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Abstract

The aims of this paper are to study the local and global stability of the equilibrium points using a mathematical model
for malaria disease. The model is based on five differential equations. The analysis of the stability was examined using the
Lyapunov method. We prove that the disease free equilibrium point is locally and globally asymptotically stable when Ry < 1

and unstable when Ry > 1. On the other hand, the endemic equilibrium point is locally and globally asymptotically stable when
Rp > 1.
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1. Introduction

Malaria is a contagious disease brought on by the plasmodium family that is transmitted from an
infected Anopheles female mosquito to humans through a bite. A recent estimation by the World Health
Organization indicates 229 million cases of infection over the world. Besides, the number of deaths as a
consequence of the disease reached 409000 in 2019, the majority of infected people were pregnant women
and young children, most of whom live in Africa. Given this state, an understanding of the factors
underlying malaria spread may be requisite for the development of adequate prevention strategies.

Modeling the spread of malaria has been attempted by several researchers (see [14, 9, 12, 14]) since the
beginning of the twentieth century. In [14], the first deterministic differential equation has been proposed
to represent the crucial characteristics of malaria spread. The main infected zones that are in contact
with the disease, and that are known to be contagious are also taken into account into the model. In
addition, the author has showed that malaria can be eradicated if these parameters stay below a certain
average. In [12], the author extended Ross’s model, by integrating the dynamic effects emerging during
the parasite’s incubation stage. Furthermore, the author demonstrated that the correlation between the
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number of musquitoes and the transmission rate is weak. In [3], other features were added to Macdonald’s
model such as the intensity of the infection and the length of the immunity period. In [4], the authors
presented a mathematical simulation of the dynamics of malaria transmission, including the structural
age of the vector population and the number of bites by female mosquitoes. Here, the authors proposed
that there are two levels of vulnerability within the human population: the most vulnerable are non-
immune, and the least vulnerable are semi-immune. In this paper the authors provides the sufficient
conditions ensuring the stability of the disease free equilibrium.

The quest to eradicate or at least stabilize malaria has taken too many years of continuous struggle
and myriads of scientists endeavored to curb the spread of malaria. The malady has now reached some
areas that were previously disease-free. This is thought to be largely due to increased mobility and
other consequences of globalization. There are areas which are yet disease free, but their probability of
contracting the virus has increased over the years given all these factors [6, 18].

Therefore, in this work, we propose a similar mathematical model on the basis of ordinary differential
equations (ODE) where people and mosquitoes contact and spread the infection to one another. To better
understand malaria transmission and the contribution of migration, we assume that the parasite enters the
mosquito when the latter bites an infected human. We also assume that the mosquito remains infectious
for life. Accordingly, the total number of bites depends both on the human and the mosquito population
sizes. Presumably, recovered individuals are expected to acquire some immunity to the disease and
should therefore not return to the category of susceptible individuals. The total population of humans is:
Nh(t) = Sn(t) + In(t) + Ru(t) and they are classified into three categories: Susceptible, Sy,; Infectious, In;
and Recovered, Ry,.

Indeed, people enter the susceptible class either through birth (all newly born individual necessarily
enter the susceptible population first at the natural birth rate by) or through immigration at a stable rate
/\n. Susceptible individuals become infected either by infected humans at a constant rate 31 or by infected
mosquitoes at a constant rate 3. Contaminated individuals recover at the rate vy, and all populations
represented by the compartments in the model on the next page are affected by a per capita density-
dependent natural death and emigration rates fy(Ny) = pin + ponNp. The number of infected people is
also reduced as a function of disease related deaths at the rate 61,. On the other hand, there are two groups
of mosquitoes: those who are susceptible (S,) and those who are infected (I,). In addition, the overall
mosquito population is N, (t) = S, (t) + 1, (t). So, when a susceptible mosquito bites an infectious human,
the mosquito contracts the virus and enters the I, class. Individuals join the susceptible population at
the rate /\,, and those who are susceptible contract the infection at the rate (331, and as in the case of
humans, newly born mosquitoes (at a rate b,) first enter the susceptible population before contracting
the virus. (Male mosquitoes are not included in our model since only female mosquitoes bite people and
animals in order to obtain lipids and proteins, which are vital for their ability to reproduce). The number
of susceptible female mosquitoes is reduced by the affine function: f,(N,) = py, + ppyN, (mosquito
mortality and emigration rates that depend on population per capita density). Infected individuals are
also reduced by disease related death at the rate 5,,.

The article is structured as follows. Section 2 will focus on the model solution’s existence, positivity
and boundedness. In Section 3 we will discuss whether the disease-free equilibrium exists and its local
and global stability. In the last part of the article is shown how the endemic equilibrium is both locally
and globally asymptotically stable.

2. The Malaria mathematical modelling

Figure 1 explains how malaria transmission proceeds in our mathematical model.
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Figure 1: Malaria model flow chart.

From Figure 1 we have the following equations:

ds

(}th = gh(Nn) — B1ShIn — B2Shly — fr(Np)Sh,

d

(ﬁ; = B1ShIn + B2Snly — In(vh + 6n + fr(Nn)),

%th = InYh — Rufn(Nn), 2.1)
d

o = 9v(NV) = BaSuln — (NS,

(Tt“ = B3InSy — (& + fu(Ny))L,,

where f1,(Np) = pn + uenNp and £, (Ny) = gy + p2y N, represent the per capita density-dependent
natural death and emigration rates for humans and mosquitoes, respectively (see [8]). The birth and
emigration rates g, and g, are given by:

gh(Nn) = An +bnNy, gv(Ny) = Ay +byN,,
with initial conditions

Table 1 provides definitions for parameters and variables.
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Table 1: Parameter and variable descriptions form model (2.1).

variables Descriptions

Sh How many humans are susceptible

In How many humans had the disease

Rh How many humans have been recovered

Sy How many mosquitoes are susceptible

I, How many mosquitoes had the disease

Ny Total human population

N, Total mosquito population

parameters Descriptions

Ah Human’s immigration rate

Ny Mosquito’s immigration rate

bn Human'’s birth rate

by, Mosquito’s birth rate

H1h Density-independent part of the mortality (and emigration) rate for humans
H2h Density-dependent part of the mortality (and emigration) rate for humans

H1v Density-independent part of the mortality (and emigration) rate for mosquitoes
Hav Density-dependent part of the mortality (and emigration) rate for mosquitoes
Yh Recovery rate for humans from the infectious state to the recovered state

on Disease-induced death rate for humans

Sy Disease-induced death rate for mosquitoes

B1 Transmission rate of infection from an infectious man to a susceptible man

32 Transmission rate of infection from an infectious mosquito to a susceptible man
B3 Transmission rate of infection from an infectious man to a susceptible mosquito

3. The model’s mathematical analysis

3.1. Solution boundedness and positivity

It is necessary to show that the state variables are not negative at all times. By using [13], we will
prove the positivity and boundness of the solution.

The total number of humans Ny (t) is defined by Np(t) = Sn(t) + In(t) + Rn(t) and verifies the
following equation

dNw

T gn(Np) — fr(NpNp —8nTh = Ap — (i — br)Np — ton N — S I, (3.1)

The vectors population size N, (t) can be defined by N, (t) = S, (t) + I, (t) and verify the the following
equation

dN,,

= gv(NV) - fv(Nv)Nv - 6\)1\) = /\v - (lvllv - bv)Nv - PLZVN% - 6\)1\1' (32)
dt

According to (3.1) and (3.2) we have

— " <An—(n—bp)Np and Y <Ay = (v — by)Ny
dt dt
So,
dji\lth <0, if pl}i\jbh < Ny and pyp > by,
AN <0, if 2 < Ny and iy > by,
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Let Vi =limsup Ny, and V; = limsup N,,. Then,

t—+o0 t—+o0
A A
Vi £ 7handV2< v
Uih — bn M1y — by
Consequently, the system’s feasible region of (2.1) is
A A
Q= {(Sh/ Ih/ th SVI IV) S IRi/ vl g 7]1/ and VZ < 7\)}
HMh — bn M1y — by

Lemma 3.1. Let (Sw, In, Rn, Sy, 1) represents the system (2.1)’s solution with initial conditions (2.2). The closed

- 5 A Ay . . ) . .
set QO ={(Sn, In,Rn, Sy, Iy) € R2, V5 < ﬁ—hbh' and Vo < Ivllv_bv} is attractive and positively invariant.

Proof. Considering the next Lyapunov function
V(t) = (Va(t), Va(t)) = (Sh +In +Rp, Sy + 1),

its derivative is

dv
e (An — (t1h — br) Vi — mon V2 — Snln, Ay — (11 — by) Vo — 1o, V3 — 8, 1,,).

It is easy to prove that

An

Qe AR = (mn—br)Vi <0, for Vi > i (3.3)
% <AV — (v —by)V2 <0, forVo > Hl\{\*vbv' |

So, from (3.3), 4¥ < 0 proves that the set Q is positively invariant, and by using the differential inequality

in [5, 11] we get,
- 7b - Vib\)
/\h(l_e (kan h)t),VZ(O)e—(Hlv—bv)t+ AV(l_e (1 )t)

0 < (Vi, Vo) < (V4(0)e (man—brt 4
Hh —bn T

).

Thusast — o0, 0 < (V1,V2) < (ﬁ, m:\—vbv ), we conclude that Q is an attracting set. O

The model (2.1) is correctly stated mathematically and epidemiologically within the domain. There-
fore, studying the dynamics of this fundamental model in Q is adequate.

3.2. Disease-free equilibrium
3.2.1. Existence:
The disease-free equilibrium of the system (2.1) is presented by: E; = (S%, 0,0, S?,, 0), where

(tn —br) + v/ (Mn — bn)? + 4ponAn

—(my —by) + \/(Hlv - bv)z +4up, Ay
PATEYY '

) =—
" PATL

and S? =

3.2.2. Local stability
The quantity Ry can be used to characterize the dynamics of the disease:

B2B3SYSY

RO — 7
(Bh - [515%)(%\;33 + 0y + Ulv)

with B =yn + 8n + Hin + H2nSY.

Theorem 3.2. If Ry < 1, then the disease-free equilibrium point 1 of the model (2.1) is locally asymptotically
stable, otherwise unstable.
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Proof. The Jacobian matrix of disease-free equilibrium E; is:

—VAL  An—PB1S%  An 0 —B2SY,
0 —Bp+BS), O 0 B2SY
] = 0 Yh —Ch_ 0 0
0 _[3389; 0 _\/KV Av
0 6353 0 0 _U»ZVS?; — 0y — M1y

with Ap = bn — wonSY, Ay = by — p2S%, Bn = Y+ 8n + tin + monSY, Ch = pin + m2nSY, An =
(Wih —br)? +4uonAn and A, = (tgy — by)? + 4oy Ay. Moreover, the characteristic equation of this
matrix is given by:

A+ VAR A+ Cr) A+ VA [N+ (11y + 8, + 12uSS + Br — B1Sh) A
B2B3SYSY ) | G4

+ Bh—[3150 Wiy + Oy + H2 SH) [ 1- =0,
( h) ( Y Y v V) (Bh_ﬁls%) (H1v+5v+u2vsg)
B2BsSHSY

Br—B1S}) (Hiy+8v+120SY)

stable since all of the eigenvalues of the characteristic equation (3.4) have negative real parts if Ry < 1. [

. The disease-free equilibrium E; is therefore locally asymptotically

where Ry = (

3.2.3. Global stability
We can write our main system the following;:

dS
=R — Al = (u1h — bR)Sh + brln + bRy — (B1 + ton)SnIn — BaSnly — 1R SZ — 2nShRh,

4
4,
&
I

E = BSSth - (6\) + Hlv)lv - HZVIVSV - HZVI

According to the above, we have the existence of a single disease-free equilibrium that verifies:

= —(Bh — 12nSY)Th + (B1 — t2n)SkIn + B2Snly — ton IR — tonRu Iy,
=Ynlh — tnRn — t2nShRR — tonInRy — 1onRE, (3.5)
=Av — (H1v — by)Sy + by Iy — B3SyIn — v S5 — pay IvSy,

2
v

An = (B —bn)Sh + HZhS:})LZ/ (3.6)
Av = (v _bv)sg + PLZVS?; .

Proposition 3.3. If Ry < 1, then the disease-free equilibrium point Eq of the model (2.1) is globally asymptotically
stable, otherwise unstable.

Proof. We consider the following candidate Lyapunov function
S S S S
Vore = (H1y + 0y + 12,82) (soh (Sg —In (Sg;) — 1) +1In + Rh) + B2SY, <IV +5° (Sg —In <55> — 1)) .
h h v v
We set
Q=102S) and P =py+ 58y + 0 SY.
Indeed, Vpre > 0 for all (Sh, I, Rn, Sy, I\,) € _O.\El and for (Sh, I, Rn, Sy, IV) = Eq, with E; =
(S%, 0,0, S?,,O) we have, Vpre(E1) =P (I(})1 + R%) + QI?, = 0, which verifies Definition 4 in [10].
The derivative of Lyapunov’s candidate function Vpre along the path of the system is given by

Sy, — SV . S, —SY
b Thyg, Qv
Sh Sy

Vpore = P( )Sy + Pl + QI,, + PRy,.
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Through the model (3.5), we get

0

) S
Vpre =P <1 — 5}1) (Ah — (t1h — br)Sh + brIn +brRy — (B1 + H2n)ShIn — B2Shlv — HanSh

SO
— H2hShRR) +Q (1 — S") (Av = (H1v — by)Sy + byTy — B3SyIn — HovS3 — Hay 1L Sy)
A%
+P (—(Bn — m2nSW)In + (B1 — Hon)ShIn + B2SnIy — tonIf — wonRnIn)

+Q (635 In —(8v + piv) Iy — oy ISy — HZVI\Z,) + PRh

SO
(1 — Sh> (An — (H1h — br)Sh + brlh + brRi — wonShlh — onSE — 12rShRR)

SO
—PBZShIV+PBZSO V+Q(1_S> (Ay +bySy, + by 14)

N
— QB3SvIn + QR3SIn + Q (Sv —SY) (—H1v — MavSy) —2Qu2u Sy Ly + 21, QSY 1,
+P (HonShIn — monSnIn — 2nIf — ponRhln)
—P (Bh—B1SH) In + PR2Snly — Q (8v + iy + 12uSY) I — Quav Iy + QBaSvIn + PRy
= QB3SYTn —P (Bn — B1Sh) In + PRSIy — Q ((8y + iy + 12uSY)) I

SO
+P <1 - 5h> (Ah — (R1h —bn)Sh + brlh + brRh — HonShIn — MonSE — H2nShRR)

0
+ Q <1 - z) (/\v + bvsv + vav) - Q (Sv - S(\);) (Hlv + u2v ) 2Qu2v ( 53)

v

+P (12rShIn — M2nShlIn — tonIh — wonRnIn) — QuavI3 + PRy

P (Bn — B1SY
= QBsSY <—(5[3£01h) +1> I — (Q(8y + a1y + 120S%) — PB2SY) I,

SO
<1 - Sh> (Ah = (1h — br)Sh + bnIn + brRr — ponShln — H2n ST — H2nShRR)

SO
+ Q <1 - S> (/\v + bvsv + vav) - Q (Sv - 39,) (Hlv + ll2v ) ZQFLZV ( 59,)
A%
+P (2nShIn — monShln — tonIf — tonRnIn) — Quay I3 + PRy,
by replacing the Q and P with their expressions in the first line we have,

. 1
Vpre = B2S%B3SY (1 — Ro> Iy,

SO
(1 — Sh) (An = (1h — br)Sh + brln + brRi — tonShlh — HonSh — 12rShRR)

SO
JFQ <1S> (/\ervav +bv1v)*Q (SV*S?;) (UleFHZv ZQU'ZV (SV*SQ)

+P (lonShIn — monShIn — monlf — tonReIn) — QuayI3 + PRy,

using the formulas (3.6) in Vpre we get

. 1
Vore = B2S) R3S <1 — R) In
0

P P
~3, (Sn— 5(})1)2 (Mih —bn) — glth (Sn— 5%)2 (Sh+S%) — PuonIf — PuonRiIn
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In Rn
— QuvI2 +P (Sh—Sh) ( hS, +bn— S, 2uonln — uthh>
2 2
= 2 (80— S0 (b — by) — iz (S —80)? (S +80)
Sy Sy
b )
+Q(Sv—5SY) <SV —2qu> I, + PRy,
v
by sitting
bh = tin — /1, — 4onAn, (37)
by = wy — \/ U’%V *4P'2v/\v-
So,
bn
An = (2u1n — bh)4u2h
b
Ny = (zlvllv _bv)4u; .
v
If we use these relations in
0 _ —(t1h — br) + v/ (1 — bn)? +4H2h/\h
h 2
Hoh
SO _ _(Hlv —-by)+ \/ (M1 _bv) + 4ppy Ay
v 2”2\1 ’

we get

by, = 25?; Hovy.

By exploiting the expressions of (3.8) in P (S}L — S%) (bh;—’; + bh% —2wnln — P—Zth> and
Q(Syv—59) ( ZuZV) v, we have

Sh

In Rn
P(sh—s%)< ng +bhor
bn
=P (Sh—Sh) <Sh—2uzh>1h+P (Sh—Sh) <
bn

—2upnIn — thRh>

Rh,
Sh M2h> h

bh
=P (Sn—S) <Sh _2H2h> In+P(Sh—S}) <Sh 2H2h> Rn + Pion (Sh—S%) R,

P P
= —2? Hon (Sh— 5(})1)2 In — 2? Hon (Sh— S
h h

P 2 P
=—2—n (Sh—S%) In —2—12n (Sn—SH
Sh Sh

Rh + Pon (Sh— Sh) Rn,

N

)" Ri — PronSHRn + PronShRy,

and
b

05 (22 2 5
v v

On the other hand, we use the relation of R}, in the system (3.5). So, by using these relations in the
expression of Vpre, we get

. 1
Vbre = B2SKB3SY (1 - R0> In
P 012 P 0\2 0 2
s, (Sh—S%)" (n—br) — §H2h (Shn—Sp)" (Sh+S%) — Puonli, — PuonRuln
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P P
— QuI3 — 2§H2h (Sn— 5%)2 Ih — 2§H2h (Sh— 5%)2 Rh — Puon SRk + PronShRi
- 33 (Sy— %) (m1y — by) — Sguzv (Sv—59) (Sv +9) —2%% (Sy—S%)" 1

v v v

+P (YnIh — tinRn — 12rShRh — HonInRh — 12nRY)

1
= (B2S%R3SY (1 — RO) +Pyn)In
P

2 P 2
~3, (Sh—S%)" (mnh —bn) — g, Han (Sh—5%)" (Sh+S%) — PuonIf — 2PpuonRpIn — Quay I3

P p
—PmnRn —P},Lth%L — 2§H2h (Sh _ S(})I)Z I, — 2§H2h (Sh B S(})l)z Ry — PHZhSOth
Y PN SR A,

with Rp < 1 and Pyy, < BzS%BgS% (Rio — 1), so Vpre is negative. Then the disease-free equilibrium point
E; of the model (2.1) is globally asymptotically stable if Ry < 1. O

3.2.4. Numerical simulation

In the following section, we present a numerical simulation of the model. We aim to estimate and add
other values from [8, 18] to the previous parameters of the system (3.5) . These numerical values are in
the Table 2.

Table 2: Parameter values

parameters Values Reference

Ah 0.02 Assumed

AW 25 [18]

Hin 4212 x107*  Assumed

Hon 1077 [8]

Uiy 0.7 Assumed

Loy 2279 x 1074 [8]

Yh 3.704 x 1073 [8]

on 0.01 [18]

Oy 103 Assumed

B1 104 Assumed

B2 102 [18]

B3 2.2974 x 10~* Assumed

b 9.6062 x 107¢ i — 1/ pdy, — 4ion/\n (see (3.7))
by 0.0165 Hiy — /KT, — 4uv/\y (see (3.7))

With the following initial values S, (0) = 120, Iy (0) = 20, Rn(0) = 18, S,(0) = 110, and I, (0) = 70
and using the data from the Table 2, the susceptible human population will initially decrease over time
and then increase, according to the numerical simulation shown in Figure 2. Populations of infected and
recovered humans will increase with time before converging to zero. This means that the disease-free
equilibrium E; = (S%, 0,0, S?,,O) = (48.0311,0,0,36.1395,0) is stable for a reproduction number that is
lower than 1 (Ry = 0.6029 < 1). According to Figure 3, the population of infected mosquitoes and the
susceptible mosquito population are both decreasing over time, indicating that the population would not
suffer from malaria epidemic.
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Plot of human population against time Plot of human population against time
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Figure 2: The simulation of the model (2.1) depending on time, shows convergence of solutions to the disease-free equilibrium
for human population. The parameters values in Table 2 give Ry = 0.6029 < 1.
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Figure 3: The simulation of the model (2.1) depending on time, shows convergence of solutions to the disease-free equilibrium
for mosquito population.

3.3. Endemic equilibrium point
3.3.1. Existence
In the endemic equilibrium, the system (3.5), verifies

An = (1h — br)SH — bnlf — bnRy + (B1 + Hon)SRIE + B2SHIE + HonSi2 + HanSHRT,

(Yn +8n + min) T = (B1— Han) SEIE + BaSHLE — ponIf2 — monRELE,

mnRE, = Yl — onSHRY — van LR, — HonRiZ, (39)
Av = (v —by)SE — by Iy 4+ B3ST I + 2y 37 + Hav I5S3,

(8y + )Ty = B3SyTH — Hav I3 Sy — oy 132

From the system (3.9) we have the existence of a single endemic equilibrium that verifies:

Anr = (Wh —br)SE + (Yh + Oh + Wi — br) I, — brRY, + 1o (251 I + SRRy, + RE 1)
Hion (S5 +112), (3.10)
Ay = (Hlv - bv)St + (5\) + Wy — bv)I: + 2“2\;1:;83 + HZV(ST;Z + Iéz)-

The endemic equilibrium of the system (3.9) is given by E, = (S, I}, R}, S5, 1), where

—(t1h — bn)(B1 — 2m2n) + v/ ((H1n — br) (B1 — 212n))% + 4RoB1vh (tin — br)(B1 — Hon)
2RoR1H2n ’

st = bryn(B1— H2n) + bron Ry, (2uon — B1)

HonYh(B1 — Hon) + 213, R, ’

Ry, =
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(M1n + Mon ST, + mon Ry RY

I = ,

" Yh — H2n Ry,

— (Vh + On + ) I — (B1 — pon)SELE + ponIf® + uth?;Iﬁ
v B2S;

o _ byRoI

v Wiy — by + PLZVROH; ‘

3.3.2. Global stability
Proposition 3.4. If Ry > 1, then the endemic equilibrium point €, of the model (2.1) is globally asymptotically
stable, otherwise unstable.

Proof. We consider the following candidate Lyaponov function
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So Vpre(E2) =0, which verifies the Definition 4 in [10].
Derivative of Lyapunov’s candidate function Vprg along the path of the system is
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With Ry > 1, Vpre is negative. Then the endemic equilibrium point E; of the model (2.1) is globally
asymptotically stable if Ry > 1. O

3.3.3. Numerical simulation

For the parametrs values in Table 3, after estimating and adding other values from [9, 18] to the
previous parameters of the system (3.5), we present a numerical simulation of the model for Ry = 1.2143.
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Table 3: Parameter values

parameters Values Reference
bn 7.666 x 10> Assumed
by 0.13 [9]

Wh 8.8 x107° [9]

HUoh 107 Assumed
Uiy 0.3 Assumed
Hoy 4x107° [9]

Yh 0.035 [9]

on 1.8 x 1072 [18]

Sy 0.1 Assumed
B1 107> Assumed
B> 0.0001 Assumed
B3 0.004 [18]

An 6.4666 (see (3.10))
Av 31.7988 (see (3.10))

By using the values of the Table 3 and with the initial population sizes S,(0) = 7000, I,(0) = 40,
Rn(0) = 360, S, (0) = 220, and [, (0) = 480, the numerical simulation illustrated in Figure 4, declares
that the infected human population will initially be increased over time and then decreases to attain
119.2478. Recovered human populations will increase over time. So for a reproduction number greater
than 1 (Ry = 1.2143), the endemic equilibrium E, = (Sj, I}, R}, S5, 1) = (754.1196,119.2478,5.6429 x
103, 66.4479,73.0529) is stable. The population of infected mosquitoes decreases over time to attain 73.0529
as it’s shown in Figure 5, which means that the malaria epidemic will persist in the population.
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Figure 4: Simulation of the model (2.1) depending on time, shows convergence of solutions to the endemic equilibrium for
human population. The parameters values in Table 3 give Ry = 1.2143.
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Figure 5: Simulation of the model (2.1) depending on time, shows convergence of solutions to the endemic equilibrium for

mosquito population.
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4. Conclusion

An ordinary differential system-based compartmental model was suggested to study the waves of
malaria transmission into a safe population. Both Susceptible-Infectious-Recovered (S, — Iy, — Ry,) group
for humans and a Susceptible-Infectious (S, — I,) group for mosquitoes are included. We first examined
the positivity and boundedness of the model’s provided solutions to ensure that it is epidemiologically
well-posed, after that we used the Lyapunov method to search for the global and local stability of disease-
free equilibrium (DFE) and endemic equilibrium. Finally, it has been showed by numerical results that if
the threshold Ry is less than 1, the disease-free equilibrium is globally stable, and if not, the endemic point
is. The disease can persist and spread across the population when the endemic equilibrium is generally
stable and the disease-free equilibrium is unstable. Individuals who have recovered may eventually lose
their immunity to the disease, which causes a delay. Our next work uses the same model, but takes into
account that recovered humans may lose their immunity and become a susceptible again after a period of
time.
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