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Abstract

In this paper, a non-linear mathematical model with three irresistible classes for the impacts of media awareness programs
on the spread of irresistible infections, for example, influenza, has been proposed and analyzed. In the modeling process, it
is expected that illness spreads because of the contact between the susceptibles and infectives, as it were. The growth rate of
media awareness programs influencing the populace corresponds to the number of infective people. We examine the dynamical
behavior and systematic investigation of the framework for the model, which demonstrates that the model has two equilibrium
points, i.e., disease-free equilibrium (DFE) and interior (endemic) equilibrium. The outcomes show that the primary reproduction
number determines the dynamics of the model. For the basic reproduction number R0 < 1, the disease-free equilibrium is locally
as well as globally asymptotically stable under a specific parameter set. If R0 > 1, the model at the interior equilibrium is locally
asymptotically stable. At long last, numerical arrangements of the model validate the analytical outcomes and facilitate a
sensitivity analysis of the model parameters.
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global stability, local stability, sensitivity analysis.
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1. Introduction

Mathematical modeling has become an essential tool in analyzing the spread and control of infectious
diseases taking into account the main factors governing the development of a disease, such as transmission
and recovery rates [1]. Mathematical models are being used to predict how the infection will spread over
a while. Lately, many attempts have been made to develop practical mathematical models for exploring
the transmission dynamics of irresistible illnesses. The asymptotic behavior of these epidemic models is
studied in [10, 11, 16, 28, 29]. The study of the behavior of epidemic models is beneficial in evaluating
strategies to control infectious diseases in the population. The classical models governing the spread of
contagious diseases depend mainly on the interactions between susceptibles and infectives. However,
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other factors, such as media coverage, vaccination, migration of population, etc, also affect the spread of
infectious diseases [6, 14, 15, 19, 22, 24, 25, 30].

In particular, the media has a significant influence on the individual’s behavior towards the diseases
and the governmental health care interventions to control the spread of such diseases. The awareness
program by the media that makes people know about the condition to take precautions such as social
distancing, wearing protective masks, vaccination, etc, to reduce their chances of being infected. There-
fore, the modeling process must consider the effect of media to predict the spread of infectious diseases
[22]. A few compartmental models have been presented with the assumption that the media will decrease
the contact rate of susceptibles with infectives [7, 8, 13, 20]. Liu et al. [21] focused on the psychological
impact of epidemic outbreaks. They have considered that increasing infection level reduces effective con-
tact but did not consider mandatory quarantine and isolation factors. In a recent article, Kiss et al. [18]
proposed an SIS type compartmental model for sexually transmitted infectious with the assumption that
the whole population is aware of the risk. Still, only a certain proportion chooses to respond by limiting
their contact with infectives and seeking faster treatment. They have assumed that the total number of
susceptibles remains relatively unchanged, and the demographic factors such as natural birth rate, death
rate, immigration, etc, have been ignored.

Media coverage of an epidemic gives a sense of the risk level and the relative need for precautions
in risk areas. It encourages the public to take preventive measures against the disease, such as wearing
masks, avoiding public places, traveling when sick, frequent hand washing, etc. Non-pharmaceutical
interventions (NPIs) are essential in the early stages of an epidemic when pharmaceutical interventions
are not often possible because treatment or vaccination options have not yet been developed [3, 32]. Many
researchers investigated the impact of media awareness using mathematical modeling [7–9, 13, 18, 20, 21,
23, 26, 32–34].

Cui et al. [7] used the transmission coefficient function of the form β(I) = βe−mI and established
that multiple positive equilibria are possible when the media effect is sufficiently strong. In the modeling
process of irresistible infections, the incidence function assumes a vital part, and it can decide the ascent
and fall of infectious diseases [28]. In many epidemic models, the bilinear incidence rate βS̃Ĩ and the
standard incidence rate βS̃Ĩ/Ñ are frequently used, where β measures the effect of both the infectiousness
of the disease and the contact transmission rates. However, these incidence functions do not consider the
impact of media coverage on the spread and control of infectious diseases. The use of recommended non-
pharmaceutical interventions (NPIs) through media coverage and alert has been found to reduce disease
burden in some infectious diseases, e.g., SARS, pH1N1, etc, [17].

Liu et al. [21] and Cui et al. [7] used media-induced transmission rate of the form β(I) = βe−mI

which has two major limitations. We consider media-induced transmission rate as β(I) = βe−m
I
N in

the proposed model which is more reasonable than β(I) = βe−mI, because βe−mI → 0 as I → ∞,
independent of the value of m. Since the media coverage and alertness is not the intrinsic deterministic
factor responsible for the transmission; hence it is reasonable to assume that the transmission rate cannot
be reduced below a certain level merely through media alert. Moreover, even for a fixed m, the minimum
transmission rate differs for different population sizes, regardless of the similarity in the social structure
(i.e., education and awareness level) and climatic condition, which is not very realistic. On the other hand,
min{βe−m

I
N } = βe−m that remains unchanged with respect to the total population size.

This paper develops a general mathematical model that includes multiple infection stages on the basis
of some existing models ([35] and references therein). The primary goal of this article is to study the
impact of the use of NPIs stimulated by media coverage of an infectious disease in a community. The
rest of the paper is organized as follows. In Section 2, the proposed model is formulated. In Section
3, the existence and local behavior of disease-free and endemic equilibria and global stability of DFE
is established. In Section 4, numerical simulation is performed. Sensitivity analysis is performed for
reproduction numbers concerning model parameters in Section 5. In the last section, the results are
discussed.
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2. Model formulation

This section is further divided into two subsections: Assumptions and Model description.

2.1. Assumptions
There are some assumptions we have to make based on our biological background, which are as

follows.

1. The population is divided into various mutually exclusive compartments, namely, Susceptible (S),
First Infected Individuals (I1), Second Infected Individuals (I2), Third Infected Individuals (I3), and
Recovered (R).

2. Population grows at a constant recruitment rate Λ and dies naturally at a rate µ.
3. The population in each compartment does not exhibit any structure (such as spatial location, age,

etc.), and no delayed processes are considered.
4. The population is mixing and interacting homogeneously.
5. Disease transmission is horizontal, not vertical. There is no migration of population.
6. Recovered individuals develop disease-acquired temporary immunity.

7. A new media-induced effective transmission rate is proposed as α̃e−m
Ĩ1
Ñ , m measures the impact of

non-pharmaceutical interventions stimulated by media awareness.
8. In this case, the media-induced transmission rate lies in the range [αe−m,α].

2.2. Model description

Figure 1: Schematic diagram of proposed disease model with media coverage.

In this section, we propose an SI1I2I3RS epidemic model with media induced transmission rate of

the form α̃e−m
Ĩ
Ñ . The total population at time t̃ is divided into five mutually exclusive compartments,

namely, susceptible (S̃), first infected individuals (Ĩ1), second infected individuals (Ĩ2), third infected
individuals (Ĩ3) and recovered (R̃). Let Ñ(t̃) = S̃(t̃) + Ĩ1(t̃) + Ĩ2(t̃) + Ĩ3(t̃) + R̃(t̃), be the total population
at time t̃. The schematic diagram of the proposed mathematical model incorporating media coverage for
homogeneously mixing population is shown in Figure 1, and the system is governed by the following
system of nonlinear ordinary differential equations:

dS̃

dt̃
= Λ− α̃e−m

Ĩ1
Ñ
S̃Ĩ1

Ñ
− µ̃S̃+ δ̃R̃,

dĨ1
dt̃

= α̃e−m
Ĩ1
Ñ
S̃Ĩ1

Ñ
− (µ̃+ β̃+ θ̃1)Ĩ1,

dĨ2

dt̃
= β̃Ĩ1 − (µ̃+ γ̃+ θ̃2)Ĩ2,

dĨ3

dt̃
= γ̃Ĩ2 − (µ̃+ σ̃+ θ̃3)Ĩ3,

dR̃

dt̃
= σ̃Ĩ3 − (µ̃+ δ̃)R̃

(2.1)

with initial conditions:

S̃(0) = S̃0 > 0, Ĩ1(0) = Ĩ1
0
> 0, Ĩ2(0) = Ĩ2

0
> 0, Ĩ3(0) = Ĩ3

0
> 0, R̃(0) = R̃0 > 0.

The descriptions of all parameters are summarized in Table 1.
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Table 1: Description of parameters for the system (2.1).
Parameter Description (Unit)
Λ Growth rate (days)
α̃ Infection rate (days)
µ̃ Natural death rate (days)
β̃ Transition rate of infected class from first stage to the second stage (days)
m Coefficient of media coverage (—–)
γ̃ Transition rate of infected class from second stage to third stage (days)
σ̃ Recovery rate from third infection stage (days)
δ̃ Transfer rate from recovered to susceptible individuals (days)
θ̃i Disease induced death rate of infected class in the ’ith’

stage where i = 1, 2, 3 (days)

We consider only solutions with initial conditions inside the biologically feasible region

Γ =

{
( S̃, Ĩ1, Ĩ2, Ĩ3, R̃) : 0 6 S̃, Ĩ1, Ĩ2, Ĩ3, R̃ 6

Λ

µ̃

}
in which the usual existence, uniqueness of solutions and continuation results hold.

We study the system (2.1) and claim that the region Γ is bounded and positively invariant with respect
to the proposed system (2.1), similar as in [31].

Proposition 2.1. All the solution trajectories of system (2.1) initiating inside Γ , approach, enter, or stay within the
interior of Γ .

Proof. Let R5
+ = {(S̃, Ĩ1, Ĩ2, Ĩ3, R̃) ∈ R5 : S̃ > 0, Ĩ1 > 0, Ĩ2 > 0, Ĩ3 > 0, R̃ > 0} denotes the nonnegative cone in

five-dimensional Euclidean space. From the system (2.1), we observe that

dS̃

dt̃
|S̃=0 = Λ+ δ̃R̃ > 0,

dĨ1
dt̃

|Ĩ1=0 = α̃e−m
Ĩ1
Ñ
S̃Ĩ1

Ñ
> 0,

dĨ2

dt̃
|Ĩ2=0 = β̃Ĩ1 > 0,

dĨ3

dt̃
|Ĩ3=0 = γ̃Ĩ2 > 0,

dR̃

dt̃
|R̃=0 = σ̃Ĩ3 > 0

and S̃(t̃), Ĩ1(t̃), Ĩ2(t̃), Ĩ3(t̃), R̃(t̃) are continuous functions of t̃. Thus the vector field on each bounding
hyperplane of R5

+, is pointing inward direction of R5
+. Hence all the solution trajectories initiating in

R5
+, will remain inside R5

+ for all the time. This establishes the fact that R5
+ is positively invariant

for the system (2.1). Also, the total population Ñ(t̃) = S̃(t̃) + Ĩ1(t̃) + Ĩ2(t̃) + Ĩ3(t̃) + R̃(t̃) satisfies dÑ
dt̃

=

Λ− µ̃Ñ− θ̃1Ĩ1 − θ̃2Ĩ2 − θ̃3Ĩ3. Then, dÑ
dt̃

< Λ− µ̃Ñ, applying Birkhoff’s and Rota’s theorem on differential
inequality [2], as t̃ → ∞, we have 0 6 Ñ(t̃) 6 Λ

µ̃ = Ñ0. Therefore the solution of system (2.1) is bounded
and hence any solution of the system originated from Γ remains in Γ .

Now, we consider not-dimensionally the above system using

S =
S̃

Ñ
, I1 =

Ĩ1

Ñ
, I2 =

Ĩ2

Ñ
, I3 =

Ĩ3

Ñ
, R =

R̃

Ñ
, N =

Ñ

Ñ0
, t = µ̃t̃.

Since S = 1 − (I1 + I2 + I3 + R), dropping the equation

dS

dt
=

1
N

−αe−mI1SI1 + δR−
S

N
+ θ1SI1 + θ2SI2 + θ3SI3,

the equivalent non-dimensional system is given by:

dI1
dt

= αe−mI1(1 − I1 − I2 − I3 − R)I1 −βI1 −
I1
N

+ θ1I
2
1 + θ2I1I2 + θ3I1I3 − θ1I1 := f1,
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dI2

dt
= βI1 − γI2 −

I2

N
+ θ1I1I2 + θ2I

2
2 + θ3I2I3 − θ2I2 := f2,

dI3

dt
= γI2 − σI3 −

I3

N
+ θ1I1I3 + θ2I2I3 + θ3I

2
3 − θ3I3 := f3, (2.2)

dR

dt
= σI3 − δR−

R

N
+ θ1I1R+ θ2I2R+ θ3I3R := f4,

dN

dt
= 1 − (1 + θ1I1 + θ2I2 + θ3I3)N := f5,

where β = β̃
µ̃ , δ = δ̃

µ̃ , σ = σ̃
µ̃ , γ = γ̃

µ̃ , α = α̃
µ̃ , θ1 = θ̃1

µ̃ , θ2 = θ̃2
µ̃ , θ3 = θ̃3

µ̃ and with the initial condition:

I1(0) = I01 > 0, I2(0) = I02 > 0, I3(0) = I03 > 0R(0) = R0 > 0,N(0) = N0 > 0. (2.3)

3. Model analysis

In the following sections, we will study the dynamical behavior of the system (2.2) with initial condi-
tion (2.3). We will calculate the basic reproduction number and all feasible steady states and analyze the
equilibria’s local stability for the proposed system.

Observe that the biologically feasible region for the non-dimensional system is

Ω = {(I1, I2, I3 R, N) : 0 6 S, I1, I2, I3, R, N 6 1} ,

which is positively invariant for the system (2.2). Hence, we consider only solution with initial conditions
inside the region Ω. The system (2.2) always has the disease-free equilibrium (DFE) (E0 = 0, 0, 0, 0, 1).

3.1. Basic reproduction number
The basic reproduction number, R0, is defined as the expected number of secondary cases produced

by a single (typical) infection in a completely susceptible population [12]. The basic reproduction number,
sometimes called basic reproductive rate or basic reproductive ratio, is one of the most useful threshold
parameters which mathematically characterizes the spreading of infections diseases. This metric is useful
because it helps to determine whether or not an infectious disease will spread through the population.
We calculate the basic reproduction number similarly as in [12]. Let x = (I1, I2, I3), then from model
(2.2), it follows: dxdt = F−V, where

F =

 αe−mI1(1 − I1 − I2 − I3 − R)I1
0
0

 and V =

 βI1 +
I1
N − θ1I1

−βI1 + γI2 +
I2
N − θ2I2

−γI2 + σI3 +
I3
N − θ2I2

 .

We get

F = Jacobian of F at DFE =

 α 0 0
0 0 0
0 0 0

 ,

and

V = Jacobian of V at DFE =

 (β+ θ1 + 1) 0 0
−β (γ+ θ2 + 1) 0
0 −γ (σ+ θ3 + 1)

 .

Hence, next generation matrix for the model is

K = FV−1 =

 α
(β+θ1+1) 0 0

0 0 0
0 0 0

 .

The spectral radius R0 of the next generation matrix K = FV−1, is the basic reproduction number of
the model, i.e., R0 = ρ(FV−1), hence

R0 =
α

(β+ θ1 + 1)
.
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3.2. Existence of endemic equilibrium
The system (2.2) also has an interior equilibrium called endemic equilibrium (EE) given by

Ē = ( I∗1 , I∗2 , I∗3 , R∗, N∗),

where

N∗ =
1

1 − [θ1 +
βθ2

(γ+θ2+1) +
βγθ3

(γ+θ2+1)(σ+θ3+1)+(δ+1) ]I
∗
1

, I∗2 =
β

(γ+ θ2 + 1)
I∗1 ,

I∗3 =
βγ

(γ+ θ2 + 1)(σ+ θ3 + 1)
I∗1 , R∗ =

βγσ

(γ+ θ2 + 1)(σ+ θ3 + 1)(δ+ 1)
I∗1 .

The value of I∗1 is given by the solution of the equation

emI
∗
1

R 0
= 1 −

(
1 +

β

(γ+ θ2 + 1)
+

(β)(γ)

(γ+ θ2 + 1)(σ+ θ3 + 1)
+

(β)(γ)(σ)

(γ+ θ2 + 1)(σ+ θ3 + 1)(δ+ 1)
)

)
I∗1 . (3.1)

Figure 2: Non existence of EE for α̃ = 0.09, m = 4.5, and R0 = 0.9091 < 1.

Figure 3: EE exists for α̃ = 0.12, m = 4.5, and R0 = 1.8182 > 1.

If there is no media effect, i.e., m = 0, then

I∗1 =
1 − 1/R0

(1 + β
(γ+θ2+1) +

(β)(γ)
(γ+θ2+1)(σ+θ3+1) +

(β)(γ)(σ)
(γ+θ2+1)(σ+θ3+1)(δ+1))

.
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Clearly, in absence of media effect I∗1 exists if and only if R0 > 1. In presence of media effect, the value of
I∗1 is given from equation (3.1). When R0 6 1, EE does not exist (no point of intersection, see Figure 2) but
as R0 > 1 EE exists (see Figure 3). In Figures 2 and 3 the red curve represents emI

∗
1/R0 and blue dotted

curve represents

1 −

(
1 +

β

(γ+ θ2 + 1)
+

(β)(γ)

(γ+ θ2 + 1)(σ+ θ3 + 1)
+

(β)(γ)(σ)

(γ+ θ2 + 1)(σ+ θ3 + 1)(δ+ 1)
)

)
I∗1

at m = 4.5. Note that

I∗1 6 1/(1 +
β

(γ+ θ2 + 1)
+

(β)(γ)

(γ+ θ2 + 1)(σ+ θ3 + 1)
+

(β)(γ)(σ)

(γ+ θ2 + 1)(σ+ θ3 + 1)(δ+ 1)
)).

3.3. Local stability of disease-free and endemic equilibrium
In this section, we explore the local stability of the system (2.2) around the disease-free and endemic

equilibria which are stated as follows.

Theorem 3.1. The disease-free equilibrium (DFE) E0 is

1. locally asymptotically stable, if R0 < 1;
2. unstable, if R0 > 1.

Proof. The variational matrix at DFE point is given by

J0 =


(α−β− θ1 − 1) 0 0 0 0

β −γ− θ2 − 1 0 0 0
0 γ −σ− θ3 − 1 0 0
0 0 σ −δ− 1 0
0 0 0 0 −1

 .

The characteristic equation of J0 is given by

(α−β− θ1 − 1 − λ1)[(−(γ+ θ2 + 1) − λ2)(−(σ+ θ3 + 1) − λ3)(−(δ+ 1) − λ4)(−1 − λ5)] = 0,

i.e.,
λ5 = −1, λ4 = −(δ+ 1), λ3 = −(σ+ θ3 + 1), λ2 = −(γ+ θ2 + 1), λ1 = (α−β− θ1 − 1).

Clearly if R0 < 1, then all the five eigen values of J0 have negative real parts. If R0 > 1, then four eigen
values of J0 have negative real parts and one eigen value has positive real part. Hence, DFE is locally
asymptotically stable, if R0 < 1 and unstable, if R0 > 1.

Theorem 3.2. The endemic equilibrium Ē is locally asymptotically stable for R0 > 1, but close to 1.

Proof. Here, we use the method based on the central manifold theory to establish the local stability of
endemic equilibrium taking α as bifurcation parameter [5]. Critical value of bifurcation parameter α at
R0 = 1 is α∗ = β+ θ1 + 1. It can be easily verified that the Jacobian J0 at α = α∗ has a right eigenvector
(corresponding to the zero eigenvalue) given by W = (w1,w2,w3,w4,w5)

T , where

w1 = (γ+ θ2 + 1), w2 = β, w3 =
(σ+ θ3 + 1)

γ
, w4 = 0, w5 = 0.

Furthermore, the components of the left eigenvector (corresponding to the zero eigenvalue),
V = (v1, v2, v3, v4, v5), must satisfy the equalities V.J0 = 0 and V.W = 1, so that we obtain

v1 =
1

(2 + γ+ σ+ θ2 + θ3)
, v2 = 0, v3 =

γ

(2 + γ+ σ+ θ2 + θ3)
, v4 = 0, v5 = 0.
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The associated non-zero partial derivatives of F = (f1, f2, f3, f4, f5)
T at the DFE and α = α∗ are given by

∂2f1

∂I1∂I2
=

∂2f1

∂I2∂I1
= −(β+ 1 − θ2),

∂2f1

∂I1∂N
=

∂2f1

∂N∂I1
= 1,

∂2f1

∂I21
= −2(1 +m)(1 +β) + θ1,

∂2f1

∂R∂I1
=

∂2f1

∂I1∂R
= −(1 +β),

∂2f1

∂I1∂I3
=

∂2f1

∂I3∂I1
= −(β+ 1 − θ3),

∂2f2

∂I1∂I2
=

∂2f2

∂I2∂I1
= θ1,

∂2f2

∂I1∂I3
=

∂2f2

∂I3∂I1
= θ3,

∂2f2

∂I22
= 2θ2,

∂2f2

∂I2∂N
=

∂2f2

∂N∂I2
= 1,

∂2f3

∂I1∂I3
=

∂2f3

∂I3∂I1
= θ1,

∂2f3

∂I2∂I3
=

∂2f3

∂I3∂I2
= θ2,

∂2f3

∂I23
= 2θ3,

∂2f3

∂I3∂N
=

∂2f3

∂N∂I3
= 1,

∂2f4

∂R∂I1
=

∂2f4

∂I1∂R
= θ1,

∂2f4

∂I2∂R
= θ2,

∂2f4

∂I3∂R
= θ3,

∂2f4

∂R∂N
=

∂2f4

∂N∂R
= 1,

∂2f5

∂I1∂N
=

∂2f5

∂N∂I1
= −θ1,

∂2f5

∂I2∂N
=

∂2f5

∂N∂I2
= −θ2,

∂2f5

∂I3∂N
=

∂2f5

∂N∂I3
= −θ3.

Here we use notations x1 ≡ I1, x2 ≡ I2, x3 ≡ I3, x4 ≡ R, x5 ≡ N. Hence, we get

a =

4∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0)

= −
1

(2 + γ+ σ+ θ2 + θ3)γ

[ (
γ(γ+ θ2 + 1)2[2(1 +m)(1 +β) − θ1]

)
(+2βγ(γ+ θ2 + 1)(β− θ3 + 1)

+ (γ+ θ2 + 1)(β− θ3 + 1)(σ+ θ3 + 1))(−γθ1(γ+ θ2 + 1)(σ+ θ3 + 1)
−βγθ2(σ+ θ3 + 1) − θ3(σ+ θ3 + 1))

]
,

b =

4∑
k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0) = v1w2 =
(γ+ θ2 + 1)

(2 + γ+ σ+ θ2 + θ3)
.

(3.2)

Since, either a < 0 or a > 0 and b > 0 at α = α∗, there are two cases arise.

(i.) a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable and their exists a positive
unstable equilibrium; when 0 < φ� 1, 0 is unstable, and their exists a negative and locally asymptotically
stable equilibrium.

(ii.) a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from stable to unstable.
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

Therefore using the Theorem and Remark stated above, a transcritical bifurcation occurs at R0 = 1 and
the unique endemic equilibrium is locally asymptotically stable for R0 > 1.

3.4. Global Stability of disease-free equilibrium
In this section, we analyze the global stability of the disease-free steady states for a special case. We

state the following theorem.

Theorem 3.3. Suppose R0 < 1 and θ1 = θ2 = θ3 = 0. The disease-free equilibrium E0 is globally asymptotically
stable.

Proof. Here, we prove global stability of DFE applying the method used by Castillo-Chavez et al. [4, 29].
According to Castillo-Chavez et al. the following conditions (H1) and (H2) must be met to guarantee a
local asymptotic stability:

1. H1 For dXdt = F(X, 0),X0 is globally asymptotically stable;
2. H2 G(X,Z) = BZ− Ĝ(X,Z), where Ĝ(X,Z) > 0,∀(X,Z) ∈ Ω.
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Let disease-induced death rate θ1 = θ2 = θ3 = 0, then dN
dt = 1 −N. In limiting case N(t)→ 1, as t→∞. Taking the total population in limiting case, i.e, N = 1, then the system (2.2) reduces to

dI1
dt

= αe−mI1(1 − I1 − I2 − I3 − R)I1 − (β+ 1)I1,
dI2

dt
= βI1 − (γ+ 1)I2,

dI3

dt
= γI2 − (σ+ 1)I3,

dR

dt
= σI3 − (δ+ 1)R,

and the modified basic reproduction number is R0 = α
(β+1) . Let X = (R) and Z = ( I1, I2, I3), and

Q0 = (R0, 0), where R0 = 0.

We have
dX

dt
= F(X, Z) = σI3 − (δ+ 1)X.

At R = R0, G(X, 0) = 0. Now dX
dt = F(X, 0) = −(δ+ 1)X, as t→∞, X→ X0. Hence, X = X0(= R0 = 0) is

GAS. Thus, condition (H1) is satisfied. From the reduces system, we get

G(X, Z) =

 (α−β− 1) 0 0
β −(1 + γ) 0
0 γ −(1 + σ)

 I1I2
I3


−

 α(1 − e−mI1)I1 +αe
−mI1(1 + I1 + I2 + I3 + R)I1

0
0

 = BZ− Ĝ(X, Z),

where,

B =

 (α−β− 1) 0 0
β −(1 + γ) 0
0 −γ −(1 + σ)

 ,

and

Ĝ(X, Z) =

 α(1 − e−mI1)I1 +αe
−mI1(1 + I1 + I2 + I3 + R)I1

0
0

 .

If R0 < 1, then the matrix B is a M-Matrix and Ĝ(X, Z) > 0. Thus, both conditions (H1) and (H2) are
satisfied. Therefore the DFE is gas if R0 < 1.

4. Numerical simulations

In this section, we provide numerical simulations to illustrate previously established results with the
biological feasible parametric values as shown in Table 2 taking time unit in days. Most of the values of
parameters are taken in the reference from the existing literature ([27, 29] and references therein) and the
rest of the parametric values are assumed for the numerical computation. The system (2.2) is simulated
taking initial population size S̃0 = 40, ˜I10 = 35, ˜I20 = 30, ˜I30 = 25, R̃0 = 20, and hence Ñ = 100. The
corresponding initial condition in non-dimensional form is S0 = 0.4, I10 = 0.35, I20 = 0.32, I30 = 0.23,R0 =
0.2, and N0 = 0.02. Numerical simulations are performed using ODE solver of Matlab to justify the
analytical findings of previous sections. Now we consider the following two cases.

Case (a): When m = 4.5 and α̃ = 0.09 (i.e., α = 90.0), then R0 = 0.9091 < 1 and the DFE is globally
asymptotically stable shown in Figure 5, which is in accordance with the results stated in Theorems
3.1 and 3.3.
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Table 2: Parameter values used in the simulation for the system (2.2).
Parameter Value
Λ 5.0
δ̃ 0.07
µ̃ 0.01
γ̃ 0.1
θ̃1 0.01
σ̃ 0.03
β̃ 0.2
m 4.5
θ̃2 0.04
θ̃3 0.03
α̃ [0.09,0.12]

Figure 4: The variation of population in scaled time taking α̃ = 0.12, m = 4.5, and R0 = 1.8182 > 1.

Figure 5: The variation of population in scaled time taking α̃ = 0.09, m = 4.5, and R0 = 0.9091 < 1.

Case (b): When m = 4.5 and α̃ = 0.12 (i.e., α = 120), then R0 = 1.8182 > 1 and it follows that EE is locally
asymptotically stable from Theorem 3.2 as shown in Figure 4.

The coefficient of media coverage m should depend on the disease under consideration, the popu-
lation’s social structure (education, awareness, responsiveness, economy, etc), and the NPIs used in a
particular region. Here, we use the formula m = − log e(p + q − pq) to quantify the coefficient m of
media coverage, where q quantifies the response of the population aware to media recommended NPIs
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concerning the number of infective individuals. If people are not responding to media alerts, then q = 1,
and if all the people are adopting the recommended NPIs, then q = 0. It is assumed that the disease trans-
mission rate can be reduced by p fraction when all individuals follow the media urged NPIs to protect
themselves. It is observed from the analysis that the coefficient of media coveragem does not affect R0 and
the qualitative features of the model remain unaltered. From 3.2, we observe that a is always negative,
which precludes the existence of backward bifurcation in the system and hence ensures transcritical (i.e.,
forward) bifurcation about R0 = 1. Hence, the classical requirement of R0 < 1 is necessary and sufficient
for disease control in this case. Moreover, from (3.1), we observe that

∂I1
∂m

=
−emI

∗
1 I∗1

1 −
(

1 + β
(γ+θ2+1) +

(β)(γ)
(γ+θ2+1)(σ+θ3+1) +

(β)(γ)(σ)
(γ+θ2+1)(σ+θ3+1)(δ+1))

)
R0 +me

mI∗1
< 0.

One can easily observe that using NPIs stimulated by media coverage helps mitigate the disease burden
from the environment by lowering the level of infectious individuals to a steady-state. The effect of m on
the fraction of infectious individuals (I1) is shown in Figures 6 and 7 taking same parametric values as
in the cases (a) and (b), respectively with different values of m. It is observed that the level of endemic
equilibrium is significantly affected by media coefficient of m.

Figure 6: Effect of m on I1 at α̃ = 0.09 with R0 = 0.9091 < 1.

Figure 7: Effect of m on I1 at α̃ = 0.12 with R0 = 1.8182 > 1.



S. Agrawal, N. Mishra, J. Dhar, J. Math. Computer Sci., 31 (2023), 56–69 67

5. Sensitivity analysis

In this section, we perform the sensitivity analysis of effective reproduction number RC taking para-
metric values given in Table 2. The normalized sensitive indices of effective reproduction number RC
with respect to parameters are shown in Table 3.

Table 3: The sensitivity indices, ΥRC
yj

= ∂RC
∂yj

× yj

RC
, of the effective reproduction number RC to the parameters yj for parameter

values given in Table 2.

Parameter (yj) Sensitivity index of RC w.r.t. yj ( ΥRC
yj )

β -0.9708
α 1.000
σ 0
γ 0
m 0
θ1 -0.01941
θ2 0
θ3 0

From Table 3, we observe that α has a positive impact on RC, and the rest of the parameters have
negative impact. For example, 10% increase (decrease) in β, resulting in 0.9708% increase (decrease) in
RC. Moreover, parameters α and β are most sensitive to RC, hence we observe significant change in RC
by small changes in these parameters.

6. Results and discussion

In this paper, the mathematical model for spreading contagious disease is formulated to assess the im-
pact of non-pharmaceutical interventions stimulated by media coverage. For mathematical convenience,
it is assumed that the population is in a homogeneous environment. Further, the people in each com-
partment do not exhibit any structure (such as space, location, age, etc) with instantaneous shifting from
one compartment to another; the system of ordinary differential equations describes the time evolution
of such compartments. The acquired immunity is supposed to be temporary so that individuals who
recovered from infection can become susceptible again over time. This proposed model deals with a
nonlinear mathematical model reflecting the effect of awareness programs on a specific population with
constant requirements. We have studied the impact of awareness as a novel intervention for controlling
epidemiological disease. In this modeling process, it is assumed that media campaign creates aware-
ness regarding personal protection, for example, control of HIV/AIDS. Our analytical study shows that
the basic reproduction number that determines a disease’s existence does not contain awareness-related
terms. We have also shown that this model undergoes trans-critical bifurcation at R0 = 1, and there exists
endemic equilibrium when R0 exceeds one. Hence, it does not change the qualitative behavior of the
model, but it helps mitigate the disease burden by lowering the level of infection over time. With media
coverage, transmission dynamics of infectious diseases have already been carried out in previous studies,
but these models do not account for multi-stage infection class. The main mathematical finding of this
research paper is that adding a multi-stage infection class with the use of NPIs stimulated by media does
not alter the basic model’s essential qualitative features (about the disease’s persistence or elimination).
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