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Abstract
In this paper, we use soft g-closed subsets of a soft topological space (M, λ,B) to define a new soft closure operator and,

thus, a new soft topology λ× on M relative to B. We show that λ× contains the class of soft g-open sets, and thus λ× contains λ.
We also show that λ× = λ if and only if (M, λ,B) is soft T1/2. Furthermore, we show that (M, λ×,B) is always soft T1/2, and as a

result,
(
λ×
)×

= λ×; and we give conditions equivalent to the soft discretness of (M, λ×,B). Furthermore, with emphasis on the
transfer of ”soft regularity” conditions on (M, λ,B) to ”soft separation” conditions on (M, λ×,B). We have also demonstrated
by examples that each of soft compactness, soft connectedness, and soft second countability of (M, λ,B) does not transfer to
(M, λ×,B) in general. In addition to these, we provide new properties and characterizations of the well-known concept of
”soft g-continuity”. Finally, we investigate the correspondences between the novel soft topological concepts and their general
topological analogs.
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1. Introduction and Preliminaries

The application of classical mathematical concepts to various domains, including engineering, the
environment, economics, medical science, and social science, presents particular difficulties. Methods for
managing uncertainty include fuzzy sets, rough sets, intuitionistic fuzzy sets, and vague sets [16, 22, 32,
35]. According to Molodtsov [29], each of these methods has its own problems. The limitations of the
parameterization tool are mostly to blame for these issues. To address these problems and deal with
ambiguity, Molodtsov [29] proposed soft sets. Several authors have examined and explored the ideas of
soft sets (see [24, 28]). Soft sets were employed by the authors [29, 30] in a variety of disciplines, including
operation research, game theory, smoothness of function, probability, and measurement theory.

Many researchers have studied many mathematical structures using soft set theory. Soft topology is
one of the significant expansions of classical topology, according to Shabir and Naz [34]. There is still space
for significant contributions despite the fact that many traditional topological ideas, like generalized open
sets, separation axioms, covering characteristics, etc. [1–6, 9–14, 18, 31] have been extended and advanced
in soft set settings. Thus, a current trend among topological researchers is the study of soft topology.
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Levine [26] presented generalized closed (g-closed) sets in a topological space to extend many of the
fundamental properties of closed sets to a larger family. For example, it has been demonstrated that
g-closed subsets inherit compactness, normality, and completeness in a uniform space. Kannan [23],
presented soft g-closed sets. The soft g-closed sets were used in research papers by several authors.

In this paper, we use soft g-closed subsets of a soft topological space (M, λ,B) to define a new soft
closure operator and, thus, a new soft topology λ× on M relative to B. We show that λ× contains the
class of soft g-open sets, and thus λ× contains λ. We also show that λ× = λ if and only if (M, λ,B) is
soft T1/2. Furthermore, we show that (M, λ×,B) is always soft T1/2, and as a result,

(
λ×
)×

= λ×; and
we give conditions equivalent to the soft discreetness of (M, λ×,B). Furthermore, with emphasis on the
transfer of ”soft regularity” conditions on (M, λ,B) to ”soft separation” conditions on (M, λ×,B). We have
also demonstrated by examples that each of the soft compactness, soft connectedness, and soft second
countability of (M, λ,B) does not transfer to (M, λ×,B) in general. In addition to these, we provide new
properties and characterizations of the well-known concept of ”soft g-continuity.” Finally, we investigate
the correspondences between the novel soft topological concepts and their general topological analogs.

In this paper, topological space and soft topological space (STS and TS, respectively) will be used
alternatively. Throughout this paper, concepts and terminology from [7, 8] will be used.

Let (M, λ,B) be an STS and (M,µ) be a TS. Let H ∈ SS(M,B) and U ⊆M. Throughout this paper, λc

will denote the collection of all soft closed sets of (M, λ,B), and µc will denote the collection of all closed
sets of (M,µ), with Clλ(H) and Clµ(U) denoting the soft closure of H in (M, λ,B) and the closure of U in
(M,µ).

Now we recall some preliminaries that will be used in the sequel.

Definition 1.1 ([26]). Let (M,µ) be a TS, and let X ⊆M. Then

(a) X is said to be a generalized closed (briefly: g-closed) set in (M,µ) if Clµ(X) ⊆ U whenever U ∈ µ
and X ⊆ U, the collection of all g-closed sets in (M,µ) will be denoted by GC(M,µ).

(b) X is said to be a generalized open (briefly: g-open) set in (M,µ) if M− X ∈ GC(M,µ), the collection
of all g-open sets in (M,µ) will be denoted by GO(M,µ).

Definition 1.2 ([21]). Let (M,µ) be a STS and let X ⊆ M. The generalized closure of X in X ⊆ M is
denoted by Clgµ(X) and defined as follows:

Clgµ(X) = ∩̃ {Y : X ⊆ Y ∈ GC(M,µ)} .

Theorem 1.3 ([21]). For any STS (M,µ), denote the family
{
X ∈ SS(M,B) : Clgλ (M−X) =M−X

}
forms a

topology on M. This topology will be denoted by µ×.

Definition 1.4 ([19]). A function p : (M,µ) −→ (N, δ) between TSs (M,µ) and (N, δ) is called g-continuous
if p−1(U) ∈ GC (M,µ) for every U ∈ δc.

Definition 1.5 ([23]). Let (M, λ,B) be a STS and let H ∈ SS(M,B). Then, H is called a soft generalized
closed (briefly: soft g-closed) set in (M, λ,B) if Clλ(H)⊆̃K whenever K ∈ λ and H⊆̃K. The collection of
all soft g-closed sets in (M, λ,B) will be denoted by GC(M, λ,B). Soft complements of soft g-closed sets
in (M, λ,B) are called soft g-open sets (M, λ,B). The collection of all soft g-open sets in (M, λ,B) will be
denoted by GO(M, λ,B).

Definition 1.6. A STS (M, λ,B) is called

(1) soft compact if for every A ⊆> such that ∪̃A∈AA = 1B, there exists a finite subcollection A1⊆ A such
that ∪̃A∈A1 = 1B [17];

(2) soft connected if there does not exist F,G ∈ λ− {0B, 1B} such that F∩̃G = 0B and F∪̃G = 1B [27];
(3) soft second countable if it has a countable soft base [33];
(4) soft T1/2 if GC(M, λ,B) ⊆ λc [23];
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(5) soft regular if whenever G ∈ λc and bt∈̃1B −G, then there exists L,N ∈ λ such that bt∈̃L, G⊆̃N, and
L∩̃N = 0B [20];

(6) soft T1 if for any two soft points bm,dn ∈ SP(M,B) with bm 6= dn, there exist G, F ∈ λ such that
bm∈̃G− F and dn∈̃F−G [20];

(7) soft T0 if for any two soft points bm,dn ∈ SP(M,B) with bm 6= dn, there exists G ∈ λ such that bm∈̃G,
dn /̃∈G or bm /̃∈G, dn∈̃G [20];

(8) soft T3 if it is soft soft regular and soft T1 [20];
(9) soft R0 if for every bm ∈ SP(M,B) and every G ∈ λ such that bm∈̃G, we have Clλ (bm) ⊆̃G [25].

Definition 1.7 ([15]). A soft function fpu : (M, λ,B) −→ (N,γ,D) GC(M, λ,B) is called soft g-continuous
if f−1

pu(H) ∈ GC (M, λ,B) for every H ∈ γc.

2. The soft generalized closure operator

In this section, we use soft g-closed subsets of a STS to define a new soft closure operator and, thus,
a new soft topology finer than the original soft topology. Furthermore, with emphasis on the transfer of
”soft regularity” conditions on the original STS to ”soft separation” conditions on the new STS.

Definition 2.1. Let (M, λ,B) be a STS and let H ∈ SS(M,B). The soft generalized closure of H in (M, λ,B)
is denoted by Clgλ(H) and defined as follows:

Cl
g
λ(H) = ∩̃

{
K : H⊆̃K ∈ GC(M, λ,B)

}
.

Theorem 2.2. Let (M, λ,B) be a STS and let H ∈ SS(M,B). Then bm∈̃Clgλ(H) if and only if for any K ∈
GO(M, λ,B) with bm∈̃K, K∩̃H 6= 0B.

Proof.

Necessity. Suppose that bm∈̃Clgλ(H) and suppose to the contrary that there exists K ∈ GO(M, λ,B) such
that bm∈̃K and K∩̃H = 0B. Then we have H⊆̃1B − K ∈ GC(M, λ,B) and so, Clgλ(H)⊆̃1B − K. Since
bm∈̃Clgλ(H), then bm∈̃1B −K. But bm∈̃K, a contradiction.

Sufficiency. Suppose that for every K ∈ GO(M, λ,B) with bm∈̃K, K∩̃H 6= 0B. Suppose to the contrary
that bm /̃∈Clgλ(H). Then there exists S ∈ GC(M, λ,B) such that H⊆̃S and bm∈̃1B − S ∈ GO(M, λ,B). By
assumption we must have (1B − S) ∩̃H 6= 0B. But H⊆̃S, a contradiction.

Theorem 2.3. Let {(M,µb) : b ∈ B} be an indexed family of TSs. Let H ∈ SS (M,B). Then for every b ∈ B,(
Cl
g
⊕b∈Bµb(H)

)
(b) = Clgµb(H(b)).

Proof. Let b ∈ B. To see that
(
Cl
g
⊕b∈Bµb(H)

)
(b) ⊆ Cl

g
µb(H(b)), let m ∈

(
Cl
g
⊕b∈Bµb(H)

)
(b) and let

S ∈ GC(M,µb) such that H(b) ⊆ S. Then bm∈̃Clg⊕b∈Bµb(H). Define K ∈ SS(M,B) by K(a) = S when
a = b and K(a) = M when a 6= b. Then H⊆̃K and by Theorem 15 of [3], K ∈ GC(M,⊕b∈Bµb,B). Since
bm∈̃Clgλ(H), then bm∈̃K. Thus, m ∈ K(b) = S. Hence, m ∈ Clgµb(H(b)).

To see that Clgµb(H(b)) ⊆
(
Cl
g
⊕b∈Bµb(H)

)
(b), let m ∈ Cl

g
µb(H(b)). We are going to show that

bm∈̃Clg⊕b∈Bµb(H). Let K ∈ GC(M,⊕b∈Bµb,B) such that H⊆̃K. Then H(b) ⊆ K(b) and by Theorem 15 of
[3], K(b) ∈ GC(M,µb). Since m ∈ Clgµb(H(b)), then m ∈ K(b) and so, bm∈̃K. Hence, bm∈̃Clg⊕b∈Bµb(H).
Therefore, for every b ∈ B, (

Cl
g
⊕b∈Bµb(H)

)
(b) = Clgµb(H(b)).
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Corollary 2.4. Let (M,µ) be a TS and B be any set of parameters. Let H ∈ SS(M,B). Then for every b ∈ B,(
Cl
g
τ(µ)

(H)
)
(b) = Clgµ(H(b)).

Proof. For each b ∈ B, put µb = µ. Then τ (µ) = ⊕b∈Bµb, and by Theorem 2.3 we get the result.

Theorem 2.5. Let (M, λ,B) be a STS. Then for any H ∈ SS(M,B), H⊆̃Clgλ(H)⊆̃Clλ(H).

Proof. The soft inclusion H⊆̃Clgλ(H) follows directly from the definition of Clgλ(H). The soft inclusion
Cl
g
λ(H)⊆̃Clλ(H) follows because λc ⊆ GC(M, λ,B).

The following example will show that each of the soft inclusions in Theorem 2.5 cannot be replaced
by equality in general.

Example 2.6. Let M= {1, 2, 3}, µ = {∅,M, {1} , {1, 2}}, and B = R. Then Clτ(µ)(C{1}) = 1B and Clg
τ(µ)

(C{1}) =
C{1,2}.

Theorem 2.7. Let (M, λ,B) be a STS. Then

(a) Clgλ(0B) = 0B and Clgλ(1B) = 1B;
(b) if H ∈ GC(M, λ,B), then H = Clgλ(H);
(c) if H,G ∈ SS(M,B) such that H⊆̃G, then Clgλ(H)⊆̃Cl

g
λ (G);

(d) for any H,G ∈ SS(M,B), Clgλ(H∪̃G) = Cl
g
λ(H)∪̃Cl

g
λ(G);

(e) if {Hα : α ∈ ∆} ⊆ SS(M,B) such that Clgλ(Hα) = Hα for all α ∈ ∆, then Clgλ
(
∩̃α∈∆Hα

)
= ∩̃α∈∆Hα;

(f) Clgλ
(
Cl
g
λ(H)

)
= Clgλ(H).

Proof.

(a) By Theorem 2.5, 0B⊆̃Clgλ(0B)⊆̃Clλ(0B) = 0B, and thus, Clgλ(0B) = 0B. Since Clgλ(1B)⊆̃1B and by
Theorem 2.5, 1B⊆̃Clgλ(1B), then 1B = Clgλ(1B).

(b) If H ∈ GC(M, λ,B), then Clgλ(H) = ∩̃
{
K : H⊆̃K ∈ GC(M, λ,B)

}
⊆̃H. On the other hand, by Theorem

2.5 we have H⊆̃Clgλ(H). Hence, H = Clgλ(H).

(c) Suppose that H⊆̃G. We will apply Theorem 2.2. Let bm∈̃Clgλ(H) and let K ∈ GO(M, λ,B) such that
bm∈̃K. Then K∩̃H 6= 0B. Since H⊆̃G, then K∩̃H⊆̃K∩̃G, and so K∩̃G 6= 0B.

(d) Since H⊆̃H∪̃G and G⊆̃H∪̃G, then by (c), Clgλ(H)⊆̃Cl
g
λ

(
H∪̃G

)
and Clgλ(G)⊆̃Cl

g
λ

(
H∪̃G

)
. Hence, Clgλ(H)

∪̃Clgλ(G)⊆̃Cl
g
λ

(
H∪̃G

)
. To see that Clgλ

(
H∪̃G

)
⊆̃Clgλ(H)∪̃Cl

g
λ(G), suppose to the contrary that there exists

bm∈̃Clgλ
(
H∪̃G

)
such that bm /̃∈Clgλ(H) and bm /̃∈Clgλ(G). Since bm /̃∈Clgλ(H) and bm /̃∈Clgλ(G), then by

Theorem 2.2, there exist S, T ∈ GO(M, λ,B) such that bm∈̃S∩̃T and S∩̃H = T ∩̃G = 0B. Since S, T ∈
GO(M, λ,B), then by Theorem 4.5 of [33], S∩̃T ∈ GO(M, λ,B). Since(

S∩̃T
)
∩̃
(
H∪̃G

)
=
((
S∩̃T

)
∩̃H
)
∪̃
((
S∩̃T

)
∩̃G
)
⊆̃
(
S∩̃H

)
∪̃
(
T ∩̃G

)
= 0B,

then by Theorem 2.2, bm /̃∈Clgλ
(
H∪̃G

)
, a contradiction.

(e) For every β ∈ ∆, we have ∩̃α∈∆Hα⊆̃Hβ and by (c), Clgλ
(
∩̃α∈∆Hα

)
⊆̃Clgλ

(
Hβ
)

= Hβ. Hence,
Cl
g
λ

(
∩̃α∈∆Hα

)
⊆̃∩̃α∈∆Hα. On the other hand, by Theorem 2.5, we have ∩̃α∈∆Hα⊆̃Clgλ

(
∩̃α∈∆Hα

)
. There-

fore, Clgλ
(
∩̃α∈∆Hα

)
= ∩̃α∈∆Hα.

(f) By Theorem 2.5, Clgλ(H)⊆̃Cl
g
λ

(
Cl
g
λ(H)

)
. To see that Clgλ

(
Cl
g
λ(H)

)
⊆̃Clgλ(H), let K ∈ GC(M, λ,B) such

that H⊆̃K, then by (c) and (b), Clgλ(H)⊆̃Cl
g
λ (K) = K. Thus, again by (c) and (b), Clgλ

(
Cl
g
λ(H)

)
⊆̃Clgλ (K) =

K. Therefore, Clgλ
(
Cl
g
λ(H)

)
⊆̃∩̃

{
K : H⊆̃K ∈ GC(M, λ,B)

}
= Clgλ(H).
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Theorem 2.7 (b) is not generally reversible, as demonstrated by the following example.

Example 2.8. Let M = {1, 2, 3}, B = {b}, and λ = {0B, 1B,b1}. Then Clgλ (b1) = b1 /∈ GC(M, λ,B).

Theorem 2.9. For any STS (M, λ,B), the following are equivalent:

(a) GC(M, λ,B) is closed under soft intersection;
(b) H ∈ GC(M, λ,B) if and only if H = Clgλ(H).

Proof.

(a) −→ (b): If H ∈ GC(M, λ,B), then by Theorem 2.7 (b), H = Cl
g
λ(H). Conversely, suppose that H =

Cl
g
λ(H). Since by (a), Clgλ(H) ∈ GC(M, λ,B), then H ∈ GC(M, λ,B).

(b) −→ (a): Let {Hα : α ∈ ∆} ⊆ GC(M, λ,B). Then by (b), Hα = Clgλ(Hα) for all α ∈ ∆. So, by Theorem 2.7
(e), Clgλ

(
∩̃α∈∆Hα

)
= ∩̃α∈∆Hα. Hence, by (b), ∩̃α∈∆Hα ∈ GC(M, λ,B).

Definition 2.10. For any STS (M, λ,B), denote the family
{
S ∈ SS(M,B) : Clgλ (1B − S) = 1B − S

}
by λ×.

Theorem 2.11. For any STS (M, λ,B), λ× is a soft topology on M relative to B.

Proof.

(a) By Theorem 2.7 (a), Clgλ (1B − 0B) = 1B − 0B and Clgλ (1B − 1B) = 1B − 1B. Thus, 0B, 1B ∈ λ×.

(b) Let S, T ∈ λ×. Then Clgλ (1B − S) = 1B − S and Clgλ (1B − T) = 1B − T . So, by Theorem 2.7 (d),

Cl
g
λ

(
1B −

(
S∩̃T

))
= Clgλ

(
(1B − S) ∪̃ (1B − T)

)
= Clgλ (1B − S) ∪̃Clgλ (1B − T) = (1B − S) ∪̃ (1B − T) = 1B −

(
S∩̃T

)
.

Hence, S∩̃T ∈ λ×.

(c) Let {Sα : α ∈ ∆} ⊆ λ×. Then for every α ∈ ∆, Clgλ (1B − Sα) = 1B − Sα. So, by Theorem 2.7 (e),
Cl
g
λ

(
∩̃α∈∆ (1B − Sα)

)
= ∩̃α∈∆ (1B − Sα). Thus

Cl
g
λ

(
1B −

(
∪̃α∈∆Sα

))
= Clgλ

(
∩̃α∈∆ (1B − Sα)

)
= ∩̃α∈∆ (1B − Sα) = 1B −

(
∪̃α∈∆Sα

)
.

Hence, ∪̃α∈∆Sα ∈ λ×.

Theorem 2.12. For any STS (M, λ,B), GO(M, λ,B) ⊆ λ×.

Proof. Let S ∈ GO(M, λ,B). Then 1B − S ∈ GC(M, λ,B). So, by Theorem 2.7 (b), 1B − S = Cl
g
λ(1B − S).

Hence, S ∈ λ×.

Corollary 2.13. For any STS (M, λ,B), λ ⊆ λ×.

Proof. Follows from Theorem 2.12 and the fact that λ ⊆ GO(M, λ,B).

Theorem 2.14. For any STS (M, λ,B), λ = λ× if and only if (M, λ,B) is soft T1/2.

Proof.

Necessity. Suppose that λ = λ×. Let H ∈ GC(M, λ,B). Then by Theorem 2.7 (b), H = Cl
g
λ(H) and so,

1B −H ∈ λ× = λ. Hence, H ∈ λc. This show that GC(M, λ,B) ⊆ λc. Therefore, (M, λ,B) is soft T1/2.

Sufficiency. Suppose that (M, λ,B) is soft T1/2. We will show that λ× ⊆ λ. Let S ∈ λ×. Then Clgλ (1B − S) =
1B − S. Since (M, λ,B) is soft T1/2, then GC(M, λ,B) = λc and so Clgλ (1B − S) = Clλ (1B − S). Thus,
Clλ (1B − S) = 1B − S and hence, 1B − S ∈ λc. Therefore, S ∈ λ.

Theorem 2.15. Let {(M,µb) : b ∈ B} be an indexed family of TSs. Then (⊕b∈Bµb)× = ⊕b∈B (µb)
×.
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Proof. To see that (⊕b∈Bµb)× ⊆ ⊕b∈B (µb)
×, let S ∈ (⊕b∈Bµb)×. Then Clg⊕b∈Bµb(1B − S) = 1B − S. Thus,

by Theorem 2.3, for every b ∈ B,

M− S(b) = (1B − S) (b) =
(
Cl
g
⊕b∈Bµb(1B − S)

)
(b) = Clgµb((1B − S)(b)) = Clgµb((M− S(b))).

Therefore, for every b ∈ B, S(b) ∈ (µb)
× and hence S ∈ ⊕b∈B (µb)

×.
To see that ⊕b∈B (µb)

× ⊆ (⊕b∈Bµb)×, let S ∈ ⊕b∈B (µb)
×. Then for each b ∈ B, S (b) ∈ (µb)

× and so
Cl
g
µb((M− S(b))) =M− S(b). Thus, by Theorem 2.3, for every b ∈ B,(

Cl
g
⊕b∈Bµb(1B − S)

)
(b) = Clgµb((1B − S)(b)) = Clgµb((1B − S(b)) =M− S(b) = (1B − S)(b).

Therefore, Clg⊕b∈Bµb(1B − S) = 1B − S. Hence, S ∈ (⊕b∈Bµb)×.

Corollary 2.16. Let (M,µ) be a TS and B be any set of parameters. Let H ∈ SS(M,B). Then (τ (µ))× = τ
(
µ×
)
.

Proof. For each b ∈ B, put µb = µ. Then τ (µ) = ⊕b∈Bµb, and by Theorem 2.15, (τ (µ))× = ⊕b∈B (µb)
× =

τ
(
µ×
)
.

Theorem 2.17. Let (M, λ,B) be a STS and let H ∈ SS(M,B). Then Clgλ (H) = Clλ×(H).

Proof. To see that Clgλ (H) ⊆̃Clλ×(H), let bm∈̃Clgλ (H) and let S ∈ λ× such that bm∈̃S. Since S ∈ λ×, then
Cl
g
λ (1B − S) = 1B − S, and so bm /̃∈Clgλ (1B − S). So, there exists K ∈ RC(M, λ,B) such that 1B − S⊆̃K and

bm /̃∈K. Since bm∈̃Clgλ (H) and bm∈̃1B − K ∈ GO(M, λ,B), then by Theorem 2.2, we have (1B −K) ∩̃H 6=
0B. Since 1B − S⊆̃K, then 1B −K⊆̃S. Therefore, S∩̃H 6= 0B. Hence, bm∈̃Clλ×(H).

To see that Clλ×(H)⊆̃Cl
g
λ (H), let bm∈̃Clλ×(H) and let S ∈ GO(M, λ,B) such that bm∈̃S. Since S ∈

GO(M, λ,B), then by Theorem 2.12, S ∈ λ× and thus S∩̃H 6= 0B. Hence, bm∈̃Clgλ (H).

Theorem 2.18. For any STS (M, λ,B) and any bm ∈ SP(M,B), bm ∈ λc or 1B − bm ∈ GC(M, λ,B).

Proof. Suppose that bm /∈ λc, then 1B − bm /∈ λ. To see that 1B − bm ∈ GC(M, λ,B), let T ∈ λ such that
1B − bm⊆̃T . Since 1B − bm /∈ λ, then T = 1B and so Clλ (1B − bm) ⊆̃T .

Theorem 2.19. For any STS (M, λ,B) and any bm,dn ∈ SP(M,B), bm 6= dn implies Clgλ (bm) 6= Clgλ (dn).

Proof. By Theorem 2.18, we have two cases.

Case 1: bm ∈ λc. Then we have and dn /̃∈bm = Clλ (bm) = Cl
g
λ (bm) and dn∈̃Clgλ (dn). This implies that

Cl
g
λ (bm) 6= Clgλ (dn).

Case 2: 1B − bm ∈ GC(M, λ,B). Then we have dn∈̃1B − bm ∈ GC(M, λ,B), and thus dn∈̃Clgλ (dn) ⊆̃1B −
bm. So, we have bm∈̃Clgλ (bm) −Clgλ (dn), and hence Clgλ (bm) 6= Clgλ (dn).

Corollary 2.20. For any STS (M, λ,B), (M, λ×,B) is always soft T0.

Theorem 2.21. For any STS (M, λ,B), (M, λ×,B) is soft T1/2.

Proof. We will apply Theorem 23 of [3]. Let bm ∈ SP(M,B). Then by Theorem 2.18, we have two cases.

Case 1: bm ∈ λc. Then by Corollary 2.13, bm ∈
(
λ×
)c.

Case 2: bm ∈ GO(M, λ,B). Then by Theorem 2.12, bm ∈ λ×.

Corollary 2.22. For any STS (M, λ,B),
(
λ×
)×

= λ×.

Proof. Follows from Theorems 2.14 and 2.21.

Theorem 2.23. For any STS (M, λ,B), the following are equivalent:
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(a) (M, λ×,B) is soft discrete;
(b) for each bm ∈ SP(M,B), 1B − bm ∈ GC(M, λ,B);
(c) if bm ∈ λc, then bm ∈ λ.

Proof.

(a) −→ (b): Suppose to the contrary that there exists bm ∈ SP(M,B) with 1B − bm /∈ GC(M, λ,B). Then{
K : 1B − bm⊆̃K ∈ GC(M, λ,B)

}
= {1B}, and so Cl

g
λ(1B − bm) = 1B. But by (a) and Theorem 2.17

Cl
g
λ (1B − bm) = Clλ×(1B − bm) = 1B − bm. This is a contradiction.

(b) −→ (c): Suppose that bm ∈ λc. Then 1B − bm ∈ λ. Since by (b), 1B − bm ∈ GC(M, λ,B), 1B − bm ∈ λ,
and 1B − bm⊆̃1B − bm, then Clλ (1B − bm) ⊆̃1B − bm and so, 1B − bm ∈ λc. Hence, bm ∈ λ.

(c) −→ (a): We will show that SP(M,B) ⊆ λ×. Let bm ∈ SP(M,B). Then by Theorem 2.18, bm ∈ λc
or 1B − bm ∈ GC(M, λ,B). If bm ∈ λc, then by (c), bm ∈ λ ⊆ λ×. If 1B − bm ∈ GC(M, λ,B), then
bm ∈ GO(M, λ,B) and by Theorem 2.12, bm ∈ λ×.

Corollary 2.24. If (M, λ,B) is a STS such that λc ∩ SP(M,B) = ∅, then (M, λ×,B) is soft discrete.

Corollary 2.25. If (M, λ,B) is a soft indiscrete STS (i.e., λ = {0B, 1B}), then (M, λ×,B) is soft discrete.

Proof. We may assume that SP(M,B) is not a singleton. Then λc ∩ SP(M,B) = ∅, and by Corollary 2.24,
(M, λ×,B) is soft discrete.

The following question is natural.
Let (M, λ,B) and (M,σ,B) be two STSs such that λ ⊆ σ. Is it true that λ× ⊆ σ×?
The following example gives a negative answer for the above question.

Example 2.26. Let M = {1, 2}, B = {b}, λ = {0B, 1B}, and σ = {0B, 1B,b1}. Then by Corollary 2.25,
λ× = {0B, 1B,b1,b2}. Since b2 = 1B − b1 ∈ σc while b2 /∈ σ, then by Theorem 2.23, σ× 6= {0B, 1B,b1,b2}.
Therefore, we have λ ⊆ σ while λ× * σ×.

The following three questions are natural.
Is it true that (M, λ×,B) is soft compact (resp. connected, second countable) if (M, λ,B) is soft compact

(resp. connected, second countable)?
The following example gives negative answers to the above three questions.

Example 2.27. Let M = R, B = Z, and λ = {0B, 1B}. Then (M, λ,B) is soft compact, soft connected, and
second countable. On the other hand, by Theorem 2.23, (M, λ×,B) is soft discrete, and so (M, λ×,B) is
not soft compact, not soft connected, and not soft second countable.

Theorem 2.28. If (M, λ,B) is soft R0, then (M, λ×,B) is soft T1.

Proof. Let bm ∈ SP(M,B). Since (M, λ,B) is soft R0, then bm ∈ RC(M, λ,B). So, by Theorem 2.7 (b),
bm = Clgλ(bm) = Clλ×(bm). Therefore, bm ∈

(
λ×
)c. Hence, (M, λ×,B) is soft T1.

Theorem 2.29. If (M, λ,B) is soft regular, then (M, λ×,B) is soft regular.

Proof. Let bm ∈ SP(M,B) and let H ∈
(
λ×
)c such that bm /̃∈H. By Theorem 2.18, bm ∈ λc or 1B − bm ∈

GC(M, λ,B).

Case 1: bm ∈ λc. Since bm /̃∈H = Clλ×(bm) = Clgλ(bm), then there exists K ∈ GC(M, λ,B) such that H⊆̃K
and bm /̃∈K. Since we have K⊆̃1B−bm ∈ λ, then Clλ (K) ⊆̃1B−bm. Thus, we have bm /̃∈Clλ (K) ∈ λc in the
soft regular STS (M, λ,B). Hence, there exist S, T ∈ λ such that bm∈̃S, Clλ (K) ⊆̃T , and S∩̃T = 0B. Since
by Corollary 2.13, λ ⊆ λ×, then S, T ∈ λ×. Also, we have bm∈̃S and H⊆̃K⊆̃Clλ (K) ⊆̃T .

Case 2: 1B − bm ∈ GC(M, λ,B). Then bm ∈ GO(M, λ,B), and by Theorem 2.12, bm ∈ λ×.
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Claim: H⊆̃1B −Clλ× (bm).

Proof of Claim. Let dn∈̃H. By Theorem 2.18, dn ∈ λc or 1B − dn ∈ GC(M, λ,B).
Suppose that dn ∈ λc. Then we have bm /̃∈dn ∈ λc and by soft regularity of (M, λ,B), there exist

S, T ∈ λ ⊆ λ× such that bm∈̃S, dn⊆̃T , and S∩̃T = 0B. So we have dn∈̃T ∈ λ× and bm∩̃T = 0B. Thus,
dn∈̃1B −Clλ× (bm).

Suppose that 1B − dn ∈ GC(M, λ,B). Then dn ∈ GO(M, λ,B) and by Theorem 2.12, dn ∈ λ×. Thus,
we have dn∈̃dn ∈ λ× and bm∩̃dn = 0B. Hence, dn∈̃1B −Clλ× (bm).

Therefore, we have bm∈̃bm ∈ λ×, H⊆̃1B −Clλ× (bm) ∈ λ×, and bm∩̃ (1B −Clλ× (bm)) = 0B.
By cases (1) and (2), (M, λ×,B) is soft regular.

Corollary 2.30. If (M, λ,B) is soft regular, then (M, λ×,B) is soft T3.

Proof. Follows from Theorems 2.21 and 2.29, and the fact that soft T1/2 soft regular STSs are soft T3.

The following example shows that the converse of each of Theorem 2.28 and Corollary 2.30 need not
be true in general.

Example 2.31. Let M = {1, 2, 3}, B = {b}, and λ = {0B, 1B,b1}. Since b1 /∈ GC(M, λ,B), then (M, λ,B) is not
soft R0 and so, it is neither soft regular nor soft T1. On the other hand, since λc ∩ SP(M,B) = ∅, then by
Corollary 2.24, (M, λ×,B) is soft discrete.

3. Soft g-continuity

In this section, we provide new properties and characterizations of the well-known concept of ”soft
g-continuity”.

Theorem 3.1. Let {(M, λt) : t ∈ Λ} and {(N,γs) : s ∈ Γ } be two families of TSs. Let p : M −→ N be a function
and u : Λ −→ Γ be a bijective function. Then fpu : (M,⊕t∈Λλt,Λ) −→ (N,⊕s∈Γγs, Γ) is soft g-continuous if
and only if p : (M, λt) −→

(
N,γu(t)

)
is g-continuous for all t ∈ Λ.

Proof.

Necessity. Suppose that fpu : (M,⊕t∈Λλt,Λ) −→ (N,⊕s∈Γγs, Γ) is soft g-continuous. Let t ∈ Λ and let
W ∈

(
γu(t)

)c. Then (u(t))W ∈ (⊕s∈Γγs)c and so, f−1
pu ((u(t))W) ∈ GC (M,⊕t∈Λλt,Λ). Since u : Λ −→ Γ

is bijective, then f−1
pu((u(t))W) = tp−1(W). Thus, tp−1(W) ∈ GC (M,⊕t∈Λλt,Λ). Hence, by Theorem 15 of

[3],
(
tp−1(W)

)
(t) = p−1(W) ∈ GC (M, λt). Therefore p : (M, λt) −→

(
N,γu(t)

)
is g-continuous.

Sufficiency. Suppose that p : (M, λt) −→
(
N,γu(t)

)
is g-continuous for all t ∈ Λ. Let G ∈ (⊕s∈Γγs)c.

Then G (s) ∈ (γs)
c for all s ∈ Γ . Since u : Λ −→ Γ is bijective, then p :

(
M, λu−1(s)

)
−→ (N,γs) is

g-continuous for all s ∈ Γ . Thus, p−1 (G(s)) =
((
f−1
pu(G)

))
(u−1(s)) ∈ GC

(
M, λu−1(s)

)
for all s ∈ Γ . So,(

f−1
pu(G)

)
(t) ∈ GC (M, λt) for all t ∈ Λ. Therefore, by Theorem 15 of [3], f−1

pu(G) ∈ GC (M,⊕t∈Λλt,Λ). It
follows that fpu : (M,⊕t∈Λλt,Λ) −→ (N,⊕s∈Γγs, Γ) is soft g-continuous.

Corollary 3.2. Let p : (M,µ) −→ (N, δ) be a function between two TSs and let u : Λ −→ Γ be a bijective
function. Then p : (M,µ) −→ (N, δ) is g-continuous if and only if fpu : (M, τ (µ) ,Λ) −→ (N, τ (δ) , Γ) is soft
g-continuous.

Proof. For each t ∈ Λ and s ∈ Γ , put λt = µ and γs = δ. Then τ (µ) = ⊕t∈Λλt and τ (δ) = ⊕s∈Γγs. Thus,
by Theorem 3.1, we get the result.
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Theorem 3.3. If fpu : (M, λ,B) −→ (N,γ,D) is soft g-continuous, then fpu
(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)) for every

H ∈ SS(M,B).

Proof. Suppose that fpu : (M, λ,B) −→ (N,γ,D) is soft g-continuous. Let H ∈ SS(M,B). Then
Clγ (fpu (H)) ∈ γc. Since fpu : (M, λ,B) −→ (N,γ,D) is soft g-continuous, then f−1

pu (Clγ (fpu (H))) ∈
GC (M, λ,B). Since H⊆̃f−1

pu (Clγ (fpu (H))) ∈ GC (M, λ,B), then Cl
g
λ (H) ⊆̃f

−1
pu (Clγ (fpu (H))), and so,

fpu
(
Cl
g
λ (H)

)
⊆̃ fpu

(
f−1
pu (Clγ (fpu (H)))

)
⊆̃Clγ (fpu (H)).

The converse of Theorem 3.3 need not to be true in general.

Example 3.4. Let M = {1, 2, 3}, B = {b}, λ = {0B, 1B,b1}, and λ =
{

0B, 1B,b{1,3}
}

. Define p : M −→ M

and u : B −→ B as follows: p(1) = 2, p(2) = 1, p(3) = 3, and u(b) = b. Then for every H ∈ SS(M,B),
fpu

(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)) holds but fpu : (M, λ,B) −→ (M,γ,B) is not soft g-continuous.

The following result shows that the converse of Theorem 3.3 is true if we add the conditionGC(M, λ,B)
is closed under soft intersection.

Theorem 3.5. Let fpu : (M, λ,B) −→ (N,γ,D) be a soft function such that GC(M, λ,B) is closed under arbitrary
soft intersection. Then fpu is soft g-continuous if and only if fpu

(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)) for every H ∈

SS(M,B).

Proof.

Necessity. Follows from Theorem 3.3.

Sufficiency. Suppose that fpu
(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)) for every H ∈ SS(M,B). Let K ∈ γc. To see that

f−1
pu(K) ∈ GC (M, λ,B), by Theorem 2.9, it is sufficient to show that f−1

pu(K) = Cl
g
λ(f

−1
pu(K)). By assumption,

fpu
(
Cl
g
λ

(
f−1
pu(K)

))
⊆̃Clγ

(
fpu

(
f−1
pu(K)

))
⊆̃Clγ (K) = K, and so, Clgλ

(
f−1
pu(K)

)
⊆̃f−1
pu

(
fpu

(
Cl
g
λ

(
f−1
pu(K)

)))
⊆̃

f−1
pu(K). On the other hand, by Theorem 2.5, f−1

pu(K)⊆̃Cl
g
λ(f

−1
pu(K)). Hence, f−1

pu(K) = Cl
g
λ(f

−1
pu(K)). It

follows that fpu is soft g-continuous.

Theorem 3.6. For any soft function fpu : (M, λ,B) −→ (N,γ,D), the following are equivalent:

(a) for each bm ∈ SP(M,B) and each G ∈ γ such that fpu (bm) ∈̃G, there exists K ∈ GO (M, λ,B) such that
bm∈̃K and fpu (K) ⊆̃G;

(b) for every H ∈ SS(M,B), fpu
(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)) holds;

(c) for every K ∈ SS(N,D), Clgλ
(
f−1
pu (K)

)
⊆̃f−1
pu (Clγ (K)) holds;

(d) fpu :
(
M, λ×,B

)
−→ (N,γ,D) is soft continuous.

Proof.

(a) −→ (b): Let H ∈ SS(M,B) and let dn∈̃fpu
(
Cl
g
λ (H)

)
. Choose bm∈̃Clgλ (H) such that dn = fpu (bm).

To see that dn∈̃Clγ (fpu (H)), let G ∈ γ such that dn = fpu (bm) ∈̃G. Then by (a), there exists K ∈
GO (M, λ,B) such that bm∈̃K and fpu (K) ⊆̃G. Since bm∈̃Clgλ (H) and bm∈̃K ∈ GO (M, λ,B), then by
Theorem 2.2, H∩̃K 6= 0B. Choose er∈̃H∩̃K. Then fpu (er) ∈̃fpu (H) and fpu (er) ∈̃fpu (K) ⊆̃G. Therefore,
fpu (H) ∩̃G 6= 0D. Hence, dn∈̃Clγ (fpu (H)).
(b) −→ (a): Let bm ∈ SP(M,B) and let G ∈ γ such that fpu (bm) ∈̃G. Let H = f−1

pu(1D −G). Then by (b),

fpu
(
Cl
g
λ (H)

)
⊆̃Clγ

(
fpu

(
f−1
pu(1D −G)

))
⊆̃Clγ (1D −G) = 1D −G.

and so,
Cl
g
λ (H) ⊆̃f

−1
pu

(
fpu

(
Cl
g
λ (H)

))
⊆̃f−1
pu (1D −G) = H.

This shows that Clgλ (H) = H.
Since bm /̃∈H, then bm /̃∈Clgλ (H). Then, by Theorem 2.2, there exists K ∈ GO(M, λ,B) such that bm∈̃K

and K∩̃H = 0B. Thus, K⊆̃1B −H and hence,

fpu (K) ⊆̃fpu (1B −H) = fpu
(
1B − f−1

pu(1D −G)
)
= fpu

(
1B −

(
1B − f−1

pu(G)
))

= fpu
(
f−1
pu(G)

)
⊆̃G.
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(b) −→ (c): Let K ∈ SS(N,D). Then by (b),

fpu
(
Cl
g
λ

(
f−1
pu (K)

))
⊆̃Clγ

(
fpu

(
f−1
pu (K)

))
⊆̃Clγ (K) .

Thus,
Cl
g
λ

(
f−1
pu (K)

)
⊆̃f−1
pu

(
fpu

(
Cl
g
λ

(
f−1
pu (K)

)))
⊆̃f−1
pu (Clγ (K)) .

(c) −→ (b): Let H ∈ SS(M,B). Then by (c) and Theorem 2.7 (c),

Cl
g
λ (H) ⊆̃Cl

g
λ

(
f−1
pu (fpu (H))

)
⊆̃f−1
pu (Clγ (fpu (H))) .

Thus,
fpu

(
Cl
g
λ (H)

)
⊆̃fpu

(
f−1
pu (Clγ (fpu (H)))

)
⊆̃Clγ (fpu (H)) .

(b) −→ (d): Let H ∈ SS(M,B). Then by (b), fpu
(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)). Since by Theorem 2.17,

Cl
g
λ (H) = Clλ×(H), then we have fpu (Clλ×(H)) ⊆̃Clγ (fpu (H)). This shows that fpu :

(
M, λ×,B

)
−→

(N,γ,D) is soft continuous.

(d) −→ (b): Let H ∈ SS(M,B). Then by (d), fpu (Clλ×(H)) ⊆̃Clγ (fpu (H)). Since by Theorem 2.17,
Cl
g
λ (H) = Clλ×(H), then we have fpu

(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)). This ends the proof.

Theorem 3.7. Let fpu : (M, λ,B) −→ (N,γ,D) be a soft function such that GC(M, λ,B) is closed under soft
intersection. Then the following are equivalent:

(a) fpu is soft g-continuous;
(b) for each bm ∈ SP(M,B) and each G ∈ γ such that fpu (bm) ∈̃G, there exists K ∈ GO (M, λ,B) such that

bm∈̃K and fpu (K) ⊆̃G;
(c) for every H ∈ SS(M,B), fpu

(
Cl
g
λ (H)

)
⊆̃Clγ (fpu (H)) holds;

(d) for every K ∈ SS(N,D), Clgλ
(
f−1
pu (K)

)
⊆̃f−1
pu (Clγ (K)) holds;

(e) fpu :
(
M, λ×,B

)
−→ (N,γ,D) is soft continuous.

Proof. Follows form Theorems 3.5 and 3.6.

4. Conclusion

Many aspects of our daily lives are uncertain. One of the concepts proposed to cope with uncertainty is
the ”soft set” theory. Soft topology, a unique mathematical framework established by topologists utilizing
soft sets, is the subject of this research.

For a given soft topological space (M, λ,B), we have introduced a new soft closure operator via soft
g-closed sets. We provided several properties of this operator, and using these properties we show that
it generated a new soft topology λ× which is finer than λ. Several properties of this new topology are
presented, with a focus on soft separation axioms. In addition, new properties and characterizations of
the well-known concept of ”soft g-continuity” are provided. Finally, the correspondences between the
novel soft topological concepts and their general topological analogs are examined.

The following topics could be considered for future studies: 1) defining a type of soft compactness
via soft g-open sets; 2) defining a type of soft connectedness via soft g-open sets; 3) introducing soft
g-border, soft g-frontier, and soft g-exterior via soft g-open sets; 4) defining some classes of generalized
soft continuity via soft g-open sets.
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