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Abstract

In this paper, we proposed a generalization for a model that considers Susceptible, Infected, Carrier, and Recovered by
introducing a general incidence rate and considering migration in all its populations. This model has the characteristic that car-
riers and infected can transmit the disease, besides it has not a disease-free equilibrium point and no basic reproductive number.
The focus of this study is to show a generalized model and the conditions required to analyze the equilibrium point stability.
Using an appropriate Lyapunov function and with suitable conditions on the functions involved in the general incidence, we
showed that the disease equilibrium point is globally asymptotically stable. Also, we presented numerical simulations of two
applications to illustrate the results obtained from the analytical part.
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1. Introduction

In disease transmission, there are many influential factors in its dynamics, for example, the ability of
pathogens to infect and replicate within a host [1], the mode of transmission can vary, some diseases are
spread through respiratory droplets while others spread through direct contact with fluids of infected
person [12], age, immune system status and genetic predisposition of host [3, 19], behavioral factors as
poor hygiene, not wearing mask, engaging in close contacts with others [29], environmental factors as
high population density, poor sanitation [27], migration and immigration [28], between others. Regarding
factors such as migration or immigration of people, this has a great influence on the transmission of a
disease, especially in those diseases where asymptomatic or carriers can spread or transmit the disease,
since they can not be detected or isolated unless there is a traceability of contacts with symptomatic
[4, 6, 9, 10, 16, 18, 20, 23]. Therefore, it is vital to include migration processes in mathematical models to
provide a more comprehensive and accurate understanding of the world around us, and to inform better
decision-making for individuals, organizations, and policymakers. In this sense, we propose a novel
model that accounts for migration across populations categorized as susceptible, carrier or asymptomatic,
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infected, and recovered. In this model, carriers are able to transmit the disease using a general nonlinear
incidence rate represented by S[βC + h(I)], where the function h is increasing and concave, reaching
saturation for large values of I. The incidence rate for infected individuals is chosen to be of this form
(Sh(I)) as the identification of infected individuals is primarily through the manifestation of symptoms,
making it easier to isolate and treat them. This identification process can reduce transmission rates.
Asymptomatic carriers, on the other hand, are not easily identified unless contact tracing is performed.
Thus, the model employs a bilinear incidence rate (SβC) for asymptomatic individuals.

There are mathematical models considering migration [14, 22, 25, 26], where the effect that migra-
tion or immigration can have on the transmission of a disease is studied, but few mathematical models
consider migration and nonlinear incidence rates, since nonlinearities make it difficult to easily find equi-
librium points. Moreover, proving that the equilibrium points are asymptotically stable can be even more
challenging. An earlier work has included immigration and non linear incidence rate of the form f(S, I)
in a SEIR model [17]. An SEI model with migration and incidence of the form Sf(I) was studied in [24].
Global dynamics was studied in a SEIR model with immigration and incidence rate of the form C(N)SIN ,
where C(N) is a function that depends on the population size N [31]. A SEIR type age-structured model
with migration and nonlinear incidence rates was studied in [32]. While models where asymptomatic
people transmit the disease and consider non-linear incidence rates but do not consider immigration have
been studied in [7, 8, 21].

The aim of this paper is to prove the global stability of equilibriums of a SCIR type model. The
organization of this paper is as follows. In Section 2 we described the model and found a positively
invariant set. The existence of unique equilibrium point is studied in Section 3. In Section 4 The global
stability of disease equilibrium point is proved using the Lyapunov direct method. In Section 5 we give
some particular nonlinear incidence rates to illustrate by numerical simulations our main results. In
Section 6 we discuss our results.

2. Model formulation

We consider an infectious disease for which the population consists of susceptibles, carriers or asymp-
tomatics, infectives individuals, and recovered, with the sizes of the groups given by the variables S, C,
I, and R, respectively. We assume that there is constant recruitment given by birth or migration process
into each of the four class at rate k1, k2, k3, and k4. The rate constant for nature death is µ1. A susceptible
person become infected carrier by the contact with a asymptomatic or an infected person. We assume that
the incidence rate is nonlinear of the form S [βC+ h(I)] and that the function h satisfies

I. h(I) > 0, and h(0) = 0;
II. h ′(I) > 0;

III. h ′′(I) < 0.

A newly infected individual can show symptoms with rate γq or can recovered without show symptoms
at rate γ(1 − q). The death rate for Carriers, Infected, and Recovered are µ2, µ3, and µ4, respectively.
Infected individuals (I), have an average recovery time of 1/p. The system of differential equations for the
model is

dS

dt
= k1 − S [βC+ h(I)] − µ1S,

dC

dt
= k2 + S [βC+ h(I)] − γC− µ2C,

dI

dt
= k3 + γqC− pI− µ3I,

dR

dt
= k4 + γ(1 − q)C+ pI− µ4R.

(2.1)

All the parameters are positive constants and 0 < q < 1. Let k = k1 + k2 + k3 + k4, µ = min{µ1,µ2,µ3,µ4}

and Ω = {(S,C, I,R) ∈ R4
>0 : 0 < S+C+ I+ R 6 k

µ }.

Proposition 2.1. The set Ω is positively invariant.
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Proof. First, we will show that the solutions of system (2.1) are greater than or equal to zero. Since
dS
dt

∣∣∣
S=0

= k1 > 0, dCdt
∣∣∣
C=0

= k2 + Sh(I) > 0, dIdt
∣∣∣
I=0

= k3 + γqC > 0, dRdt
∣∣∣
R=0

= k4 + γ(1 − q)C+ pI > 0

within R4
>0, then by proposition 2.1 of [11], the set R4

>0 is positive invariant and in this way all the
solutions are greater than or equal to zero. Finally, we will show that the set omega is positively invariant.
Let N = S+C+ I+ R. Then dN

dt = k1 + k2 + k3 + k4 − µ1S− µ2C− µ3I− µ4R 6 k− µN. It follows that
dN
dt 6 0 if N > k

µ . Besides, we have,

N 6
k

µ
+

(
N(0) −

k

µ

)
e−µt, for all, t > 0.

In particular, N 6 k
µ if N(0) 6 k

µ . Therefore, the set Ω is positively invariant. In addition, if N(0) > k
µ ,

then either the solutions enters Ω infinite time or Ω(t) approaches k
µ asymptotically. Hence, the set Ω

attracts all solutions in R4
>0.

3. Equilibrium points

Equilibria for the system (2.1) can be found by setting the right sides of the four differential equations
of (2.1) equal to zero, giving the algebraic system,

k1 − S [βC+ h(I)] − µ1S = 0, (3.1)
k2 + S [βC+ h(I)] − γC− µ2C = 0, (3.2)

k3 + γqC− pI− µ3I = 0, (3.3)
k4 + γ(1 − q)C+ pI− µ4R = 0.

from equation (3.3) we have

C =
(p+ µ3)I− k3

γq
,

In order to obtain C > 0, we require I > k3
(p+µ3)

. From equation (3.1) and (3.2) we have

S [βC+ h(I)] = k1 − µ1S = γC+ µ2C− k2.

In this way, S can be written in the form

S =
k1 + k2 − (γ+ µ2)C

µ1
=

(k1 + k2)γq− (γ+ µ2) [(p+ µ3)I− k3]

γqµ1
.

To have S > 0, we need I < Î = γq(k1+k2)+k3(γ+µ2)
(p+µ3)(γ+µ2)

. Now, note that the equation (3.1) can be rewritten as

−S

(
[βC+ h(I)] + µ1 −

k1

S

)
= 0,

which is equivalent to
SF(I) = 0,

where

F(I) =
β [(p+ µ3)I− k3]

γq
+ h(I) + µ1 − µ1

k1γq

(k1 + k2)γq− (γ+ µ2) [(p+ µ3)I− k3]
.

If we solve F(I) = 0 for I in the interval
(
k3
p+µ3

, Î
)

, we found the equilibrium points of the model. We see
that

F

(
k3

p+ µ3

)
= h

(
k3

p+ µ3

)
+ µ1 − µ1

k1

k1 + k2
> 0.
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Besides, F(I) tends to −∞ when I tends to Î, by the continuity of F we have that there exists a zero of F in(
k3
p+µ3

, Î
)

. Now we show that this zero is unique, to do this we found the second derivative of F and see
that

F ′′(I) = h ′′(I) −
2µ1k1γq(γ+ µ2)

2(p+ µ3)
2

{γq(k1 + k2) − (γ+ µ2)[(p+ µ3)I− k3]}
3 < 0.

Then F is concave in ( k3
p+µ3

, Î), this implies that the zero is unique. We resume the above analysis in
the next proposition.

Proposition 3.1. There exists a unique equilibrium point (S∗,C∗, I∗,R∗).

Remark 3.2. We clarify that there is no point free of infection, because we have
(
dC
dt + dI

dt

)
C=I=0 = k2 +k3 >

0.

4. Stability analysis

In the next analysis, we omit the equation for recovery state, R, because it does not appear in the other
equations.

Theorem 4.1 (The equilibrium point is GAS). The equilibrium point is globally asymptotically stable.

Proof. Let be L the function defined by

L = (S− S∗ lnS) + (C−C∗ lnC) + a

(
I− h(I∗)

∫I
I∗

dτ

h(τ)

)
,

where a =
S∗h(I∗)
γqC∗ .Taking the derivative of function L along trajectories of system (2.1), we have

L̇ =

(
1 −

S∗

S

)
Ṡ+

(
1 −

C∗

C

)
Ċ+ a

(
1 −

h(I∗)

h(I)

)
İ.

This is equivalent to

L̇ =

(
1 −

S∗

S

)
(k1 − S [βC+ h(I)] − µ1S) +

(
1 −

C∗

C

)
(k2 + S [βC+ h(I)] − γC− µ2C)

+ a

(
1 −

h(I∗)

h(I)

)
(k3 + γqC− pI− µ3I).

Using the equations

k1 = S∗ [βC∗ + h(I∗)] + µ1S
∗, γ+ µ2 =

k2 + S
∗ [βC∗ + h(I∗)]

C∗
, p+ µ3 =

k3 + γqC
∗

I∗
,

we have

L̇ =

(
1 −

S∗

S

)
(S∗ [βC∗ + h(I∗)] + µ1S

∗ − S [βC+ h(I)] − µ1S)

+

(
1 −

C∗

C

)
(k2 + S [βC+ h(I)] −

k2 + S
∗ [βC∗ + h(I∗)]

C∗
C)

+ a

(
1 −

h(I∗)

h(I)

)
(k3 + γqC−

k3 + γqC
∗

I∗
I)

=

(
1 −

S∗

S

)(
S∗ [βC∗ + h(I∗)] (1 −

S [βC+ h(I)]

S∗ [βC∗ + h(I∗)]
) + µ1S

∗(1 −
S

S∗
)

)
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+

(
1 −

C∗

C

)
(k2(1 −

C

C∗
) + S∗ [βC∗ + h(I∗)] (

S [βC+ h(I)]

S∗ [βC∗ + h(I∗)]
−
C

C∗
))

+ a

(
1 −

h(I∗)

h(I)

)
(k3(1 −

I

I∗
) + γqC∗(

C

C∗
−
I

I∗
)).

Rewriting the equation, we obtain

L̇ = −
µ1

S
(S− S∗)2 + S∗ [βC∗ + h(I∗)]

(
1 −

S∗

S
−

S [βC+ h(I)]

S∗ [βC∗ + h(I∗)]
+

[βC+ h(I)]

[βC∗ + h(I∗)]

)
−

k2

CC∗
(C−C∗)2 + S∗ [βC∗ + h(I∗)]

(
S [βC+ h(I)]

S∗ [βC∗ + h(I∗)]
−
C

C∗
−

SC∗ [βC+ h(I)]

S∗C [βC∗ + h(I∗)]
+ 1
)

+ ak3

(
1 −

h(I∗)

h(I)

)(
1 −

I

I∗

)
+ aγqC∗

(
1 −

h(I∗)

h(I)

)(
C

C∗
−
I

I∗

)
.

Since a =
S∗h(I∗)
γqC∗ , we have

L̇ = −
µ1

S
(S− S∗)2 −

k2

CC∗
(C−C∗)2 + ak3

(
1 −

h(I∗)

h(I)

)(
1 −

I

I∗

)
+ S∗βC∗V1 + S

∗h(I∗)V2

+ S∗h(I∗)

(
C

C∗
−
I

I∗
−
Ch(I∗)

C∗h(I)
+
Ih(I∗)

I∗h(I)

)
,

where

V1 =

(
2 −

S∗

S
−
S

S∗

)
and V2 =

(
2 +

h(I)

h(I∗)
−
S∗

S
−
C

C∗
−
SC∗h(I)

S∗Ch(I∗)

)
.

We observe that V1 =
(

2SS∗−S∗2−S2

SS∗

)
= −1
SS∗ (S− S

∗)2 and rearranging the last two terms, we have that

L̇ = −
µ1

S
(S− S∗)2 −

k2

CC∗
(C−C∗)2 + ak3

(
1 −

h(I∗)

h(I)

)(
1 −

I

I∗

)
−
S∗βC∗

SS∗
(S− S)2

+ S∗h(I∗)

(
3 −

S∗

S
−
SC∗h(I)

S∗Ch(I∗)
−
Ch(I∗)

C∗h(I)

)
+ S∗h(I∗)

(
h(I∗)

h(I)
− 1
)(

I

I∗
−
h(I)

h(I∗)

)
,

by conditions II and III, we have(
1 −

h(I∗)

h(I)

)(
1 −

I

I∗

)
6 0,

(
h(I∗)

h(I)
− 1
)(

I

I∗
−
h(I)

h(I∗)

)
6 0.

Besides
(

3 − S∗

S −
SC∗h(I)
S∗Ch(I∗) −

Ch(I∗)
C∗h(I)

)
6 0. Therefore L̇ 6 0, for all (S,C, I) and L̇ = 0 if and only if

(S,C, I) = (S∗,C∗, I∗). Then the equilibrium is globally asymptotically stable.

5. Numerical simulations

In this section, we introduce some numerical simulations to show the results previously presented.
The model parameters were chosen in order to reflects the COVID-19 dynamics. Following the World
Health Organization (WHO), we assumed the global life expectancy, which is 73.4 [30], as the inverse
of natural mortality rate of susceptible and recovered individuals. According to the Centers for Disease
Control and Prevention (CDC), symptoms may appear 2-14 days after exposure to the virus [5]. The
COVID-19 recovery rate was assumed as the inverse of 14 days [2]. Recently, Heuveline (2022) showed
that the COVID-19 pandemic reduced the world’s life expectancy by about 2 years [13]. Therefore, we
assumed that µ2 = µ3 = (71.4)−1. Once the asymptomatic individuals are not aware of their health status,
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it is expected that they have the same influx rate as susceptible individuals (k1 = k2). On the other
hand, less influx of symptomatic infectious individuals is expected (k3 < k1) due to their health status or
quarantine.

To analyze the influence of the function h in the dynamical system, we considered the following
functions

h(I) =
mI

a+ I
, (5.1)

and
h(I) = I(1/2)/(1 + I(1/2)), (5.2)

where m,a > 0 and h satisfies h(0) = 0, h(I) > 0, h ′(I) > 0, and h ′′(I) < 0. Table 1 shows the model
parameters and their description.

Table 1: Parameter description and values adopted in simulations of the system (2.1).

Parameter Definition Value Reference
k1 Rate of influx of susceptible 0.5 Assumed
β Transmission rate 0.001 Assumed
µ1 Death rate of susceptible 1/73.4 [30]
k2 Rate of influx of carrier compartment 0.5 Assumed
γ Rate at which carriers develop symptoms 1/(5/365) [5]
µ2 Death rate of carriers individuals 1/71.4 [13]
k3 Rate of influx of infected compartment 0.1 Assumed
q Fraction of carriers individuals becoming infectious 0.3 [15]
p Rate of recovery 1/(14/365) [2]
µ3 Death rate of infected individuals 1/71.4 [13]
k4 Rate of influx of recovery compartment 0.4 Assumed
µ4 Death rate of recovered individuals 1/73.4 [30]
m Coefficient of function h 0.1 Assumed
a Coefficient of function h 1 Assumed

To simulate some epidemiological scenarios, we assumed different initial conditions for infectious and
carrier individuals. We assumed the following scenarios I(0) = C(0) = θ, where θ = 1, 10, 100. For the
susceptible and recovered individuals we set as 1000 and 0, respectively.

(a) Carrier individuals. (b) Infected individuals.

Figure 1: Function: h(I) = mI/(a+ I). The blue, orange, and yellow colors corresponds to the values of
θ: 1, 10, and 100, respectively.
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(a) Carrier individuals. (b) Infected individuals.

Figure 2: Function: h(I) = I(1/2)/(1 + I(1/2)). The blue, orange, and yellow colors corresponds to the
values of θ: 1, 10, and 100, respectively.

Figure 1 shows the carrier and infected individual dynamics of the system (2.1) with incidence function
given by equation (5.1). In Figure 2 we considered a different incidence function, which is given by
equation (5.2). In both scenarios, we varied the initial condition and as expected from the globally stability
all solutions converge to the respective equilibrium point coordinate.

6. Conclusions

In this work, we analyzed the global stability of the single equilibrium point of a SCIR model with
migration terms and nonlinear incidence function. We aimed to analyze the effect of asymptomatic con-
tribution to the infection. The model does not have a basic reproduction number (R0) since the model
has not a free-disease equilibrium point. This is due to the effect of positive constant migration values
on the infected and asymptomatic populations. Using Lyapunov’s direct method, we proved the global
asymptotic stability when considering an incidence of the form S [βC+ h(I)], which is used but we think
it may be possible to extend the same results when considering an incidence of the form f(S) [g(C) + h(I)].
However, the result does not extend immediately, and the question remains open to the scientific commu-
nity.

To analyze the asymptomatic contribution to the infection, we considered two different incidence
functions. From the simulation scenarios we concluded that depending on the incidence function the
infection peak can occur more rapidly. Besides, the migration terms contribute to the persistence of the
infection.
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