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Abstract

The problem of combination complex synchronization among three incommensurate fractional-
order chaotic systems is considered. Based on the stability theory of incommensurate fractional-order
systems and the feedback control technique, some robust criteria on combination complex synchro-
nization are presented. Notably, the proposed combination complex synchronization can establish
a link between the incommensurate fractional-order complex chaos and real chaos. Moreover, three
numerical simulations are provided, which agree well with the theoretical analysis. c©2016 All rights
reserved.

Keywords: Combination complex synchronization, chaotic complex system, fractional-order
system, feedback control technique.
2010 MSC: 34D06, 34C28.

1. Introduction

Since the pioneering work of Pecora and Carroll [33], chaos synchronization, as a very hot re-
search topic in nonlinear science, has been extensively investigated for its potential applications in
many disciplines, especially in some areas closely related to our real life, such as secure commu-
nications, neural dynamics, mechanical engineering, neural dynamics, mechanical engineering, and
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image encryption [1, 7, 11, 32, 40]. So a substantial amount of synchronization phenomena have been
reported, for instance, complete synchronization [24], anti-synchronization [16], phase and anti-phase
synchronization [3, 34], lag synchronization [19], projective synchronization [30], etc. With in-depth
study of fractional-order calculus, synchronization of fractional-order chaotic systems starts to attract
increasing attention among researchers. Most of synchronization schemes available for integer-order
chaotic systems have been verified to be effective in synchronizing fractional-order chaotic systems,
such as [2, 4, 8, 10, 35, 39] to name a few.

In most of the above-mentioned works, many researchers focus on the usual drive-response syn-
chronization based on one drive system and one response system. Recently, Luo et al. [27] presented
a novel form of synchronization named combination synchronization, in which three classical chaotic
systems were made to synchronize simultaneously via systematically designed nonlinear controllers.
The implication of combination synchronization for secure communications is such that a signal can
be split into two, each loaded and transmitted between two drive systems or at different intervals.
Further developments in this direction are reported in [36–38], for example, combination complex
synchronization, combination-combination synchronization, compound synchronization, and so forth.

However, to the best of our knowledge, most of the studies about the synchronization of muti-
chaotic systems mainly focus on the integer-order chaotic systems, not involving fractional-order
systems with complex variables. Complex variables increase the contents and security of the trans-
mitted information so that complex chaotic systems can be widely studied for applications in secure
communication [22, 23, 29]. In addition, compared with the integer-order chaotic systems, the
fractional-order chaotic systems can have higher nonlinearity and spreading power spectrum. Conse-
quently, more and more authors have paid attention to study fractional-order complex chaotic systems
in recent years. Luo and Wang proposed the fractional-order complex Lorenz system, complex Chen
system and studied their synchronization in [25, 26]. Liu et al. [21] introduced the fractional-order
complex T system and further achieved its function projective synchronization. The fractional-order
complex Lü system was presented and its anti-synchronization was realized in [12]. Liu [20] achieved
complex modified hybrid projective synchronization between fractional-order complex chaos and real
hyper-chaos by designing nonlinear controllers. Mahmoud et al. [28] presented the generalization of
combination-combination synchronization among n-dimensional fractional-order dynamical systems.
As introduced in [13], Jiang et al. studied combination complex synchronization among three differ-
ent dimensional fractional-order chaotic systems with commensurate orders, where the state variables
of two drive systems and one response system synchronize up to two complex scaling matrices. Nev-
ertheless, in the aforementioned literature [12, 13, 20, 21, 25, 26, 28], authors are all concerned with
the synchronization for the commensurate fractional-order complex chaotic systems. As a matter
of fact, there exist many incommensurate fractional-order systems in practical applications. These
above-mentioned synchronization schemes will not be approached under the effects of incommen-
surate orders. In a recent paper [14], complex modified projective synchronization was discussed
between two incommensurate fractional-order chaotic systems. As yet, there are few results regard-
ing the study of synchronization for fractional-order chaotic complex systems with incommensurate
orders.

Inspired by the above discussions, in this paper, we have made an endeavor to study and analyze
combination complex synchronization among three incommensurate fractional-order chaotic nonlin-
ear systems. On the basis of the stability theory of incommensurate fractional-order systems, and by
employing the feedback control technique, the corresponding nonlinear controllers are designed. By
virtue of two complex scaling matrices, we can realize combination complex synchronization between
the incommensurate fractional-order real chaos and complex chaos. As a generalization of several
synchronization schemes, combination complex synchronization for incommensurate fractional-order
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complex chaotic systems including combination synchronization, complex generalized projective syn-
chronization, complex projective synchronization, projective synchronization, just to enumerate a
few examples. As a result, our work will extend previous results.

The structure of this paper is as follows. In the next section, some preliminaries are presented.
Combination complex synchronization of the incommensurate fractional-order chaotic systems is
discussed in detail in Sections 3-5. Finally, conclusions are outlined in Section 6.

2. Preliminaries

Fractional calculus can be developed through various definitions of derivatives such as Riemann-
Liouville, Grünwald, and Caputo differential operators. In this paper, we use the Caputo definition
[15] to describe the fractional-order systems and our computation scheme is based on the so-called
“Adams-Bashforth-Moulton scheme” [6] which is suitable for theoretical analysis.

Definition 2.1. The Caputo fractional derivative of order α ∈ R is defined as follows:

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, t > a,

where n = min{k ∈ N/k > α}, Γ(·) is the Gamma function, and aD
α
t is generally called α-order

Caputo differential operator. In the sequel, the notation dα/dtα is chosen as aD
α
t and we mainly

consider the order 0 < α < 1.

In order to obtain our desired results, it is necessary to introduce the main stability properties of
the linear fractional-order system. Considering the following linear fractional-order system:

dα

dtα
x = Φx, x(0) = x0, (2.1)

where α = [α1, α2, · · · , αn] denotes the fractional orders, dα/dtα = [dα1/dtα1 , dα2/dtα2 , · · · , dαn/dtαn ],
the state vector x ∈ Rn, the matrix Φ ∈ Rn×n.

When α1 = α2 = · · · = αn, we have the following stability of the fractional-order system (2.1)
which was introduced in [31].

Lemma 2.2. When α1 = α2 = · · · = αn, the fractional-order system (2.1) is asymptotically stable if
| arg(λl(Φ))| > απ/2, where arg(λl(Φ)) denotes the argument of the eigenvalue λl of Φ. In this case,
the components of the state decay towards 0 like t−α.

When α1, α2, · · · , αn are rational positive numbers, Deng et al. [5] explored the following stability
of fractional-order system (2.1).

Lemma 2.3. Assume that αi
′s are rational numbers between 0 and 1, for i = 1, 2, · · · , n. Let

γ = 1/m, where m is the least common multiple of the denominators mi of αi
′s, αi = ki/mi,

ki,mi ∈ N, i = 1, 2, · · · , n. Then system (2.1) is asymptotically stable if all roots λ of the equation
det(diag(λmα1 , λmα2 , · · · , λmαn)− Φ) = 0 satisfy | arg(λ)| > γπ/2.
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3. Combination complex synchronization between two fractional-order real chaotic drive
systems and one fractional-order complex chaotic response system

3.1. Mathematical model and problem descriptions

Consider a fractional-order real chaotic system as the first drive system

dα

dtα
ω = p(ω), (3.1)

the second real chaotic drive system is given as:

dα

dtα
υ = q(υ), (3.2)

while a fractional-order complex chaotic response system is configured as

dα

dtα
z = h(z) + U, (3.3)

where ω = (ω1, ω2, . . . , ωn)T and υ = (υ1, υ2, . . . , υn)T are real state vectors of systems (3.1) and (3.2),
respectively, z = zr + jzi ∈ Cn×1 is a complex state vector of system (3.3), p = (p1, p2, · · · , pn)T

and q = (q1, q2, · · · , qn)T are vectors of nonlinear real functions, h = (h1, h2, · · · , hn)T is a nonlinear
complex function, and U is a controller to be designed, U = (U1, U2, · · · , Un)T = U r + jU i, U r =
(u1, u3, · · · , u2n−1)T , U i = (u2, u4, · · · , u2n)T . Superscripts r and i stand for the real and imaginary
parts of a state complex vector.

Definition 3.1. Two drive systems (3.1) and (3.2) are said to exhibit combination complex synchro-
nization with the response system (3.3) if there exist two complex matrices A = Ar + jAi ∈ Cn×n

and B = Br + jBi ∈ Cn×n, such that

lim
t→∞
||e(t)|| = lim

t→∞
||z(t)− Aω(t)−Bυ(t)|| = 0,

where ||.|| is the Euclidean norm, e = er + jei is called the error vector, er = (e1, e3, . . . , e2n−1)
T =

zr − Arω −Brυ, ei = (e2, e4, . . . , e2n)T = zi − Aiω −Biυ.

For the sake of convenience, we suppose A = Ar+jAi =diag(α1+jα2, α3+jα4, · · · , α2n−1+jα2n)
and B = Br + jBi =diag(β1 + jβ2, β3 + jβ4, · · · , β2n−1 + jβ2n) in our synchronization scheme. If
there exists zl ∈ R , then α2l = β2l = 0 are chosen to avoid increasing a new imaginary part in the
response system (l = 1, 2, · · · , n).

Remark 3.2. Most of the classical fractional-order real chaotic systems can be written as the form
of system (3.1), such as the fractional-order Lorenz system [9], the fractional-order Chen system
[17], the fractional-order Rössler system [18], and so forth. Several fractional-order complex chaotic
systems can also be described by (3.3), such as the fractional-order complex Lorenz system [25], the
fractional-order complex Chen system [26], the fractional-order complex T system [21], the fractional-
order complex Lü system [12], and so on.

Remark 3.3. In Definition 3.1, A and B are often called the scaling matrices. Moreover, two drive
systems in the scheme of combination complex synchronization can be completely identical or differ-
ent.
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Remark 3.4. The combination complex synchronization may be considered as a generalization of
several synchronization schemes in the literature, for instance, if the scaling matrices Ai = O and
Bi = O, then combination synchronization can be carried out. If A = O or B = O, then we can
achieve complex projective synchronization. If A = O and B = O, then synchronization problem
will degenerate into the chaos control problem.

The main aim of this paper is to design proper controllers to approach combination complex
synchronization among three incommensurate fractional-order chaotic systems. Next, we consider
that the incommensurate fractional-order real Chen system and real Rössler system drive fractional-
order complex Lü system.

3.2. Synchronization of fractional-order real Chen system, real Rössler system, and complex Lü sys-
tem

The first drive system is the incommensurate fractional-order real Chen system described by
dα1
dtα1

ω1 = d1(ω2 − ω1),
dα2
dtα2

ω2 = (d2 − d1)ω1 − ω1ω3 + d2ω2,
dα3
dtα3

ω3 = ω1ω2 − d3ω3,
(3.4)

and the incommensurate fractional-order real Rössler system as the second drive system is depicted
as follows: 

dα1
dtα1

υ1 = −(υ2 + υ3),
dα2
dtα2

υ2 = υ1 + δ1υ2,
dα3
dtα3

υ3 = δ2 + υ3(υ1 − δ3),
(3.5)

where ωi and υi are real state variables, di and δi are real parameters (i = 1, 2, 3). When (α1, α2, α3) =
(0.91, 0.94, 0.96), (d1, d2, d3) = (35, 28, 3), and (δ1, δ2, δ3) = (0.4, 0.2, 10), systems (3.4) and (3.5) can
generate chaotic attractors as displayed in Fig. 1.
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Fig. 1: Chaotic attractors of two drive systems (3.4) and (3.5).

The response system is the incommensurate fractional-order complex Lü system:
dα1
dtα1

z1 = c1(z2 − z1) + U1,
dα2
dtα2

z2 = c2z2 − z1z3 + U2,
dα3
dtα3

z3 = 1
2
(z̄1z2 + z1z̄2)− c3z3 + U3,

(3.6)
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where z1 = p1 + jp2, z2 = p3 + jp4 are complex variables and z3 = p5 is a real variable, ci are real
parameters (i = 1, 2, 3), U1 = u1 + ju2, U2 = u3 + ju4 are complex functions and U3 = u5 is a real
control function. The parameter values of system (3.6) are set as c1 = 42, c2 = 22, c3 = 5 to ensure
the chaotic motion with incommensurate fractional orders α1 = 0.91, α2 = 0.94, α3 = 0.96, see Fig.
2.
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Fig. 2: Chaotic attractor and phase portrait of the response system (3.6).

For two given scaling matrices A = diag(α1+jα2, α3+jα4, α5) and B = diag(β1+jβ2, β3+jβ4, β5),
we define the synchronization error as follows:

e1 = p1 − α1ω1 − β1υ1,
e2 = p2 − α2ω1 − β2υ1,
e3 = p3 − α3ω2 − β3υ2,
e4 = p4 − α4ω2 − β4υ2,
e5 = p5 − α5ω3 − β5υ3.

Combining systems (3.4), (3.5), with (3.6), one can get

dα1
dtα1

e1 = c1e3 − c1e1 + (c1α3 − d1α1)ω2 + (d1 − c1)α1ω1 + (β1 + β3c1)υ2
+β1(υ3 − c1υ1) + u1,

dα1
dtα1

e2 = c1e4 − c1e2 + (c1α4 − d1α2)ω2 + (d1 − c1)α2ω1 + (β2 + β4c1)υ2
+β2(υ3 − c1υ1) + u2,

dα2
dtα2

e3 = c2e3 + (c2 − d2)α3ω2 − (d2 − d1)α3ω1 − β3υ1 + (c2 − δ1)β3υ2 − p1p5
+α3ω1ω3 + u3,

dα2
dtα2

e4 = c2e4 + (c2 − d2)α4ω2 − (d2 − d1)α4ω1 − β4υ1 + (c2 − δ1)β4υ2 − p2p5
+α4ω1ω3 + u4,

dα3
dtα3

e5 = −c3e5 + (d3 − c3)α5ω3 + (δ3 − c3 − υ1)β5υ3 − β5δ2 − α5ω1ω2 + p1p3
+p2p4 + u5.

Then, we define active control functions ui(t) (i = 1, 2, · · · , 5) as
u1(t) = (d1α1 − c1α3)ω2 − (d1 − c1)α1ω1 − (β1 + β3c1)υ2 − β1(υ3 − c1υ1) + ϕ1(t),
u2(t) = (d1α2 − c1α4)ω2 − (d1 − c1)α2ω1 − (β2 + β4c1)υ2 − β2(υ3 − c1υ1) + ϕ2(t),
u3(t) = (d2 − c2)α3ω2 + (d2 − d1)α3ω1 + β3υ1 − (c2 − δ1)β3υ2 + p1p5 − α3ω1ω3 + ϕ3(t),
u4(t) = (d2 − c2)α4ω2 + (d2 − d1)α4ω1 + β4υ1 − (c2 − δ1)β4υ2 + p2p5 − α4ω1ω3 + ϕ4(t),
u5(t) = (c3 − d3)α5ω3 − (δ3 − c3 − υ1)β5υ3 + β5δ2 + α5ω1ω2 − p1p3 − p2p4 + ϕ5(t),
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which provides 

dα1
dtα1

e1 = c1e3 − c1e1 + ϕ1(t),
dα1
dtα1

e2 = c1e4 − c1e2 + ϕ2(t),
dα2
dtα2

e3 = c2e3 + ϕ3(t),
dα2
dtα2

e4 = c2e4 + ϕ4(t),
dα3
dtα3

e5 = −c3e5 + ϕ5(t).

(3.7)

The above synchronization error system is a linear system with active control inputs ϕi(t) (i =
1, 2, · · · , 5). Next we design an appropriate feedback control to stabilize the synchronization system.
There are many possible choices for the control inputs ϕi(t) (i = 1, 2, · · · , 5). In view of the fact that
the term ϕi(t) are linear functions, we set

ϕ1(t)
ϕ2(t)
ϕ3(t)
ϕ4(t)
ϕ5(t)

 = L


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 ,

where L = (lij)5×5 is a 5× 5 real matrix. So system (3.7) can be rewritten as

dα

dtα
e = Φe,

where

Φ =


l11 − c1 l12 l13 + c1 l14 l15
l21 l22 − c1 l23 l24 + c1 l25
l31 l32 l33 + c2 l34 l35
l41 l42 l43 l44 + c2 l45
l51 l52 l53 l54 l55 − c3

 .

To make the error system stable, the matrix L should be selected in such a way that the feedback
system satisfies conditions of Lemma 2.3. There is not a unique choice for such matrix L, a good
choice can be as follows: l13 = l24 = −42, l22 = 2, l33 = −24, l44 = −26, l55 = 2, l11 = l12 = l14 =
l15 = l23 = l25 = l34 = l35 = l45 = 0, and other elements of L can be chosen arbitrarily. Taking
(α1, α2, α3) = (0.91, 0.94, 0.96), m = 100, and γ = 1/100, we obtain

(λ91 + 42)(λ91 + 40)(λ94 + 2)(λ94 + 4)(λ96 + 3) = 0. (3.8)

By a simple calculation, we conclude that all roots of (3.8) lie in the region | arg(λ)| > γπ/2. It
follows from Lemma 2.3 that the error vector e(t) asymptotically converges to zero as t→∞.

In the numerical simulations, the initial values of systems (3.4), (3.5), and (3.6) are chosen
as (ω1, ω2, ω3)

T = (3,−6, 9)T , (υ1, υ2, υ3)
T = (2,−6, 3)T , and (z1, z2, z3)

T = (1 + 2j, 3 + 4j, 5)T ,
respectively. Taking two scaling matrices as A = diag(1−2j, 1+4j, 1) and B = diag(2−2j, 3+2j, 2),
we obtain the initial errors as (−6 + 12j, 27 + 40j,−10)T . Further, selecting l31 = l42 = l53 = 1,
l21 = l32 = l41 = l43 = l51 = l52 = l54 = 0, we have the corresponding numerical results as displayed
in Figs. 3-4. Fig. 3 depicts the state variables of two drive systems and the response system.
From Fig. 4, it can be observed that the errors of synchronization converge asymptotically to zero.
Therefore, the fractional-order real Chen system, real Rössler system, and complex Lü system with
incommensurate order achieve combination complex synchronization.
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Fig. 3: State variables of drive systems (3.4), (3.5), and response system (3.6).
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Fig. 4: The time evolution of synchronization errors between drive systems (3.4), (3.5), and response system (3.6).

4. Combination complex synchronization between two fractional-order complex chaotic
drive systems and one fractional-order real response system

4.1. Mathematical model and problem descriptions

Two fractional-order complex chaotic systems take the following form:

dα

dtα
x = f(x) (4.1)

and
dα

dtα
y = g(y), (4.2)
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while a fractional-order real chaotic response system is assumed as

dα

dtα
υ = q(υ) + U, (4.3)

where x = xr + jxi ∈ Cn×1 and y = yr + jyi ∈ Cn×1 are complex state vectors of systems (4.1) and
(4.2), respectively, υ = (υ1, υ2, . . . , υn)T is a real state vector of system (4.3), f = (f1, f2, · · · , fn)T and
g = (g1, g2, · · · , gn)T are vectors of nonlinear complex functions, q = (q1, q2, · · · , qn)T is a nonlinear
real function.

As υ(t) is real, a real U is chosen to ensure combination complex synchronization of real parts
and avoid increasing the imaginary parts of response system. And in this case, the error vector with
two given scaling matrices A = Ar + jAi ∈ Cn×n and B = Br + jBi ∈ Cn×n is defined as

e = υ − Arxr + Aixi −Bryr +Biyi.

Therefore, two complex drive systems (4.1), (4.2), and one real response system (4.3) are combination
complex synchronization of real parts.

In what follows, our aim is to approach combination complex synchronization among the fractional-
order complex Lorenz system, complex Chen system, and real Rössler system with incommensurate
orders.

4.2. Synchronization of fractional-order complex Lorenz system, complex Chen system, and real
Rössler system

Consider the fractional-order complex Lorenz system as the first drive system
dα1
dtα1

x1 = a1(x2 − x1),
dα2
dtα2

x2 = a2x1 − x2 − x1x3,
dα3
dtα3

x3 = 1
2
(x̄1x2 + x1x̄2)− a3x3,

(4.4)

and the fractional-order complex Chen system as the second drive system is depicted as follows:
dα1
dtα1

y1 = b1(y2 − y1),
dα2
dtα2

y2 = (b2 − b1)y1 + b2y2 − y1y3,
dα3
dtα3

y3 = 1
2
(ȳ1y2 + y1ȳ2)− b3y3,

(4.5)

where x1 = m1 + jm2, x2 = m3 + jm4, y1 = s1 + js2, and y2 = s3 + js4 are complex variables,
x3 = m5 and y3 = s5 are real variables, ai and bi are real parameters (i = 1, 2, 3). When (α1, α2, α3) =
(0.91, 0.96, 0.99), (a1, a2, a3) = (10, 180, 1), (b1, b2, b3) = (35, 28, 3), systems (4.4) and (4.5) behave
chaotically as shown in Fig. 5.

The response system is the fractional-order real Rössler system:
dα1
dtα1

υ1 = −(υ2 + υ3) + U1,
dα2
dtα2

υ2 = υ1 + δ1υ2 + U2,
dα3
dtα3

υ3 = δ2 + υ3(υ1 − δ3) + U3,
(4.6)

where υi are real variables, δi are real parameters, and Ui are real control functions (i = 1, 2, 3).
For two given scaling matrices A = diag(α1+jα2, α3+jα4, α5) and B = diag(β1+jβ2, β3+jβ4, β5),

the synchronization error can be presented in the form of
e1 = υ1 − α1m1 + α2m2 − β1s1 + β2s2,
e2 = υ2 − α3m3 + α4m4 − β3s3 + β4s4,
e3 = υ3 − α5m5 − β5s5.
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Fig. 5: Chaotic attractor and phase portrait of two drive systems (4.4) and (4.5).

By virtue of systems (4.4), (4.5), and (4.6), the error dynamical system becomes:

dα1
dtα1

e1 = −e2 − e3 − (α3 + a1α1)m3 + (α4 + a1α2)m4 + a1(α1m1 − α2m2)− (β3 + b1β1)s3
+(β4 + b1β2)s4 + b1(β1s1 − β2s2)− α5m5 − β5s5 + U1,

dα2
dtα2

e2 = e1 + δ1e2 + (α1 − a2α3)m1 − (α2 − a2α4)m2 + (δ1 + 1)(α3m3 − α4m4) + α3m1m5

−α4m2m5 + [β1 − (b2 − b1)β3]s1 − [β2 − (b2 − b1)β4]s2 + (δ1 − b2)(β3s3 − β4s4)
+β3s1s5 − β4s2s5 + U2,

dα3
dtα3

e3 = −δ3e3 + (a3 − δ3)α5m5 + (b3 − δ3)β5s5 + δ2 + υ1υ3 − α5(m1m3 +m2m4)
−β5(s1s3 + s2s4) + U3.

Hence, control functions Ui(t) (i = 1, 2, 3) are designed as

U1(t) = (α3 + a1α1)m3 − (α4 + a1α2)m4 − a1(α1m1 − α2m2) + (β3 + b1β1)s3
−(β4 + b1β2)s4 − b1(β1s1 − β2s2) + α5m5 + β5s5 + ϕ1(t),

U2(t) = (a2α3 − α1)m1 + (α2 − a2α4)m2 − (δ1 + 1)(α3m3 − α4m4)− α3m1m5 + α4m2m5

−[β1 − (b2 − b1)β3]s1 + [β2 − (b2 − b1)β4]s2 − (δ1 − b2)(β3s3 − β4s4)− β3s1s5
+β4s2s5 + ϕ2(t),

U3(t) = (δ3 − a3)α5m5 − (b3 − δ3)β5s5 − δ2 − υ1υ3 + α5(m1m3 +m2m4)
+β5(s1s3 + s2s4) + ϕ3(t),
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which yields 
dα1
dtα1

e1 = −e2 − e3 + ϕ1(t),
dα2
dtα2

e2 = e1 + δ1e2 + ϕ2(t),
dα3
dtα3

e3 = −δ3e3 + ϕ3(t).

On the basis of the fact that the term ϕi(t) are linear functions of the error terms ei(t) (i = 1, 2, 3),
we choose  ϕ1(t)

ϕ2(t)
ϕ3(t)

 = L

 e1(t)
e2(t)
e3(t)

 ,

where L = (lij)3×3 is a 3 × 3 real matrix. Next, we choose that l11 = l21 = −1, l22 = −2.4, l33 = 5,
l31 = l32 = 0, and l13, l23 can be chosen arbitrarily. Since (α1, α2, α3) = (0.91, 0.96, 0.99), m = 100,
and γ = 1/100, we obtain the characteristic equation

(λ91 + 1)(λ96 + 2)(λ99 + 5) = 0. (4.7)

It is not difficult to verify that all roots of (4.7) satisfy | arg(λ)| > γπ/2. According to Lemma 2.3,
the error vector e(t) asymptotically converges to zero as t→∞.

The initial values of systems (4.4), (4.5), and (4.6) are chosen as (x1, x2, x3)
T = (2+3j, 5+6j, 9)T ,

(y1, y2, y3)
T = (6 + 9j, 5 + 7j, 12)T , and (υ1, υ2, υ3)

T = (2,−6, 3)T , respectively. Taking two scaling
matrices as A = diag(j,−3 + 2j,−1) and B = diag(1, 3 + j, 2), we obtain the initial errors as
(−1, 13,−12)T . Further, selecting l13 = 1, l12 = l23 = 0, we have simulation results as displayed
in Figs. 6-7. The synchronization process of systems (4.4), (4.5), and (4.6) is described in Fig. 6,
where the red line presents the states of two drive systems and the blue line shows the states of
response system. Fig. 7 illustrates the errors of synchronization converge asymptotically to zero,
i.e., the incommensurate fractional-order complex Lorenz system, complex Chen system, and real
Rössler system can achieve combination complex synchronization of real parts.
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Fig. 6: State variables of drive systems (4.4), (4.5), and response system (4.6).

5. Combination complex synchronization of incommensurate fractional-order complex
chaotic systems

5.1. Mathematical model and problem descriptions

Now, we consider combination complex synchronization among fractional-order complex chaotic
drive systems (4.1), (4.2), and response system (3.3). For two given complex transformation matrices
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Fig. 7: The error dynamics of synchronization among systems (4.4), (4.5), and (4.6).

A = Ar + jAi =diag(α1 + jα2, α3 + jα4, · · · , α2n−1 + jα2n) and B = Br + jBi =diag(β1 + jβ2, β3 +
jβ4, · · · , β2n−1 + jβ2n), the error of combination complex synchronization is defined as:

e(t) = er(t) + jei(t) = z(t)− Ax(t)−By(t),

i.e., {
er = zr − Arxr + Aixi −Bryr +Biyi,
ei = zi − Arxi − Aixr −Bryi −Biyr.

In the following, we design a controller to realize combination complex synchronization among
the fractional-order complex Lorenz system, complex Lü system, and complex Chen system with
incommensurate orders.

5.2. Synchronization of the fractional-order complex Lorenz system, complex Lü system, and complex
Chen system

The first drive system is fractional-order complex Lorenz system described by (4.4) and the
fractional-order complex Chen system (4.5) is taken as the second drive system, while the response
system is the fractional-order complex Lü system described by (3.6).

In our synchronization scheme, we assume A = diag(α1 + jα2, α3 + jα4, α5) and B = diag(β1 +
jβ2, β3 + jβ4, β5). The synchronization error is set as:

e1 = p1 − α1m1 + α2m2 − β1s1 + β2s2,
e2 = p2 − α1m2 − α2m1 − β1s2 − β2s1,
e3 = p3 − α3m3 + α4m4 − β3s3 + β4s4,
e4 = p4 − α3m4 − α4m3 − β3s4 − β4s3,
e5 = p5 − α5m5 − β5s5.

Taking account into systems (4.4), (4.5), and (3.6), we get the following error dynamical system:

dα1
dtα1

e1 = c1e3 − c1e1 + (c1α3 − a1α1)m3 + (a1α2 − c1α4)m4 + (a1 − c1)(α1m1 − α2m2)
+(b1 − c1)(β1s1 − β2s2) + (c1β3 − b1β1)s3 + (b1β2 − c1β4)s4 + u1,

dα1
dtα1

e2 = c1e4 − c1e2 + (c1α3 − a1α1)m4 − (a1α2 − c1α4)m3 + (a1 − c1)(α2m1 + α1m2)
+(b1 − c1)(β2s1 + β1s2) + (c1β4 − b1β2)s3 − (b1β1 − c1β3)s4 + u2,

dα2
dtα2

e3 = c2e3 + (c2 + 1)(α3m3 − α4m4) + a2(α4m2 − α3m1) + (c2 − b2)(β3s3 − β4s4)
−(b2 − b1)(β3s1 − β4s2)− p1p5 + α3m1m5 − α4m2m5 + β3s1s5 − β4s2s5 + u3,

dα2
dtα2

e4 = c2e4 + (c2 + 1)(α3m4 + α4m3)− a2(α4m1 + α3m2) + (c2 − b2)(β3s4 + β4s3)
−(b2 − b1)(β3s2 + β4s1)− p2p5 + α3m2m5 + α4m1m5 + β3s2s5 + β4s1s5 + u4,

dα3
dtα3

e5 = −c3e5 + (a3 − c3)α5m5 + (b3 − c3)β5s5 + p1p3 + p2p4 − α5(m1m3 +m2m4)
−β5(s1s3 + s2s4) + u5.
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Thus, we define the active control inputs ui(t) (i = 1, 2, · · · , 5) as

u1(t) = (a1α1 − c1α3)m3 − (a1α2 − c1α4)m4 − (a1 − c1)(α1m1 − α2m2)− (b1 − c1)β1s1
+(b1 − c1)β2s2 − (c1β3 − b1β1)s3 − (b1β2 − c1β4)s4 + ϕ1(t),

u2(t) = (a1α1 − c1α3)m4 + (a1α2 − c1α4)m3 − (a1 − c1)(α2m1 + α1m2)− (b1 − c1)β2s1
−(b1 − c1)β1s2 − (c1β4 − b1β2)s3 + (b1β1 − c1β3)s4 + ϕ2(t),

u3(t) = (c2 + 1)(α4m4 − α3m3)− a2(α4m2 − α3m1)− (c2 − b2)(β3s3 − β4s4) + p1p5
+(b2 − b1)(β3s1 − β4s2)− α3m1m5 + α4m2m5 − β3s1s5 + β4s2s5 + ϕ3(t),

u4(t) = −(c2 + 1)(α3m4 + α4m3) + a2(α4m1 + α3m2)− (c2 − b2)(β3s4 + β4s3) + p2p5
+(b2 − b1)(β3s2 + β4s1)− α3m2m5 − α4m1m5 − β3s2s5 − β4s1s5 + ϕ4(t),

u5(t) = (c3 − a3)α5m5 − (b3 − c3)β5s5 − p1p3 − p2p4 + α5(m1m3 +m2m4)
+β5(s1s3 + s2s4) + ϕ5(t),

which leads to 

dα1
dtα1

e1 = c1e3 − c1e1 + ϕ1(t),
dα1
dtα1

e2 = c1e4 − c1e2 + ϕ2(t),
dα2
dtα2

e3 = c2e3 + ϕ3(t),
dα2
dtα2

e4 = c2e4 + ϕ4(t),
dα3
dtα3

e5 = −c3e5 + ϕ5(t).

Considering the fact that the term ϕi(t) are linear functions of the error terms ei(t) (i = 1, 2, · · · , 5),
we choose 

ϕ1(t)
ϕ2(t)
ϕ3(t)
ϕ4(t)
ϕ5(t)

 = L


e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 ,

where L = (lij)5×5 is a 5 × 5 real matrix. L can be set as follows: l11 = 40, l22 = 38, l33 = −23,
l44 = −25, l55 = 3, l21 = l31 = l32 = l41 = l42 = l43 = l51 = l52 = l53 = l54 = 0, and other elements can
be chosen arbitrarily. Taking (α1, α2, α3) = (0.92, 0.95, 0.98), m = 100, and γ = 1/100, we have the
characteristic equation

(λ92 + 2)(λ92 + 4)(λ95 + 1)(λ95 + 3)(λ98 + 2) = 0. (5.1)

After some calculations, we can show that all roots of (5.1) satisfy | arg(λ)| > γπ/2. By virtue
of Lemma 2.3, we can obtain that the error vector e(t) asymptotically converges to zero as t →
∞. Therefore, combination complex synchronization between the incommensurate fractional-order
chaotic complex systems (4.4), (4.5), and (3.6) is achieved.

In the numerical simulations, the initial values of systems (4.4), (4.5), and (3.6) are chosen as
(x1, x2, x3)

T = (2+3j, 5+6j, 9)T , (y1, y2, y3)
T = (6+9j, 5+7j, 12)T , (z1, z2, z3)

T = (1+2j, 3+4j, 5)T ,
and two scaling matrices are taken as A = diag(3 + j,−1 + 2j,−2) and B = diag(2 + j, 2 − j, 1).
Thus, the initial errors are (−5 − 33j, 3 − 9j, 11)T . Further, taking l13 = −40, l24 = −38, l35 = 1,
l45 = −1, and l12 = l14 = l15 = l23 = l25 = l34 = 0, we obtain simulation results as displayed in Figs.
8-9. The synchronization process of systems (4.4), (4.5), and (3.6) is described in Fig. 8, where the
solid line presents the states of two drive systems and the dashed line shows the states of response
system. Fig. 9 shows all error states converge asymptotically to zero. As expected, we approach
combination complex synchronization among the incommensurate fractional-order complex Lorenz
system, complex Chen system, and complex Lü system.
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Fig. 8: State variables of drive systems (4.4), (4.5), and response system (3.6).
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Fig. 9: The error dynamics of synchronization between drive systems (4.4), (4.5), and response system (3.6).

6. Conclusions

In this paper, we introduce, analyze, and validate a novel form of chaos synchronization that can
involve two drive systems and one response system, namely combination complex synchronization.
On the basis of the stability theory of incommensurate fractional-order systems and the feedback
control approach, we design controllers to realize combination complex synchronization among three
fractional-order chaotic systems with incommensurate orders. Three groups of examples are consid-
ered and their numerical simulations demonstrate the validity and feasibility of the proposed scheme.
Additionally, this synchronization is applicable to all fractional-order chaotic systems, including those
that can exhibit hyperchaotic behavior. The proposed synchronization scheme directs the attention
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of secure communication to fractional-order chaotic complex systems with incommensurate orders,
which may increase the number of state variables to further enhance the security of private commu-
nications. Therefore, it is believed that the proposed scheme will play an important role in practical
applications.
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