 2| cosn|)e−x2(n−2| cosn|)

+
1

4
(1 + cos2 n)x2(n− 2| sinn|)e−x2(n−2| sinn|),

∆x3(n) =− (15 + | sinn|)x3(n)

(2 + | cos 6n|) + x3(n)
+

(1 + | cosn|)x1(n)

(6 + | sinn|) + x1(n)
+

(1 + | sinn|)x2(n)

(6 + | cosn|) + x2(n)

+
1

4
(1 + sin2 n)x3(n− 2| cosn|)e−x3(n−2| cosn|)

+
1

4
(1 + cos2 n)x3(n− 2| sinn|)e−x3(n−2| sin 2n|).

(2.12)

By simple calculations, one can figure out that α−ii = 15, β+
ii = 3 (i = 1, 2, 3), α+

ij = 2, β−ij = 6, (i, j =
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1, 2, 3 and j 6= i), γ+
ij = 1

2 and δ−ij = 1, (i = 1, 2, 3 and j = 1, 2). Choosing Γ1 = 2, one can easily see that

15

3 + 2
>

2

6
+

2

6
+

1

4e
+

1

4e
and

15

3 + 2
− 1 >

2

6
+

2

6
+

1

2
+

1

2
,

which means that conditions (I) and (II) are satisfied, respectively. This tells that the solution of system
(2.12) with 0 ≤ xi(n) < 2 is exponentially extinct as n tends to ∞. The solution behavior of system (2.12)
is illustrated in Figure 1.
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Figure 1: The solution behavior of equation (2.12) with the initial conditions φ1(n) = 580, φ2(n) = 530, φ3(n) = 510.

The remaining part of the paper is dedicated to the study system (1.7). To preserve the meaning of
the the mortality terms in system (1.7), we stress that the condition αij(n) > βij(n) holds for n ∈ Z and
i, j = 1, 2, . . . , l. We also assume that there exist positive constants Γ2, L2 and ν such that

(III) α−ii >
∑l

j=1,j 6=i α
+
ij +

[
β+
ii −

∑l
j=1,j 6=i β

−
ij

]
e−Γ2 +

∑m
j=1

γ+ij
δ−ije

;

(IV) β−ii > 2 + Γ2
2 β

+
ii +

∑l
j=1,j 6=i β

+
ij +

∑m
j=1 γ

+
ij ;

(V) −αii(n) + βii(n) +
∑l

j=1,j 6=i
[
αij(n)− βij(n)

]
≤ L2e

−νn.

Define
C0 := {ϕi : ϕi(0) > 0 and 0 ≤ ϕi(n) < Γ2 ∀ n ∈ I}, i = 1, 2, . . . , l.

Lemma 2.5. Let (III) hold. Then, the solution xi(n, n0, ϕi) of (1.7) with ϕi ∈ C0 satisfies

0 ≤ xi(n, n0, ϕi) < Γ2 ∀ n ∈ [n0,∞). (2.13)

Proof. Set xi(n) = xi(n, n0, ϕi) for all n ∈ [n0,∞). Let [n0, T ) ⊆ [n0,∞) be an interval such that

xi(n) > 0 ∀ n ∈ [n0, T ). (2.14)

We claim that
0 ≤ xi(n) < Γ2 ∀ n ∈ [n0, T ). (2.15)

For the sake of contradiction, we assume that (2.15) is not true. Then, one can find n3 ∈ (n0, T ) such that

xi(n3) = Γ2 and 0 ≤ xj(n) < Γ2, j = 1, 2, . . . , l (2.16)

for all n ∈ [n0 − τ+
j , n3). In view of (1.7), (III), (2.16), and the fact that supu≥0 ue

−u = 1
e , we have
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0 ≤∆xi(n3)

=− αii(n3) + βii(n3)e−xi(n3) +

l∑
j=1,j 6=i

αij(n3)− βij(n3)e−xj(n3)

+
m∑
j=1

γij(n3)xj(n3 − τij(n3))e−δij(n3)xj(n3−τij(n3))

≤− α−ii +
l∑

j=1,j 6=i
α+
ij +

[
β+
ii −

l∑
j=1,j 6=i

β−ij

]
e−Γ2 +

m∑
j=1

γ+
ij

δ−ije
< 0,

which is a contradiction and this implies that (2.15) holds. In view of (2.15), it follows that relation (2.13)
is true. Hence the proof is complete.

Theorem 2.6. Let (III)–(V) hold. Then, the solution xi(n, n0, ϕi) of system (1.7) with ϕi ∈ C0 is exponen-
tially extinct as n tends to ∞.

Proof. Define the functions Φi by setting

Φi(u) =
[
2− β−ii +

Γ2

2
β+
ii +

l∑
j=1,j 6=i

β+
ij

]
eu +

m∑
j=1

γ+
ije

u(τ+i +1) (2.17)

for u ∈ [0, 1], i = 1, 2, . . . , l. It is clear that Φi are continuous on [0, 1]. Then, by (IV) we have

Φi(0) = 2− β−ii +
Γ2

2
β+
ii +

l∑
j=1,j 6=i

β+
ij +

m∑
j=1

γ+
ij < 0, (2.18)

which implies that there exists a constant λ with 0 < λ < ν such that

Φi(λ) =
[
2− β−ii +

Γ2

2
β+
ii +

l∑
j=1,j 6=i

β+
ij

]
eλ +

m∑
j=1

γ+
ije

λ(τ+i +1) < 0. (2.19)

Let
yi(n) = xi(n)eλ(n−n0), i = 1, 2, . . . , l. (2.20)

Calculating the difference of yi(n) along the solution xi(n) of (1.7), we have

∆yi(n) =∆
(
xi(n)eλ(n−n0)

)
= ∆xi(n)eλ(n+1−n0) + xi(n)∆eλ(n−n0)

≤yi(n)eλ +
[
− αii(n) + βii(n)

(
1− xi(n) +

1

2
x2
i (n)

)]
eλ(n+1−n0)

+

l∑
j=1,j 6=i

[
αij(n)− βij(n)

(
1− xj(n)

)]
eλ(n+1−n0)

+
[ m∑
j=1

γij(n)xi(n− τij(n))e−δij(n)xi(n−τij(n))
]
eλ(n+1−n0)

≤yi(n)eλ +
[
− αii(n) + βii(n) +

l∑
j=1,j 6=i

(αij(n)− βij(n))
]
eλ(n+1−n0)

− βii(n)yi(n)eλ +
1

2
βii(n)yi(n)xi(n)eλ +

l∑
j=1,j 6=i

βij(n)yj(n)eλ

+

m∑
j=1

γ+
ije

λ(τ+i +1)yi(n− τij(n))

for all n ≥ n0. In view of (V) and (2.13), we obtain
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∆yi(n) ≤
[
yi(n) + L2e

(λ−ν)n − β−ii yi(n) +
1

2
Γ2β

+
ii yi(n)

]
eλ

+
l∑

j=1,j 6=i
βij(n)yj(n)eλ +

m∑
j=1

γ+
ije

λ(τ+i +1)yi(n− τij(n)).
(2.21)

Let L3 be a positive number such that

L3 = max{yi(n), L2} ∀ n ∈ [n0 − τ+
i , n0].

We claim that
yi(n) = xi(n)eλ(n−n0) < L3 ∀ n ≥ n0. (2.22)

If this is not true, then there exists n4 > n0 such that

yi(n4) = L3 and yj(n) < L3 ∀ n ∈ [n0 − τ+
i , n4), j = 1, 2, . . . , l. (2.23)

Then from (2.19) and (2.21), we obtain

0 ≤ ∆yi(n4) ≤
[
yi(n4) + L2e

(λ−ν)n4 − β−ii yi(n4) +
1

2
Γ2β

+
ii yi(n4)

]
eλ

+

l∑
j=1,j 6=i

βij(n)yj(n4)eλ +

m∑
j=1

γ+
ije

λ(τ+i +1)yi(n4 − τij(n4))

≤
(

2eλ − β−ii e
λ +

1

2
Γ2β

+
ii e

λ +

l∑
j=1,j 6=i

β+
ije

λ +

m∑
j=1

γ+
ije

λ(τ+i +1)
)
L3.

Thus,

2eλ − β−ii e
λ +

1

2
Γ2β

+
ii e

λ +
l∑

j=1,j 6=i
β+
ije

λ +
m∑
j=1

γ+
ije

λ(τ+i +1) ≥ 0,

which contradicts by (2.19). Hence (2.22) holds. It follows that xi(n) < L3e
−λ(n−n0) for all n ≥ n0. The

proof is complete.

Example 2.7. Consider the system corresponding to (1.7)

∆x1(n) =− (15 + | sin 3n|) + (14 + | cos 3n|)e−x1(n) +
(3

2
+

1

2
| sin 3n|

)
−
(
1 +

1

2
| cos 3n|)e−x2(n)

+
(
1 +

1

2
| sin 3n|

)
−
(1

2
+

1

2
| cos 3n|

)
e−x3(n)

+
1

4
(cos2 n)x1(n− 2| sinn|)e−x1(n−2| sinn|)

+
1

4
(sin2 n)x1(n− 2| cosn|)e−x1(n−2| cosn|),

∆x2(n) =− (15 + | cosn|) + (14 + | sinn|)e−x2(n) +
(3

2
+

1

2
| cosn|

)
−
(
1 +

1

2
| sinn|)e−x1(n)

+
(
1 +

1

2
| cosn|

)
−
(1

2
+

1

2
| sinn|

)
e−x3(n) +

1

4
(sin2 n)x2(n− 2| cosn|)e−x2(n−2| cosn|)

+
1

4
(cos2 n)x2(n− 2| sinn|)e−x2(n−2| sinn|),

∆x3(n) =− (15 + | sinn|) + (14 + | cosn|)e−x3(n) +
(3

2
+

1

2
| sinn|

)
−
(
1 +

1

2
| cosn|

)
e−x1(n)

+
(
1 +

1

2
| sinn|

)
−
(1

2
+

1

2
| cosn|)e−x2(n)

+
1

4
(cos2 n)x3(n− 2| sinn|)e−x3(n−2| sinn|)

+
1

4
(sin2 n)x3(n− 2| cosn|)e−x3(n−2| cosn|).

(2.24)
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By simple calculations, we find that α−ii = 15, β−ii = 14, β+
ii = 15 (i = 1, 2, 3), α+

ij = 2, β−ij = 1, β+
ij = 3

2

(i, j = 1, 2, 3 and j 6= i), γ+
ij = 0.25 and δ−ij = 1, (i = 1, 2, 3 and j = 1, 2). Choosing Γ2 = 1, one can easily

see that

15 > 2 + 2 +
15− 1− 1

e
+

1

4e
+

1

4e
, 14 > 2 +

15

2
+

3

2
+

3

2
+ 0.25 + 0.25

and

−αii(n) + βii(n) +
3∑

j=1,j 6=i

[
αij(n)− βij(n)

]
= 0, i = 1, . . . , 3,

which means that conditions (III), (IV) and (V) are satisfied, respectively. This tells that the solution of
equation (2.24) with 0 ≤ xi(n) < 1 is exponentially extinct as n tends to ∞. The solution of system (2.24)
behaves as illustrated in Figure 2.
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Figure 2: The solution behavior of equation (2.24) with the initial conditions φ1(n) = 500, φ2(n) = 460, φ3(n) = 440.

3. Concluding remark

This paper investigated a generalized discrete Nicholson’s blowflies systems with patchy structure and
mortality terms which are expressed in exponential and fractional forms. According to authors’ knowledge,
no systems in the addressed forms have been under consideration in the literature. The authors provide
essentially new sufficient conditions for the boundedness as well as the exponential extinction of the solutions
of the systems. The results obtained in this paper are of great significance for the audience working on
mathematical biology as they could be used in laboratory experiments to avoid certain unwanted situations.

Based on the results of this paper, further study could be conducted. Indeed, for systems (1.6) and (1.7),

1. Certain fixed point theorems could be used to prove the existence of almost periodic positive solutions;
2. Certain Lyapunov’s functionals could be employed to prove the exponential convergence of the solu-

tions;
3. The oscillatory and the global attractivity could be considered;
4. The stability and the existence of Hopf bifurcations could be discussed.

We leave these research topics for future consideration.
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