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Abstract

In this paper, we introduce and investigate the concepts of conformable delta fractional derivative
and conformable delta fractional integral on time scales. Basic properties of the theory are proved.
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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
(non-integer) order. This subject is as old as the calculus of differentiation and goes back to times
when Leibniz, Gauss, and Newton invented this kind of calculation. The fractional calculus always
attracted interest of researchers due to its numerous applications in engineering, economics and
finance, signal processing, dynamics of earthquakes, geology, probability and statistics, chemical
engineering, physics, splines, thermodynamics, neural networks, and so on; see, for instance, the
monographs by Carpinteri and Mainardi [19], Herrmann [20], Miller and Ross [26], Oldham and
Spanier [27], Ortigueira [28], Podlubny [30], Sabatier et al. [31], Samko et al. [32], and the references
cited therein.

Several definitions of a fractional derivative have been proposed. These definitions include
Riemann—Liouville, Grunwald—Letnikov, Weyl, Caputo, Marchaud, and Riesz fractional derivatives.

*Corresponding author
Email addresses: dafangzhao@163.com (Dafang Zhao), 1itongx2007@163.com (Tongxing Li)

Received 2016-05-15



D. Zhao, T. Li, J. Math. Computer Sci. 16 (2016), 324-335 325

However, nearly all fractional derivatives do not satisfy the well-known formula of the derivative of
the product (the quotient) of two functions and the chain rule, etc. Recently, Khalil et al. [23]
defined a new well-behaved simple fractional derivative which is called the “conformable fractional
derivative” depending just on the basic limit definition of the derivative as follows: Let f : [0,1] - R
be a given function. Then for all ¢ > 0 and « € (0, 1), define T,,(f) by
l—a
T.(F)(t) = lim fle+et™) — f(t)

e—0 £

T.(f) is termed the conformable fractional derivative of f of order .. By virtue of this definition,
all the classical properties of the derivative hold; see [8, 22]. The notion of conformable fractional
derivative was developed; we refer the reader to the papers [IH6] 9] [10, [13] and the references cited
there. In particular, Benkhettou et al. [13] introduced a conformable fractional calculus on an
arbitrary time scale, which is a natural extension of the conformable fractional calculus.

A time scale T is an arbitrary nonempty closed subset of real numbers R with the subspace
topology inherited from the standard topology of R. The theory of time scales was born in 1988
with the Ph.D. thesis of Hilger [21]. The aim of this theory is to unify various definitions and results
from the theories of discrete and continuous dynamical systems, and to extend such theories to more
general classes of dynamical systems. It has been extensively studied on various aspects by several
authors; see, for instance, the papers by [7, 1], 12, T4HI8| 24], 25] 29].

In this paper, we introduce and investigate the concepts of conformable delta fractional derivative
and conformable delta fractional integral on time scales which are different from those of [13]. This
paper is organized as follows: Section [2| contains basic concepts of time scales. In Section [3] the def-
inition of conformable delta fractional derivative is introduced, and the basic properties of fractional
derivative are investigated. In Section [} we introduce and develop the notion of conformable delta
fractional integral on time scales. We end Section [5f with conclusions and future research.

2. Preliminaries

Let T be a time scale. For a,b € T we define the closed interval [a, b]t by [a,b]r :={t € T :a <
t < b}. The open and half-open intervals are defined in a similar way. For ¢ € T we define the forward
jump operator o : T — T and backward jump operator p: T — T by o(t) :=inf{s € T : s > ¢t} and
p(t) :=sup{s € T : s < t}, respectively, where inf () := sup T and sup () := inf T, () denotes the empty
set.

Assume ¢t € T. If o(t) > t, then t is right-scattered, and if p(t) < t, then t is left-scattered. If
o(t) =t and t < supT, then ¢ is right-dense, while if p(t) = ¢t and ¢t > inf T, then ¢ is left-dense.
A point ¢t € T is dense if it is right-dense and left-dense at the same time; isolated if it is right-
scattered and left-scattered at the same time. The forward graininess function p : T — [0, 00) and
the backward graininess function 7 : T — [0, 00) are defined by u(t) := o(t) —t and n(t) :=t — p(t)
for all t+ € T, respectively. If supT is finite and left-scattered, then T* := T\{sup T}; otherwise,
T* := T. If inf T is finite and right-scattered, then Ty := T\{inf T}; otherwise, T), := T. We set
TF .= TF N Ty

A function f : T — R is called rd-continuous provided it is continuous at all right-dense points
in T and its left-sided limits exist (finite) at all left-dense points in T.

A function f : T — R is called regulated provided its right-sided limits exist (finite) at all
right-dense points in T and its left-sided limits exist (finite) at all left-dense points in T.

Assume f : T — R is a function and let ¢ € T*. Then we define f2(t) to be the number (provided
it exists) with the property that given any ¢ > 0, there exists a neighborhood U of ¢ such that

[f(e(t) = f(s) = f2()(o(t) = 5)] < elo(t) — s,
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for all s € U. We call f2(t) the delta derivative of f at t and we say that f is delta differentiable on
T* provided f2(t) exists for all t € T*.
In what follows, let o € (0, 1].

3. Conformable delta fractional derivative

Definition 3.1. Assume f : T — R is a function and let t € T*. Then we define T, (f2)(¢) to be
the number (provided it exists) with the property that given any € > 0, there exists a neighborhood
U of t such that

|(f(o(t) = F(s)a' (1) = Ta(f2)(t)(0(t) — 5)| < elo(t) — s

for all s € U. We call T,(f?)(t) the conformable delta (A) fractional derivative of f of order « at
t. Moreover, we say that f is conformable A fractional differentiable of order o on ¢t € T* provided
T, (f2)(t) exists for all t € T*. The function T,(f?) : T¥ — R is then called the conformable A
fractional derivative of f of order a on T*. We define the conformable A fractional derivative at 0 as

Ta(£2)(0) = i T 12) (1)

If ¢ is right-dense, then we obtain the conformable fractional derivative reported in [13]. Some
useful properties of conformable A fractional derivative of f of order « are given in the following
theorem.

Theorem 3.2. Let T be a time scale, t € T, and o € (0,1]. Then we have the following.
(i) If f is conformable A fractional differentiable of order v at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is conformable A fractional differentiable

of order o at t with
flo(®) = f(t) 14

To(f2)(t) = ST (t)-

(iii) Ift is right-dense, then f is conformable A fractional differentiable of order « at t if and only

if the limit
hm f(t) - f(s)tl—oc

s—t t— s ’

exists as a finite number. In this case,

To(f2)(t) = lim JO = 1) pea

s—t t—s
(iv) If f is conformable A fractional differentiable of order o at t, then
fo(t)) = f(t) + p(t)Ta(f2) ()0 (1)

Proof. Part (i). Assume that f is conformable A fractional differentiable of order v at ¢. Then for
each € > 0, there exists a neighborhood U of ¢ such that

(f(e(t)) = F(s)o' (1) = Ta(f2)(t)(0(t) = )| < "o(t) — 5]



D. Zhao, T. Li, J. Math. Computer Sci. 16 (2016), 324-335 327

for all s € U, where
€

L Ta(f2)(1)] + 2u(t)
Therefore, we have, for all s € U N (t —e*,t + &%),

8*

o= (®)]-

1f () = f(s)] = |f(o(t) = f(s) = Talf2)(E)(0(t) — ) (t)
— [f(o(®) = F(t) = Ta(f2)(®)(o(t) = 1)o7 (1)] + Talf2) ()t — 5)o° " (t)]
<el(a(t) = s)o*H(t)| + ¥ |(a(t) — t)o® ( )|+ Ta(f2)()(E =)o ()]
<o )] (ut) + s — ] + pt) + |Ta(f2)(@)])

)| (u
o O] (1 + [Ta(F2) (O] + 21(t))

It follows that f is continuous at ¢.
Part (ii). Assume that f is continuous at ¢ and ¢ is right-scattered. By continuity,

)= S8) 1apy _ Se@)=F@) 1 ap,y _ [lo®) =) 1,
" o WU (1) = —————>0 ().

(t) =

)= S() ap,y  flo@®) = f1) 4,
. o (t)—Ta (t)‘gs

Part (iii). Assume that f is conformable A fractional differentiable of order « at ¢ and ¢ is
right-dense. Then for each € > 0, there exists a neighborhood U of ¢t such that

(f(a(t)) = f(s))o'=(t) = Ta(f2)(t)(a(t) = 5)| < elo(t) — ]
for all s € U. Since o(t) = t, we have
[(f(8) = FDE™ = Ta(fH)B)(t = 5)| < eft — s
for all s € U. It follows that
FO = F$) 1o

t—s

()] <e

for all s € U and s # t. Thus, we conclude that
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On the other hand, if the limit
s—t t— s
exists as a finite number and is equal to .J, then for each € > 0, there exists a neighborhood U of t
such that

Y

(f(t) = f()t ™ = J(t = s)| < et — s
for all s € U. Since t is right-dense, we obtain
(f(a(®)) = f(s)a' () — J(a(t) — 5)| < elo(t) — 5.
Therefore, f is conformable A fractional differentiable of order « at ¢ and

T, (f*)(t) = lim JO = 1) oo

s—t t— s

Part (iv). If ¢ is right-dense, then u(t) = 0 and
Fla(®) = f(t) = f(t) + w&)Ta(f2) ()07 (2).
If ¢ is right-scattered, then o(t) > t, and by virtue of (ii),
flo(t) = ()
p(t)
The proof is complete. O
Example 3.3. We consider the two cases T =R and T = Z.
(i) f T = R, then f : R — R is conformable fractional differentiable of order o at ¢t € R if and

only if the limit
o O = £5) 1
s—t t— s

flo(t)) = f(t) + u(t) = f(t) + p(O)Ta(f2) ()0 (1)

exists as a finite number. In this case,

T.(f*)(t) = lim JO =) o,

s—t t— s

If « =1, then
To(f2)(t) = f2(t) = (1)
(ii) If T = Z, then f: Z — R is conformable A fractional differentiable of order « at ¢t € Z with

ft+1) - ft)
1

To(f2)(t) = frr+) =7+ D) (fE+1) = f(1).

If « =1, then
To(f2)(t) = f(t+1) — f(t) = Af(2),
where A is the usual forward difference operator.
Example 3.4.

(i) If f : T — Ris defined by f(t) = C for allt € T, where C' € R is a constant, then T, (f2)(¢) = 0.
This is clear because for any € > 0,

[(f(o(t)) = f(5))a' () =0 (o(t) = 5)| = [(C = C)o'~*(t)| = 0 < elo(t) — st
holds for all s € T.



D. Zhao, T. Li, J. Math. Computer Sci. 16 (2016), 324-335 329

(ii) If f: T — R is defined by f(t) =t for all t € T, then T,(f*)(t) = o'7%(¢t). This is valid
because for any € > 0,

(f(a(t)) = f(s))o'~(t) — o~ (t)(o(t) — )| = [(a(t) = s)o' (1) — o' *(t)(a(t) — 5)]

=0<c¢lo(t) — s
holds for all s € T.
If =1, then T,(f*)(t) = 1.

Example 3.5. Suppose that f: T — R is defined by f(t) =* for all t € T := {n/2: n € Ng}. By
virtue of Theorem [3.2| (ii), we have that f is conformable A fractional differentiable of order « at

t € T with L
To(f2)(t) = (2t+ %) <t+%) .

Theorem 3.6. Assume f,g: T — R are conformable A fractional differentiable of order o att € T*.
Then we have the following.

(i) For all constants Ny and Ay, the sum A\ f 4+ Aog : T — R is conformable A fractional differen-
tiable of order o at t € T with

To((M1f + 229)2)(8) = MTo(f2)(t) + X Talg®)(1).
(ii) The product fg: T — R is conformable A fractional differentiable of order o at t with
Ta((f9)2)(t) = Ta(f2)(6)9(t) + f(0(t))Talg®)(t) = F(£)Talg™) (1) + Talf2)(t)g(a(1)).

(iii) If f(t)f(o(t)) # O, then 1/f is conformable A fractional differentiable of order o at t with

1N ()~ - Talf)
to ((f) ) W= 50y
(iv) If g(t)g(o(t)) # 0, then f/g is conformable A fractional differentiable of order o at t with

T ((zf) (0 = TelfD(B9(0) — FOTalg*)(0)
9

9(t)g(a (1))
Proof. Part (i). Let € > 0. Then there exist neighborhoods U; and U, of t such that
((Af(@(t) = Auf(s))e' () = MTa(f2)(O)((t) — 5)| < §|>\1(U(t) = )|
for all s € U; and
(Aag(a(t)) = Aag(s))o' (1) = X Ta(g™)()(o(t) — 5)| < %|/\2(0(t) = )|
for all s € Uy. Let U := U; NUy and A := max{\;, \a}. Then, we have, for all s € U,

[(OLf + Aeg) (0 () = (Auf + A2g)(s)a' (1) = (M Ta(f2)(t) + A Talg™) (1) (o (t) — )]
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< [(Af(o(®) = Af(s))e' (1) = MTa(f2) (B (0 (t) — )]
+1(hag(o (1)) - Azg( ))a' 7 (t) = A Talg®)(t)(a(t) = 5)|
_§|A( a(t) = )!+§|A2( a(t) = s)| < elMa(t) = s)|.

Therefore, A\ f + \og is conformable A fractional differentiable of order o at ¢ € T* with

To((ALf +220)2) (1) = MTa(f2)(1) + A2Talg) ().
Part (ii). Let 0 < e < 1. Define

T 1 gl + [FO]+ [Talg®) O]

Then 0 < €* < 1. Since f,g : T — R are conformable A fractional differentiable of order « at
t € T*, there exist neighborhoods U; and U, of ¢ such that

(f(e(t) = F(s)a' (1) = Ta(f2)(t)(0(t) = )| < "o(t) — 5]
for all s € U; and
(g (t) = g(s)o'™(t) = Talg™) (D) ((t) = 5)| < "o (t) — 5|
for all s € Uy. From Theorem (i), there exists a neighborhood Us of ¢ such that
[F(t) = fls)| <€
for all s € Uz. Let U := U; N Uy N Usz. Then, we have, for all s € U,

[ (e(t)g(o(t) = f(s)g(s)o' (1) = [Ta(f2)(t)g(a(t)) + f(O)Talg™)()](o(t) = 5)]
< [(f(a(®)) = f(5))o" (1) = Ta(F2)(O)(0(t) = 5)]g( (1))
+[(g(a(t)) = g()a' () = Ta(g™) () (o (t) — $)If (1)
+1(g(a(t) = g(s))o' () = Talg™)(B) (o (t) = $)I(f(s) = £(1))]
+|Ta(g™)()(a(t) = 5)(f(s) = f(1))]
o (t) = sl (lg(a ()] + [ f(#)] + "+ Talg®) (1))

Thus, we deduce that

Ta((f9)2)(t) = f(O)Talg™)(t) + Tal(f2)(B)g(o(1)).

One can easily obtain another product rule by interchanging the role of f and g.
Part (iii). From Example [3.4]

Therefore,



D. Zhao, T. Li, J. Math. Computer Sci. 16 (2016), 324-335 331

and consequently

Part (iv). Applications of (ii) and (iii) imply that

T, (G) A) (t) = f(t)T, (G) A) (t) + Ta(fA)(t)g(gl(t))

T NN

= 05gew) TG wm)

T (09(t) — FOTalg) )

RONCO)
The proof is complete. 0
Theorem 3.7. Let ¢ be a constant and m € Ny :={1,2,...}.
(i) If f(t) = (t —c)™, then
TL()(0) =0 (0) 3 (1) — (e — "
(i) 1 g(t) = 1/£(t) = 1/(t — )", then
To(¢®)(1) =~ () :

provided (o(t) — ¢)(t — ¢) # 0.

Proof. Part (i). We prove the first formula by induction. If m = 1, then f(t) = t—c, and To(f2)(t) =
o'=?(t) holds when using Example [3.4] and Theorem (i). We assume now that

m—1

To(f2)(t) = '7(1) ) (o(t) = o) (t—c)" ',

holds for f(t) = (t —¢)™ and let F(t) := (t — )™ = (t —¢) f(t). An application of Theorem 3.6/ (ii)
yields

Hence, part (i) is intact.
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Part (ii). For g(t) = 1/(t — ¢)™ = 1/ f(t), we use Theorem (iii) to arrive at

agy _ Talf2)()
Tl = TOe)
— ot )ZZ I(U(t) C)i(t — oym-l=i
(o(t) —c)m(t —c)m
s o . 1
= —0 (t) pars (O'(t) _ C)mfi(t _ C>¢+17
provided (o(t) — ¢)(t — ¢) # 0. This completes the proof. O

Example 3.8. If f : T — R is defined by f(t) = 1/t* for all t € T := {\/n : n € Ny}, then we have
that f is conformable A fractional differentiable of order o at t € T with

To1200 = =0 (g + ) = - ()

4. Conformable delta fractional integration

Definition 4.1. Assume f: T — R is a regulated function. We define the indefinite a-conformable
A fractional integral of f by

L(f2)(t) + C = / F(H) AL = / F(t)oo (1) AL

where C is an arbitrary constant. I,(f2)(¢) is called a pre-antiderivative of f. We define the Cauchy
a-conformable A fractional integral by

b
| 08 =L(4)0) - L))
for all a,b € T. A function I,(f?): T — R is called an antiderivative of f : T — R provided
(TaLa(f2))(t) = f(t)
for all t € T*.
Theorem 4.2 (Existence of antiderivatives). For every rd-continuous function f : T — R, there

exists a function I,(f?) such that
(ToXa(f2)(E) = £(2).

Proof. Suppose f : T — R is rd-continuous. By [16, Theorem 1.60], f is regulated. Similar to the
proof of [I6, Theorem 8.13], we conclude that I,(f*) is conformable A fractional differentiable of
order o at t € T*. Then

(ToLa(f)(t) = o' (D)o () f(t) = f(D).
This completes the proof. O

We can easily get the following theorem.
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Theorem 4.3. Let a,b,c € T, \;, s € R, and f,g: T — R be rd-continuous functions. Then

() [TOFE) + Aag() Aot = Ay [2 FO)AGE+ N 7 g(t) At
i) [7F() At =— [T F(O) AL
(i) [*F(0) A0t = [CFE) At + [* F(E)Aut;
(iv) J) F(o(®)Talg®) () Aat = F(B)g(b) — fla)g(a) — [; Talf2)(t)g(t)Ant;
() i FOTalg®) (B At = F(B)g(b) = fa)g(a) = [} Talf2)()g(o(t)Ant;
(vi) [ f(t)Ast =0;
(vii) if | £(t)] < g(t) on [a,b)y, then | [} f()Aat] < [ g(t)Ant;

(vii) if f(t) >0 for all t € [a,b)r, then [ f(t)Aat > 0.

Theorem 4.4. Let a,b € T, and let f : T — R be an rd-continuous function. Then we have the

following.

(i) If T =R, then fff(t)Aat = fabf(t)/tl_“dt, where the integral on the right is the conformable

fractional integral given in [23]. If o = 1, then it reduces to the usual Riemann integral.

(ii) If [a,b]r consists of only isolated points, then

b > tefab)s o (t)u(t) f(t) if a < b,
/ ft)Aat =90 ifa=",
’ e 0T D) f(E) ifa>b.

(i) If T=hZ = {hk : k € Z}, where h > 0, then

b Zéz_%l(hk + h)*'hf(hk) if a < b,
/ f(t)Aat == 0 Zfa — b,
' - zi_%l(hk + h)*hf(hk) if a>b.
(iv) If T =1Z, then
b Vit 1)) ifa<,
/ ft)Aut =140 ifa=b,
' =S (1) () ifa> b

Proof. Part (i). The proof is not difficult and so is omitted.

(4.2)

(4.3)

Part (ii). First, note that [a, b]r consists of only finitely isolated points. Assume that a < b and

[a, b]’]l‘ = {to, tl, N ,tn}, where

a=th<t;1 <ty <...<t,=0



D. Zhao, T. Li, J. Math. Computer Sci. 16 (2016), 324-335 334

By virtue of Theorem (iii),

b n—1 tivy n—1 o(t;) n—1
[ 1080 =3 [ rnac =3 [ 1080 = Y nte)o e 0.

Consequently,
/ F0At = 3 0" (Oult) (1)
te[a b)r

If a > b, then the result follows from what we just proved and Theorem (ii). If @ = b, then
the result follows from Theorem (vi).
Part (iii) and (iv) are special cases of Part (ii). The proof is complete. O

Example 4.5. If f : T — R is defined by f(t) =t® for all T =R and a = 1/2, then

4 4 4 ) 4 5 2
/ f(t)Aat:/ t3A1t:/ tdAlt:/ t2dt = 36-.
1 1 2 1 2 1 7

Example 4.6. If f: T — R is defined by f(t) =t?>forallt € T := {n/2:n € Ny} and a = 1/2,

then
3 3
/f(t)Aat:/ At
1

A O ) )
f 25f
6 16 5 24

5. Conclusions

This paper investigated the conformable delta fractional calculus on time scales. The results of
the paper give a common generalization of the conformable fractional derivative and the usual delta
derivative. Another interesting line of research is to investigate conformable fractional derivative on
time scales in other different directions rather than the one considered here. For instance, instead
of following the delta approach that we have adopted, one can develop a nabla, a diamond, or a
symmetric time scale fractional calculus. These problems will be subject of future research.
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