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Abstract
Enterprise resource planning (ERP) has a significant impact on modern businesses by enhancing productivity, automation,

and streamlining of business processes, even accounting. Manufacturers can assure proper functioning and timely client demand
using ERP software. Coordination, procurement control, inventory control, and dispatch of commodities are all features of
supply chain management. Manufacturers may design better logistics plans with this capability, which will substantially aid
them in lowering operational and administrative expenses. In this article, we instigate the idea of neutrosophic soft γ- open
sets (NSγ-open sets) by employing the operation γ on the family of neutrosophic soft open sets written symbolically as τu in
neutrosophic soft topological spaces. Additionally, by employing the operation on τu, we bring forth new notions namely NSγ-
closure, NSγ-interior, NSγ-regular space, NSγ-regular operation and obtain their characteristics in neutrosophic soft topological
spaces. With the NSγ open sets, we discuss a methodology for overcoming the challenge of selecting the best ERP for a business
firm.
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1. Introduction

ERP is a software solution designed to improve the productivity of the business that it is incorporated
into by digitizing, integrating, sufficiently automating, and streamlining its entire workflow. A good
ERP should completely rule out data misinterpretations and communication gaps in all the internal and
external communications of the business by unifying the storage of all its data in a common repository.
Choosing the right ERP for their enterprise is a critical job for the enterprisers, and a solution for this
problem is discussed in this paper using the newly developed concept.

The fuzzy set theory was instigated by Zadeh [24] in 1965. It has become a highly significant tool for
solving problems with uncertainties. Molodtsov [15] proposed soft set theory in 1999, which deals with
uncertainty. He developed the fundamental principles of this new theory in his work and effectively ap-
plied it to various fields like optimization, algebraic structures, clustering, lattice, topology, data analysis,
game theory, medical diagnosis, operations research, and decision-making under uncertainty.
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Atanassov [3] amended the fuzzy set ideology and instigated the theory of intuitionistic fuzzy sets.
It contains non-membership and membership values. It is incapable of dealing with the uncertain and
conflicting information found in value systems. As a generalization of crisp sets, fuzzy set theory and
intuitionistic fuzzy set theory, Smarandache [19, 20] proposed the novel concept, Neutrosophic set (NS).
Fuzzy logic, intuitionistic fuzzy logic, and paraconsistent logic are all generalized in the new philosophi-
cal discipline known as neurosophy. Neutrosophic logic acts as a mathematical kit for problems involving
incomplete, indeterminant and inconsistent knowledge. Neutrosophic sets and logic are applied in vari-
ous fields like information systems, semantic web services, relational database systems, financial dataset
detection, analysis of the new economy’s growth and fall, etc.

In 2003, Maji et al. [13] established a theoretical approach to soft set theory and defined the operations
like intersection (AND), union (OR) of two soft sets and justified some propositions on soft set operations.
The notion of soft topological spaces, which are built over an initial universe with a predetermined set
of attributes was developed by Shabir and Naz [18]. They demonstrated that a soft topological space
yields a parameterized collection of topological space. As an extension of the soft set, Smarandache[21–
23] brought forth the concept of hypersoft set, indeterm soft set, indeterm hypersoft set and tree soft
set. Maji [14] by integrating the idea of soft set and neutrosophic set, defined neutrosophic soft sets
(NSSs) and provided an application of neutrosophic soft set in decision-making problems, which was
later refined by Deli and Broumi [8]. Bera and Mahapatra [5, 6] constructed a topological structure on
neutrosophic soft sets and studied its structural characterizations and discussed the concepts related to
topological space such as closure, interior, boundary, neighborhood, base, subspace, separation axioms,
connectedness, compactness and neutrosophic soft continuous mappings along with specific illustrations
and proofs.

Kasahara [12] proposed the idea of an operation approach to topological spaces and defined α-closed
graphs of functions by genera1izing the idea of almost-strong1y-closed, strong1y-closed and closed graph
of a function. Jankovic [10] investigated the mappings with α and strongly-closed graphs. Following this,
Ogata [16] introduced γ-open sets utilizing the operation γ on open sets and related continuity concepts
in topological spaces.

In 2017, Kalaivani et al. [11] and Benchalli et al. [4] brought forth the theory of operation approach
in soft topological spaces. El-Sheikh and El-Sayed [9] in the year 2020, extended the conception of γ-
operation in fuzzy soft ideal topological spaces. Asaad et al. [1] put forth the idea of γ operation on
Supra Topology and defined supra γ-regular and supra open operations and analyzed some of their
characteristics. Roy and Noiri [17] investigated the features of γµ open sets by defining operation on
generalized topological spaces. The study of bioperations on soft topological spaces was initialized by
Asaad et al. [2] in 2021. They contemplated the properties of soft (γ,γ

′
)-open sets, soft (γ,γ

′
)-g closed

sets and soft (γ,γ
′
) − T1/2 spaces. Das et al. [7] examined the characteristics of operation on generalized

fuzzy topological spaces.
In this paper, we define the operation γ on neutrosophic soft open sets and introduce neutrosophic

soft γ-open sets in neutrosophic soft topological spaces. Also, we analyze the properties of closure and
interior operators by utilizing neutrosophic soft γ-closed and neutrosophic soft γ-open sets, respectively.
Finally, we implement the notion of neutrosophic soft γ-open sets for decision-making problems.

2. Preliminaries

This module is concerned with some important definitions associated to neutrosophic set (NS), neu-
trosophic soft set (NSS) and neutrosophic soft topological spaces (NSTSs)

Definition 2.1 ([20]). For the universal set U and the values T ; I; F : U→]−0, 1+[ and −0 6 TL (k)+ IL (k)

+ FL (k) 6 3+, an NS is defined as:

L = {< k, TL (k) , IL (k) , FL (k) >: k ∈ U}.
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Definition 2.2 ([14]). For the universal set U and the values TfP(ω)
(k) , IfP(ω)

(k) , FfP(ω)
(k) ∈ [0, 1] are the

”truth”, ”indeterminacy”, and ”falsity” functions of fP(ω), respectively, where fP is defined from the set
of parameters (Ω) to P(U). Then the NSS is defined as

P =
{(
ω,
{
< k, TfP(ω)

(k) , IfP(ω)
(k) , FfP(ω)

(k) >: k ∈ U
})

: ω ∈ Ω
}

.

Definition 2.3 ([8]). For the universal set U and two NSSs ( H, Ω ) and ( G, Ω ) over U,

1. (H, Ω )⊆(G, Ω ) if TH(ω) (k) 6 TG(ω) (k) , IH(ω) (k) > IG(ω) (k) , FH(ω) (k) > FG(ω) (k) , ∀ ω ∈
Ω, k ∈ U;

2. Hc =
{(
ω,
{
< k, FfH(ω)

(k) , 1 − IfH(ω)
(k) , TfH(ω)

(k) >: k ∈ U
})

: ω ∈ Ω
}

;

3. H is termed as a null NSS if TfH(ω)
(k) = 0, IfH(ω)

(k) = 1, FfH(ω)
(k) = 1 ∀ k ∈ U and ω ∈ Ω which

is symbolically written as φu;

4. H is termed as a absolute NSS if TfH(ω)
(k) = 1, IfH(ω)

(k) = 0, FfH(ω)
(k) = 0 ∀ k ∈ U and ω ∈ Ω

which is symbolically written as 1u;

5. if H ∪G = P, then P =
{(
ω,
{
< k, TfP(ω)

(k) , IfP(ω)
(k) , FfP(ω)

(k) >: k ∈ U
})

: ω ∈ Ω
}

, where

TfP(ω)
(k) = max

(
TfH(ω)

(k) , TfG(ω)
(k)
)

, IfP(ω)
(k) = min

(
IfH(ω)

(k) , IfG(ω)
(k)
)

, FfP(ω)
(k)

= min
(
FfH(ω)

(k) , FfG(ω)
(k)
)

;

6. if H ∩G = Q, then Q =
{(
ω,
{
< k, TfQ(ω)

(k) , IfQ(ω)
(k) , FfQ(ω)

(k) >: k ∈ U
})

: ω ∈ Ω
}

, where

TfQ(ω)
(k) = min

(
TfH(ω)

(k) , TfG(ω)
(k)
)

, IfQ(ω)
(k) = max

(
IfH(ω)

(k) , IfG(ω)
(k)
)

, FfQ(ω)
(k)

= max
(
FfH(ω)

(k) , FfG(ω)
(k)
)

.

Definition 2.4 ([5]). If NSS(U,Ω) is the family of all NSSs over U via parameters in Ω and τu ⊂
NSS(U,Ω), then τu is termed as an NS topology on (U, Ω) provided the following constraints hold:

1. φu, 1u ∈ τu;

2. for H1,H2 ∈ τu ⇒ H1 ∩ H2 ∈ τu;

3. for ∪i∈JUi ∈ τu, for every {Ui : i ∈ J} ⊆ τu.

Then the triplet (U, Ω, τu) is termed as an NSTS. Every member of τu is termed as neutrosophic soft
open set (NSOS). And (NSOS)c is termed as neutrosophic soft closed set (NSCS).

Definition 2.5 ([5]). An NS point in an NSS P is defined as an element (ω, fP (ω)) of P, for ω ∈ Ω and
is denoted by ωP, if fP (ω) /∈ φu and fP (ω ′) ∈ φu ∀ ω ′ ∈ Ω\{ω}. An NS point ωP belongs to an NSS,
say M, if for the element ω ∈ Ω, fP (ω) 6 fM (ω).

Definition 2.6 ([5]). Let (U, Ω, τu) be an NSTS over (U, Ω) and P ∈ NSS(U,Ω)) be arbitrary. Then
the closure of P is the intersection of all closed neutrosophic soft supersets of P.

3. Operation approach on neutrosophic soft open sets

Definition 3.1. Let (U,Ω, τu) be an NSTS. A mapping γ from τu into the NS power set P(U) of U is
known as an operation if (H,Ω) ⊆ γ(H,Ω) ∀ (H,Ω) ∈ τu, where γ(H,Ω) is the value of (H,Ω) under
the operation γ.
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Example 3.2. Let U = {k1,k2,k3} and the attributes Ω = {ω1,ω2}. Then the family of NSSs are

(M,Ω) =
{
< ω1,

{
k1

0.9,0.4,0.3 , k2
0.5,0.3,0.5 , k3

0.4,0.1,0.3

}
>,< ω2,

{
k1

0.7,0.1,0.4 , k2
0.6,0.3,0.2

k3
0.6,0.1,0.5

}
>
}

,

(N,Ω) =
{
< ω1,

{
k1

0.7,0.4,0.5 , k2
0.4,0.5,0.5 , k3

0.3,0.3,0.4

}
>,< ω2,

{
k1

0.6,0.2,0.4 , k2
0.5,0.4,0.3 , k3

0.4,0.6,0.5

}
>
}

,

(O,Ω) =
{
< ω1,

{
k1

0.5,0.8,0.6 , k2
0.3,0.9,0.7 , k3

0.2,0.6,0.5

}
>,< ω2,

{
k1

0.4,0.6,0.5 , k2
0.4,0.6,0.4 , k3

0.1,0.7,0.6

}
>
}

,

(P,Ω) =
{
< ω1,

{
k1

0.8,0.3,0.4 , k2
0,5,0.4,0.3 , k3

0.7,0.1,0.2

}
>,< ω2,

{
k1

0.7,0.1,0.3 , k2
0.6,0.2,0.1 , k3

0.7,0.4,0.3

}
>
}

.

Then the subfamily τu = { φu, 1u, (N,Ω) , (P,Ω)} forms an NS topology. Define the operation γ : τu →
P (U) as

γ (L,Ω) =

{
(L,Ω), if ω2P ∈ (L,Ω),
1u, if ω2P /∈ (L,Ω), ∀ (L,Ω) ∈ τu.

Then, γ is an operation on τu since (L,Ω) ⊆ γ (L,Ω), ∀ (L,Ω) ∈ τu.

Definition 3.3. an NSS (L,Ω) over U via parameters in Ω with an operation γ on τu is known as a
neutrosophic soft γ-open set (NSγOS) if ∀ ωiL ∈ (L,Ω), ∃ an NSOS (H,Ω) such that ωiL ∈ (H,Ω)
and γ (H,Ω) ⊆ (L,Ω), where ωi ∈ Ω. The collection of all neutrosophic soft γ-open sets in (U,Ω, τu) is
written symbolically as τuγ . We call (NSγOS)c as neutrosophic soft γ-closed set (NSγCS).

Example 3.4. Consider the Example 3.2, let γ : τu → P (U) be a mapping defined by γ (L,Ω) = cl (L,Ω),
∀ (L,Ω) ∈ τu. Here τuγ = {φu, 1u}.

Remark 3.5. Every NSγOS is NSOS as it is clear from the Definition 3.3.

Theorem 3.6. Arbitrary union of NSγOSs is NSγO .

Proof. Consider
{
(L,Ω)αi : αi ∈ ∆

}
to be the collection of NSγOSs in an NSTS (U,Ω, τu). Let ωαiL ∈⋃

αi∈∆ (L,Ω)αi . Then ωαiL ∈ (L,Ω)αi for some αi ∈ ∆. Since (L,Ω)αi is NSγO , by the Definition 3.3,
∃ an NSOS (H,Ω) in (U,Ω, τu) such that ωαiL ∈ (H,Ω) and γ (H,Ω) ⊆ (L,Ω)αi ⊆

⋃
αi∈∆ (L,Ω)αi .

Therefore,
⋃
αi∈∆ (L,Ω)αi is NSγO in U.

Remark 3.7. Intersection of any two NSγOSs is not necessarily NSγO, which is verified by the following
example.

Example 3.8. Let U = {k1,k2,k3} and the attributes Ω = {ω1,ω2}. Then the family of NSSs are

(R,Ω) =
{
< ω1,

{
k1

0.5,0.6,0.7 , k2
0.5,0.5,0.4 , k3

0.4,0.7,0.3

}
>,< ω2,

{
k1

0.3,0.8,0.8 , k2
0.1,0.6,0.7 , k3

0.2,0.4,0.5

}
>
}

,

(S,Ω) =
{
< ω1,

{
k1

0.3,0.6,0.9 , k2
0.2,0.5,0.6 , k3

0.2,0.9,0.7

}
>,< ω2,

{
k1

0.4,0.8,0.6 , k2
0.3,0.6,0.5 , k3

0.5,0.4,0.4

}
>
}

,

(P,Ω) =
{
< ω1,

{
k1

0.3,0.6,0.9 , k2
0.2,0.5,0.6 , k3

0.2,0.9,0.7

}
>,< ω2,

{
k1

0.3,0.8,0.8 , k2
0.1,0.6,0.7 , k3

0.2,0.4,0.5

}
>
}

,

(T,Ω) =
{
< ω1,

{
k1

0.5,0.6,0.7 , k2
0.5,0.5,0.4 , k3

0.4,0.7,0.3

}
>,< ω2,

{
k1

0.4,0.8,0.6 , k2
0.3,0.6,0.5 , k3

0.5,0.4,0.4

}
>
}

.

Then τu = {φu, 1u,(R,Ω), (S,Ω), (P,Ω), (T,Ω)} forms an NS topology. Define the operation γ : τu →
P (U) as

γ (L,Ω) =

{
(L,Ω), if ωiT ∈ (L,Ω),
1u, if ωiT /∈ (L,Ω), ∀ (L,Ω) ∈ τu.

Then, τuγ = {φu, 1u,(R,Ω) , (S,Ω) , (T,Ω)}. Here (R,Ω)∩ (S,Ω) = (P,Ω) /∈ τuγ.

Definition 3.9. An NSTS (U,Ω, τu) is termed to be an NSγ-regular space if for each NS point ωiF ∈ Ũ,
where Ũ is the collection of NS points in τu and for each NSOS (H, Ω) containing ωiF, there exists an
NSOS (K,Ω) containing ωiF in (U,Ω, τu) such that γ (K,Ω) ⊆ (H,Ω).
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Example 3.10. Consider the collection of NSSs in Example 3.2, the subfamily τu = {φu, 1u, (M,Ω) ,
(N,Ω) , (O,Ω)} forms an NS topology. Define the operation γ : τu → P (U) as

γ (L,Ω) =

{
(L,Ω), if ω1F ∈ (L,Ω),
cl(L,Ω), if ω1F /∈ (L,Ω), ∀ (L,Ω) ∈ τu,

where ω1F =
{

k1
0.4,0.9,0.7 , k2

0.3,0.9,0.7 , k3
0.1,0.8,0.6

}
. Here the NSTS (U,Ω, τu) is an NSγ-regular space.

Remark 3.11. Every NSTS need not to be an NSγ-regular space.

Example 3.12. Consider the Example 3.10, define the operation γ : τu → P (U) as

γ (L,Ω) =

{
(L,Ω), if ω2F ∈ (L,Ω),
1u, if ω2F /∈ (L,Ω), ∀(L,Ω) ∈ τu,

where ω2F =
{

k1
0.5,0.7,0.5 , k2

0.4,0.6,0.7 , k3
0.3,0.8,0.7

}
. Then γ (L,Ω) = (L,Ω) for (L,Ω) = (M,Ω) and (N,Ω).

γ (O,Ω) = 1u.
Here the NSTS (U,Ω, τu) is not an NSγ-regular space, since for ωiO ∈ Ũ(i = 1, 2) and NSOS

(O,Ω) containing ωiO, there dose not exist NSOS (K,Ω) containing ωiO � γ (K,Ω) ⊆ (O,Ω) as ωiO ∈
(M,Ω) , (N,Ω) , (O,Ω) and (O,Ω) ⊆ (N,Ω) ⊆ (M,Ω).

Theorem 3.13. Let (U,Ω, τu) be an NSTS with the operation γ : τu → P(U). Then the following are equivalent:

1. τu = τuγ;

2. (U,Ω, τu) is an NSγ-regular space;

3. given ωiF ∈ Ũ and ∀ NSS (L,Ω) containing ωiF, there exists an NSγOS (H,Ω) such that ωiF ∈
(H,Ω) ⊆ (L,Ω).

Proof.

1⇒ 2: Assume that τu = τuγ. Then for each ωiF ∈ Ũ and for every NSOS (H,Ω) containing ωiF,
there exists an NSOS (K,Ω) containing ωiF such that γ (K,Ω) ⊆ (H,Ω), since τu = τuγ. Therefore
(U,Ω, τu) is an NSγ-regular space.

2⇒ 3: Consider ωiF ∈ Ũ and an NSOS (L,Ω) containing ωiF. By 2, there exists an NSOS (H,Ω)
containing ωiF such that γ (H,Ω) ⊆ (L,Ω). Since γ is an operation on τu, (H,Ω) ⊆ γ(H,Ω) ⊆ (L,Ω).
As (H,Ω) is an NSOS containing ωiF, again by 2, there exists an NSOS (K,Ω) containing ωiF such
that γ (K,Ω) ⊆ (H,Ω). This implies that (H,Ω) is an NSγOS . Hence (H,Ω) is an NSγOS such that
ωiF ∈ (H,Ω) ⊆ (L,Ω).

3⇒ 1: Let (L,Ω) be an NSS containing ωiF. Then by assumption, there exists an NSγOS (H,Ω) such
that ωiF ∈ (H,Ω) ⊆ (L,Ω). By Definition 3.3, ∃ an NSOS (K,Ω) � ωiF ∈ (K,Ω) and γ(K,Ω) ⊆
(H,Ω) ⊆ (L,Ω). Therefore (L,Ω) is an NSγOS . Hence τu ⊆ τuγ. By Remark 3.5, we have τuγ ⊆ τu.
Therefore τu = τuγ.

Remark 3.14. If the space is not an NSγ-regular space, then τu 6= τuγ, which is evident from the Example
3.12, since τu = {φu, 1u,(M,Ω) , (N,Ω), (O,Ω)} and τuγ = {φu, 1u, (M,Ω) , (N,Ω)}

Definition 3.15. An operation γ : τu → P(U) is termed as NSγ-regular if ∀ ωiF ∈ Ũ and ∀ pairs
of NSOSs (L,Ω) and (S,Ω) containing ωiF, ∃ an NSOS (J,Ω) containing ωiF such that γ (L,Ω) ∩
γ (S,Ω) ⊇ γ(J,Ω).
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Example 3.16. Consider U = {k1,k2,k3}, Ω = {ω1,ω2} with the NSSs

(M,Ω) =
{
< ω1,

{
k1

1.0,0.5,0.4 , k2
0.6,0.6,0.6 , k3

0.5,0.6,0.4

}
>,< ω2,

{
k1

0.8,0.4,0.5 , k2
0.7,0.7,0.3 , k3

0.7,0.5,0.6

}
>
}

,

(N,Ω) =
{
< ω1,

{
k1

0.8,0.5,0.6 , k2
0.5,0.7,0.6 , k3

0.4,0.7,0.5

}
>,< ω2,

{
k1

0.7,0.6,0.5 , k2
0.6,0.8,0.4 , k3

0.5,0.8,0.6

}
>
}

,

(O,Ω) =
{
< ω1,

{
k1

0.6,0.6,0.7 , k2
0.4,0.8,0.8 , k3

0.3,0.8,0.6

}
>,< ω2,

{
k1

0.5,0.8,0.6 , k2
0.5,0.9,0.5 , k3

0.2,0.9,0.7

}
>
}

.

Then the subfamily τu = {φu, 1u, (M,Ω) , (N,Ω) , (O,Ω)} forms an NSTS. Define γ : τu → P (U) as

γ (L,Ω) =

{
(L,Ω)∪ {ω1F}, if ω2N /∈ (L,Ω),
(L,Ω), if ω2N ∈ (L,Ω), ∀ (L,Ω) ∈ τu,

where ω1F =
{

k1
0.4,0.9,0.7 , k2

0.3,0.9,0.7 , k3
0.1,0.8,0.6

}
. Here, γ is an NSγ-regular operation.

Example 3.17. Consider the Example 3.16, define γ : τu → P (U) as

γ (L,Ω) =

{
(L,Ω)∪ {ω2M}, if ω2N /∈ (L,Ω),
(L,Ω), if ω2N ∈ (L,Ω), ∀(L,Ω) ∈ τu.

Since ω2N ∈ (M,Ω) and ω2N ∈ (N,Ω),γ (M,Ω) = (M,Ω) and γ (N,Ω) = (N,Ω). Since ω2N /∈ (O,Ω),

γ (O,Ω) =
{
< ω1,

{
k1

0.6,0.6,0.7 , k2
0.4,0.8,0.8 , k3

0.3,0.8,0.6

}
>,< ω2,

{
k1

0.8,0.4,0.5 , k2
0.7,0.7,0.3 , k3

0.7,0.5,0.6

}
>
}

,

τuγ = {φu, 1u, (M,Ω) , (N,Ω)}. Here γ is not an NSγ-regular operation, since for ωiO ∈ Ũ(i = 1, 2)
and ωiO ∈ (M,Ω) , (N,Ω) , (O,Ω) for (i = 1, 2), consider the NSOSs (O,Ω) and (N,Ω) containing ωiO
there does not exist NSOS in τu, say (K,Ω) containing ωiO such that γ(K,Ω) ⊆ γ(O,Ω)∩ γ(N,Ω) = {<

ω1,
{

k1
0.6,0.6,0.7 , k2

0.4,0.8,0.8 , k3
0.3,0.8,0.6

}
>, < ω2,

{
k1

0.7,0.6,0.5 , k2
0.6,0.8,0.4 , k3

0.5,0.8,0.6

}
>}.

Theorem 3.18. Let γ be an NSγ-regular operation on τu. If (L,Ω) and (S,Ω) are NSγOSs of (U,Ω, τu), then
(L,Ω)∩ (S,Ω) is NSγO .

Proof. Let (L,Ω) and (S,Ω) be NSγOSs of (U,Ω, τu). Consider (J,Ω) = (L,Ω) ∩ (S,Ω). Let ωiF ∈
(J,Ω) implies ωiF ∈ (L,Ω) and ωiF ∈ (S,Ω). Since (L,Ω) and (S,Ω) are NSγOSs, ∃ NSOSs (H,Ω)
and (K,Ω) containing ωiF � γ(H,Ω) ⊆ (L,Ω) and γ(K,Ω) ⊆ (S,Ω). Since the operation γ is NSγ-
regular, ∃ an NSγOS (J,Ω) containingωiF 3 γ(J,Ω) ⊆ γ(H,Ω)∩γ(K,Ω) ⊆ (L,Ω)∩ (S,Ω). Therefore
(L,Ω)∩ (S,Ω) is an NSγOS .

Remark 3.19. If γ is an NSγ-regular operation on τu, then τuγ forms an NS topology on (U,Ω, τu).

Proof. It is evident from Theorems 3.6 and 3.18

Definition 3.20. Let (U,Ω, τu) be an NSTS and (L,Ω) be any arbitrary NSS. Then neutrosophic soft
γ-closure of an NSS (L,Ω) is the intersection of all NSγCSs containing (L,Ω), i.e., γNS

− cl(L,Ω) =
∩{(F,Ω) : (L,Ω) ⊆ (F,Ω), where (F,Ω) is an NSγCS in U.}

Example 3.21. Consider Example 3.16, Define γ : τu → P (U) as

γ (L,Ω) =

{
(L,Ω)∪ {ω2M}, if ω2N /∈ (L,Ω),
(L,Ω), if ω2N ∈ (L,Ω), ∀ (L,Ω) ∈ τu.

Then γ (L,Ω) = (L,Ω) for (L,Ω) = (M,Ω) and (N,Ω).

γ (O,Ω) =
{
< ω1,

{
k1

0.6,0.6,0.7 , k2
0.4,0.8,0.8 , k3

0.3,0.8,0.6

}
>,< ω2,

{
k1

0.8,0.4,0.5 , k2
0.7,0.7,0.3 , k3

0.7,0.5,0.6

}
>
}

.
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τuγ = {φu, 1u, (M,Ω) , (N,Ω)}. τcuγ = {φu, 1u, (M,Ω)c, (N,Ω)c}, where

(M,Ω)c =
{
< ω1,

{
k1

0.4,0.5,1.0 , k2
0.6,0.4,0.6 , k3

0.4,0.4,0.5

}
>,< ω2,

{
k1

0.5,0.6,0.8 , k2
0.3,0.3,0.7 , k3

0.6,0.5,0.7

}
>
}

,

(N,Ω)c =
{
< ω1,

{
k1

0.6,0.5,0.8 , k2
0.6,0.3,0.5 , k3

0.5,0.3,0.4

}
>,< ω2,

{
k1

0.5,0.4,0.7 , k2
0.4,0.2,0.6 , k3

0.6,0.2,0.5

}
>
}

.

Clearly (M,Ω)c ⊂ (N,Ω)c. Let (P,Ω) be an arbitrary NSS defined as,

(P,Ω) =
{
< ω1,

{
k1

0.5,0.6,0.9 , k2
0.5,0.4,0.7 , k3

0.4,0.5,0.6

}
>,< ω2,

{
k1

0.4,0.5,0.8 , k2
0.3,0.5,0.7 , k3

0.3,0.7,0.8

}
>
}

.

Here γNS
- cl(P,Ω) = (N,Ω)c.

Proposition 3.22. Let (L,Ω) and (S,Ω) be two NSSs in (U,Ω, τu). Then

(i) (L,Ω) ⊂ γNS
-cl(L,Ω);

(ii) γNS
-cl(L,Ω) is the smallest NSγCS containing (L,Ω);

(iii) γNS
-cl (φ) = φ and γNS

-cl (1u) = 1u;

(iv) (L,Ω) is NSγ-closed if and only if (L,Ω) = γNS
-cl(L,Ω);

(v) if (L,Ω) ⊂ (S,Ω), then γNS
-cl (L,Ω) ⊂ γNS

-cl(S,Ω);

(vi) γNS
-cl ((L,Ω)∪ (S,Ω)) ⊃ γNS

-cl(L,Ω)∪ γNS
-cl(S,Ω);

(vii) γNS
-cl ((L,Ω)∩ (S,Ω)) ⊂ γNS

-cl(L,Ω)∩ γNS
-cl(S,Ω);

(viii) γNS
-cl(γNS

-cl(L,Ω)) = γNS
-cl(L,Ω).

Proof. (i) and (iii) are immediate.

(ii): To prove γNS
-cl(L,Ω) is an NSγCS, it is enough to prove (γNS

− cl(L,Ω))c is NSγOS in U. Let
ωiF ∈ (γNS

− cl(L,Ω))c. Then ωiF /∈ γNS
− cl(L,Ω), i.e., ωiF /∈ (J,Ω), for at least one NSγCS

containing (L,Ω). This implies ωiF ∈ (J,Ω)c and (J,Ω)c is an NSγOS . By the Definition 3.3, ∀
ωiF ∈ (J,Ω)c, ∃ an NSOS (H,Ω) such that ωiF ∈ (H,Ω) and γ(H,Ω) ⊆ (J,Ω)c. Since (J,Ω) ⊇ γNS

-
cl(L,Ω), (J,Ω)c ⊆ (γNS

−cl(L,Ω))c, which implies γ(H,Ω) ⊆ (J,Ω)c ⊆ (γNS
− cl(L,Ω))c. Therefore,

(γNS
− cl(L,Ω))c is an NSγOS in U.

(iv): If (L,Ω) = γNS
-cl(L,Ω), then by (ii), (L,Ω) is NSγ-closed. Now, to prove (L,Ω) = γNS

-cl(L,Ω)
when (L,Ω) is NSγ-closed. Assume that (L,Ω) is NSγ-closed. Let ωiF ∈ γNS

-cl(L,Ω). Then ωiF ∈
(J,Ω), ∀ NSγCS containing (L,Ω). Since (L,Ω) is also an NSγCS containing (L,Ω), ωiF ∈ (L,Ω),
implies that γNS

-cl(L,Ω) ⊆ (L,Ω). By (i), (L,Ω) ⊆ γNS
-cl(L,Ω). Hence (L,Ω) = γNS

-cl(L,Ω).

(v): (L,Ω) ⊂ γNS
-cl(L,Ω) and (S,Ω) ⊂ γNS

-cl(S,Ω) =⇒ (L,Ω) ⊂ (S,Ω) ⊂ γNS
-cl(S,Ω). Since

γNS
-cl(L,Ω) is the smallest NSγCS containing (L,Ω), (L,Ω) ⊂ γNS

-cl (L,Ω) ⊂ γNS
-cl(S,Ω). Hence

γNS
-cl (L,Ω) ⊂ γNS

-cl(S,Ω).

(vi): (L,Ω) ⊂ (L,Ω)∪ (S,Ω) and (S,Ω) ⊂ (L,Ω)∪ (S,Ω). By (v), γNS
-cl (L,Ω) ⊂ γNS

-cl((L,Ω)
∪(S,Ω)) and γNS

-cl (S,Ω) ⊂ γNS
-cl ((L,Ω)∪ (S,Ω)) =⇒ γNS

-cl (L,Ω)∪ γNS
-cl (S,Ω) ⊂ γNS

-cl((L,Ω)
∪(S,Ω)).

(vii): (L,Ω) ∩ (S,Ω) ⊂ (L,Ω) and (L,Ω) ∩ (S,Ω) ⊂ (S,Ω). By (v), γNS
-cl ((L,Ω)∩ (S,Ω)) ⊂ γNS

-
cl (L,Ω) and γNS

-cl ((L,Ω)∩ (S,Ω)) ⊂ γNS
-cl (S,Ω) =⇒ γNS

-cl ((L,Ω)∩ (S,Ω)) ⊂ γNS
-cl (L,Ω) ∩

γNS
-cl (S,Ω).

(viii): Obvious from (ii) and (iv).
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Definition 3.23. Let (U,Ω, τu) be an NSTS and (L,Ω) be any arbitrary NSS. Then neutrosophic soft
γ-interior of an NSS (L,Ω) is the union of all NSγOSs contained in (L,Ω), i.e., γNS

-int(L,Ω) =
∪{(G,Ω) : (G,Ω) ⊆ (L,Ω), where (G,Ω) is an NSγOS in U }.

Example 3.24. Consider Example 3.21, τuγ = {φu, 1u, (M,Ω) , (N,Ω)}. Let (P,Ω) be an arbitrary NSS

defined as

(P,Ω) =
{
< ω1,

{
k1

0.8,0.3,0.2 , k2
0.5,0.4,0.2 , k3

0.4,0.2,0.4

}
>,< ω2,

{
k1

0.7,0.1,0.3 , k2
0.6,0.3,0.1 , k3

0.8,0.4,0.3

}
>
}

.

Then γNS
-int (P,Ω) = (N,Ω).

Proposition 3.25. Let (L,Ω) and (S,Ω) be two NSSs of U. Then

(i) γNS
-int (L,Ω) ⊆ (L,Ω) and γNS

-int (L,Ω) is the largest NSγOS contained in (L,Ω);

(ii) γNS
-int (φ) = φ and γNS

-int (1u) = 1u;

(iii) (L,Ω) is NSγO if and only if (L,Ω) = γNS
-int (L,Ω);

(iv) if (L,Ω) ⊆ (S,Ω), then γNS
-int (L,Ω) ⊆ γNS

-int (S,Ω);

(v) γNS
-int (L,Ω)∪ γNS

-int (S,Ω) ⊂ γNS
-int ((L,Ω)∪ (S,Ω));

(vi) γNS
-int ((L,Ω)∩ (S,Ω)) ⊂ γNS

-int (L,Ω)∩ γNS
-int (S,Ω);

(vii) γNS
-int(γNS

-int(L,Ω)) = γNS
-int(L,Ω).

4. Application of neutrosophic soft γ-open sets in decision making

Neutrosophic soft set has numerous applications in daily life problems involving uncertainties. Here,
we use the idea of Neutrosophic soft set for modelling one such problem of decision-making.

Definition 4.1. Comparison matrix is a matrix whose rows and columns are named by the object names
ϑ1, ϑ2, . . . , ϑn and parameters ζ1, ζ2, . . . , ζm, respectively. The entries cij are computed by

cij =

{
0, if Tϑi

(
ζj
)
= 0, Iϑi

(
ζj
)
= 1, Fϑi

(
ζj
)
= 1,

l+ p− q, otherwise,

where ‘l’ is the integer, counted by ‘number of times Tϑi (ζj ) > Tϑh (ζj)’, for ϑi 6= ϑh, ∀ϑh ∈ U, ‘p’
is the integer, counted by ‘number of times Iϑi (ζj ) > Iϑh (ζj )’, for ϑi 6= ϑh, ∀ϑh ∈ U and ‘q’ is the
integer, counted by ‘number of times Fϑi (ζj ) > Fϑh (ζj )’, for ϑi 6= ϑh, ∀ϑh ∈ U.

Definition 4.2 ([14]). ’Score of an object’ ϑi is computed as Si =
∑
j cij.

4.1. Decision making with neutrosophic soft γ-open sets
As enterprises strive for more efficient operations across the board, enterprise resource planning (ERP)

software is becoming an increasingly sought-after solution for enhancing procedures at the business ap-
plication level. In a single platform, ERP software unifies several back-office applications, business pro-
cesses, and workflows. It provides unique benefits like improved data sharing, improved data quality,
and accuracy, as well as enhanced administrative visibility.

It doesn’t necessarily follow that an ERP platform is a suitable choice for one’s business simply because
widely recognized or highly reviewed. Choosing the right ERP is a critical job for enterprise runners.

This application aims to achieve the main target of determining the suitable ERP for the effective
operation of one’s firm and a particular concern. There is plenty of ERP software available in the market.
Each software appeal to different business and has its pros and cons. An ERP which operates well in
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human resource sectors need not duly operates the same for the manufacturing or financial sector. If a
person is running a garment manufacturing firm and deciding to buy the best ERP, in his business sector,
manufacturing and inventory management are the key features that he must be mainly concerned about.
He might reach experts for their opinion or search for widely recognized or highly reviewed products in
the market, but that might not fully satisfy the key requirements of his firm. The methodology proposed
in this section mainly focuses on the key requirements of one’s firm.

To carry out this application, we, first, enumerate the four different types of ERP available in the
markets based on the opinion given by the experts. Second, we set up some features of ERP; each ERP is
expressed by a neutrosophic soft set (primary) such that the initial universal set is all four different types
of the ERP and the set of parameters is the features of ERP. Third, we will put together all suggested ERP
models to initiate a neutrosophic soft topological structure. This structure is framed using the NS union
and NS intersection operation and the absolute NSS and null NSS are always in the structure. Fourth,
we set up an operation according to the person’s requirement and compute the NSγOSs . The union of
the primary NSS is taken and a comparison matrix is determined. Finally, the score of the ERPs is found.

Algorithm 4.3. Algorithm of determining the optimum solution utilizing the NSγOSs .

Step-1: Input the data into NSS (which we call as primary NSSs).
Step-2: Frame the NSTS.
Step-3: Define a suitable operation for the given problem.
Step-4: Determine NSγOSs .
Step-5: Consider the NSγOS which is the union of the primary NSSs contained in the collection τuγ.
Step-6: Find the comparison table.
Step-7: Compute the score Si.
Step-8: The optimum alternative is selected by finding the maximum score.

For a numerical example, consider the problem of selecting the right ERP for a garment firm among
the top ERP’s in the market. Let ϑ1, ϑ2, ϑ3, ϑ4, . . . , ϑm denote the elements in the universal set and
ζ1, ζ2, ζ3, . . . , ζn denote the parameters.

Suppose that U = {ϑ1, ϑ2, ϑ3, ϑ4} be the set of four different ERP softwares (SAP S/4 HANA, ORACLE
cloud, MS Dynamics, and Acumatica) and Ω = ζ1 =Inventory, ζ2 = Manufacturing, ζ3 = Order Manage-
ment, ζ4 =Service, ζ5 = Customer Relationship Management, ζ6= Integration, and Extensibility be a set of
parameters.

Step-1: Input the primary NSSs as Tables 1-4.

Table 1: (A,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

Table 2: (B,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
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Table 3: (C,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ2 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

Table 4: (D,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ2 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1

Step-2: Frame the NSTS as

τu = {φu, 1u, (A,Ω) , (B,Ω) , (C,Ω) , (D,Ω) , (F,Ω) , (G,Ω) , (H,Ω) ,
(I,Ω) , (J,Ω) , (K,Ω) , (L,Ω) , (M,Ω) , (N,Ω) , (O,Ω) , (P,Ω)},

where we have Tables 5-15.

Table 5: (F,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

Table 6: (G,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

Table 7: (H,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1
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Table 8: (I,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ2 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1

Table 9: (J,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

Table 10: (K,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1

Table 11: (L,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

Table 12: (M,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1

Table 13: (N,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1
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Table 14: (O,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1

Table 15: (P,Ω).
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 1, 0, 0 0.79, 0.4, 0.2 0.96, 0.1, 0.1 .78, 0.3, 0.4 0.9, 0.1, 0.1 0.71, 0.4, 0.5
ϑ4 1, 0, 0 0.76, 0.5, 0.6 0.82, 0.4, 0.4 0.98, 0.1, 0.1 0.71, 0.2, 0.2 0.96, 0.1, 0.1

Step-3: If the person is concerned more about the manufacturing, where as other attributes are his sec-
ondary concerns, define γ : τu → P (U) as

γ (L,Ω) =

{
cl(L,Ω), if ζ2L ∈ ζ1F,
(L,Ω), otherwise, ∀ (L,Ω) ∈ τu,

where ζ1F =
{

ϑ1
0.8,0.2,0.2 , ϑ2

0.8,0.2,0.2 , ϑ3
0.8,0.2,0.2 , ϑ4

0.8,0.2,0.2

}
.

Step-4: Determine NSγOSs as

τuγ = {φu, 1u, (A,Ω) , (B,Ω) , (F,Ω) , (G,Ω) , (H,Ω) , (J,Ω) , (K,Ω) , (L,Ω) , (M,Ω) ,
(N,Ω) , (O,Ω) , (P,Ω)}.

Step-5: Consider the NSγOS, which is the union of the primary NSSs contained in the collection τuγ as
in Table 16.

Table 16: (F,Ω) = union of primary NSSs in τuγ.

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 1, 0, 0 0.92, 0.1, 0.1 0.92, 0.2, 0.1 0.65, 0.4, 0.6 0.7, 0.4, 0.3 0.86, 0.2, 0.3
ϑ2 0.9, 0.1, 0.2 0.92, 0.2, 0.2 0.9, 0.3, 0.2 0.84, 0.2, 0.3 0.9, 0.1, 0.1 0.71, 0.3, 0.4
ϑ3 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1
ϑ4 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1 0, 1, 1

Step-6: Find the comparison table as

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 3 3 3 2 2 3
ϑ2 2 3 2 3 3 2
ϑ3 0 0 0 0 0 0
ϑ4 0 0 0 0 0 0

Step-7: Compute the score Si as
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Score
ϑ1 16
ϑ2 15
ϑ3 0
ϑ4 0

Step-8: The optimum alternative is selected by finding the maximum score. Clearly maximum score is 16,
scored by the ERP ϑ1.

Comparison matrix for NSS(P,Ω) by Maji’s approach is presented in Table 17, where (P,Ω) is the
union of all primary NSSs in τu.

Table 17: Comparison matrix for NSS(P,Ω) by Maji’s approach.
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

ϑ1 3 3 3 0 0 2
ϑ2 0 2 1 2 3 1
ϑ3 3 1 2 1 3 1
ϑ4 3 0 0 3 1 3

Score of ϑi by Maji’s approach for the NSS (P,Ω) is as

Score
ϑ1 10
ϑ2 9
ϑ3 11
ϑ4 10

Therefore, by Maji’s approach, based on the score the person could choose the ERP ϑ3. But ERP ϑ3 has
the truth membership 0.79 for the manufacturing feature (ζ2) which is less than the truth membership of
ERP ϑ1. Since the person is more concerned about the manufacturing feature of the ERP, he might get
disappointed in choosing the ERP ϑ3. But whereas if he chose the ERP ϑ1, he would be satisfied as per
his primary and secondary attribute requirements.

5. Conclusion

To conclude this paper explicitly, a new concept called neutrosophic soft γ-open sets has been found
in a new way by defining an operation on neutrosophic soft open sets. Its operations like union and
intersection are discussed with illustrations. Some fundamental operators like closure and interior con-
cerning neutrosophic soft γ-sets are investigated and their basic properties are analyzed. Finally, using
the proposed algorithm, an optimum decision with respect to the requirement of a person using neutro-
sophic soft γ-open sets is found. In the future research, neutrosophic soft operations can be extended to
neutrosophic hypersoft, indeterm soft and tree soft set operations. Futher, this study can be extended by
developing python programme for the proposed model.
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