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Abstract
This work aims to introduce and discuss two new classes of separation properties namely, soft generalized R0 and R1

in a soft generalized topological space defined on an initial universe set, by using the notions of soft g-open sets and soft g-
closure operator. We investigate some of their properties and characterizations. We further, investigate the relationships between
different generalized structures of soft topology, providing some illustrative examples and results. Additionally, we present
connections between these separation properties and those in some generated topologies. Furthermore, we show that being
SGRi, i = 0, 1 are soft generalized topological properties.

Keywords: Soft sets, soft g-open sets, soft generalized topology, Sg-closure, SG-kernel, soft generalized R0 and R1 spaces.

2020 MSC: 54A05, 54A40, 54D15.

©2024 All rights reserved.

1. Introduction and preliminaries

Molodtsov [21] introduced the concept of soft sets(or S-sets), in 1999 as a tool for dealing with un-
certain problems. Since then, many works have been published on S-set theory and its applications in
various fields, as in [1, 3, 4, 7–9, 13, 14, 16, 19]. Shabir-Naz [25] introduced the topological structure of
S-sets and studied various related concepts, leading to the development of generalized structures of soft
topology, including supra soft topology [12], infra soft topology [5], and soft generalized topology [27].
While many results from soft topology hold true in these generalized structures, some become invalid.
On the other hand, Csaszar [10] introduced the concept of generalized topology as a generalization of
general topology. Al-Omari-Noiri [2] proposed a unified theory of contra-(µ, λ)-continuous functions on
generalized topological spaces. Jyothis-Sunil [27, 28] defined the concept of soft generalized topology on
S-sets and studied some related notions.

Soft separability properties have been studied in many articles as in [6, 15, 23–26]. Jyothis-Sunil [29]
defined and studied some soft generalized separation axioms. In this work, we continue to study soft
generalized separation axioms and generalize some soft separability properties by defining the properties
SGRi, i = 0, 1. We discuss some results, characterizations, and relationships with supporting examples.
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This work is organized as follows. in the introduction, we review some known definitions and results
in the soft setting that will be used in the subsequent sections. In Section 2, we define a soft generalized
topology on a universe set U and discuss various examples, concepts, and properties, as well as the rela-
tionships between the generalized structures of soft topology. In Section 3, we present the definitions of
the soft generalized separation properties SGRi , i = 0, 1 and investigate the basic properties, character-
izations, and related theorems for them. In Section 4, we present more properties, results, relationships
with some necessary examples. We show that the SGRi, i = 0, 1 are soft generalized topological property.

In all the paper, U refers to an initial universe set, T is the set of all parameters for U, 2U is the power
set of U, and SG-refers to soft generalized. Next, we give some concepts and results about S-set theory,
for more details see [11, 17, 18, 20, 21, 30].

An S-set HT = (H, T) on U is a mapping H : T −→ 2U that is, HT can be written as a set of ordered
pairs HT = {(t,h (t)) : t ∈ T , H(t) ∈ 2U}. The class of all S-sets on U is symbolized by SS(U).

For HT ,KT ∈ SS(U) and x ∈ U, we have following.

(i) If H (t) = ∅ (resp. H (t) = U) for any t ∈ T , then HT is called a null (resp. universal) S-set and
symbolized by ∅̃ (resp. Ũ).

(ii) The relative complement HcT of HT , where Hc : T −→ 2U is a mapping given by Hc(t) = U−H(t)
for every t ∈ T . Clearly (HcT )

c = HT .
(iii) HT is an S-subset of KT is symbolized by HT ⊆̃KT if H(t) ⊆ K(t) for all t ∈ T .
(iv) The S-union (resp. S-intersection) ofHT and KT is an S-set GT (resp. LT ) given by G (t) = H (t)∪K (t)

(resp. L (t) = H (t)∩K (t)) for all t ∈ T and is symbolized by HT ∪̃GT (resp. HT ∩̃GT ).

For HT ∈ SS(U), Y ⊆ U, and x ∈ U, we have following.

(i) If H (t) = {x} and H(t
′
) = ∅ for every t

′ ∈ T − {t}, then HT is called an S-point on U symbolized by
xt. We write xt∈̃HT if for the element t ∈ T , x ∈ H (t) . The class of all S-points in Ũ is denoted by
SP(U).

(ii) x ∈ HT if x ∈ H (t) for all t ∈ T , and x /∈ HT if x /∈ H (t) for some t ∈ T .
(iii) If H (t) = {x} for all t ∈ T , then HT is called an S-singleton point denoted by xT . We write xT ∈̃HT ⇐⇒

x ∈ HT ⇐⇒ xt∈̃HT for all t ∈ T .
(iv) Ỹ = (Y, T) refers to the S-set on U for which Y (t) = Y for all t ∈ T , is called stable. We write xt 6= yt

if x 6= y.

Definition 1.1. Let SS(U) and SS(V) be the two families of all S-sets on U, V respectively and let u : U −→
V and p : T −→ E be two maps, then the map fup : SS (U) −→ SS (V) is said to be a soft map (briefly,
S-map) and we have:

(i) for HT ∈ SS(U), the image fup(HT ) of HT is the S set on V given by fup (HT ) (e) = ∪{u(H (t)) : t ∈
p−1 (e)} if p−1 (e) 6= ∅ and fup (HT ) (e) = ∅̃ otherwise for any e ∈ E;

(ii) for GE ∈ SS(V), the preimage f−1
up(GE) of GE is the S-set on U given by f−1

up(GE) (t) = u
−1(G(p (t)))

for any t ∈ T .

The S-map fup is called one-one (resp. onto and bijective), if u and p are one-one (resp. onto and
bijective). For more details about the properties of S-maps see [17].

Definition 1.2 ([10]). A generalized topology (or GT) on U is a collection σ of subsets of U, which is closed
under arbitrary unions and satisfies ∅ ∈ σ. Any set in (U,σ) is called an g-open set.

Definition 1.3 ([22]). An GTS (U, τ) is said to be:

(i) GR0 if for any x 6= y ∈ U with cl(x) 6= cl(y) implies cl(x)∩cl(y) = ∅;
(ii) GR1 if for any x 6= y ∈ U with cl(x) 6= cl(y), there are disjoint g-open subsets F,G of U such that

x ∈ F and y ∈ G.
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Definition 1.4 ([25]). A family τ ⊆ SS(U) under a fixed set of parameters T is called a soft topology on
U if τ is closed under arbitrary S-unions, finite S-intersections and Ũ, φ̃ ∈ τ. The triple (U, τ, T) is called
a soft topological space (or STS). Any element in τ is called an S-open set, and the complement of any
S-open set is called an S-closed set.

The S-closure cl(FT ) of FT in (U, τ, T) is the S-intersection of all S-closed super sets of FT , and the
S-interior int(FT ) of FT is the S-union of all S-open sets contained in FT .

Definition 1.5 ([23]). An STS (U, τ, T) is said to be:

(i) SR0 if for any xt 6= yt ∈ SP(U) with xt∈̃cl(yt) implies yt∈̃cl(xt);
(ii) SR1 if for any xt 6= yt ∈ SP(U) with cl(xt) 6= cl(yt), there are disjoint S-open subsets FT ,GT of U

such that xt ∈ FT and yt ∈ GT .

2. On soft generalized topological spaces

Jyothis-Sunil [27] gave the definition of soft generalized topology on a soft set. In this section, we give
the definition of soft generalized topology on an initial universe set U as one of the generalized structures
of soft topology. More examples, concepts, and properties are presented. In addition, the connections
with other generalized structures of soft topology are examined.

First, we recall the definitions of some generalized structures of soft topology such as supra soft
topology [12] and infra soft topology [5] as follows.

Definition 2.1. A family σ ⊆ SS(U) with a fixed set of parameters T is said to be:

(i) a supra soft topology (briefly, SST ) on U if the S-union of any number of S-sets in σ belongs to σ
and ∅̃, Ũ ∈ σ;

(ii) an infra soft topology (briefly, IST ) on U if it is closed under finite S-intersections and ∅̃ ∈ σ.

Definition 2.2. A collection g of S-sets on Uwith a fixed set of parameters T is said to be a soft generalized
topology on U if ∅̃ ∈ g and it is closed under arbitrary S-unions of members in g. The triple (U,g, T) is
called a soft generalized topological space (briefly, SGTS), any element in g is called a soft g-open set
(briefly, Sg-open), and its relative complement is called an Sg-closed set. The set of all Sg-closed sets in U
is denoted by gc.

In the next, we give some examples of soft generalized topologies on U.

Example 2.3. The following classes are soft generalized topologies on U.

(1) g1 = {HiT ∈ SS (U) : H1T ⊆ H2T ⊆ · · · ⊆ HiT , i ∈ J}.
(2) g2 =

{
HT ∈ SS (U) : xT ∈̃HT

}
∪ {∅̃}.

(3) g3 = {∅̃, Ũ, FT , FcT } for any FT ∈ SS(U).
(4) g4 = {∅̃,HT } for any HT ∈ SS(U).

Remark 2.4. Let (U,g, T) be an SGTS and (U, τ, T) be STS, then we have:

(1) if HT and FT are two Sg-open sets, then HT ∩̃FT need not be Sg-open set;
(2) if HT is an Sg-open set and FT is S-open set, then HT ∩̃FT need not be Sg-open set, but if g = SS(U),

HT ∈ g, and FT ∈ τ, then HT ∩̃FT is Sg-open set;
(3) if gi are SGTs on U for all i ∈ J, then ∩gi is SGT on U.

Now by the next results and examples, we can describe the relationships between the generalized
structures of ST such as SST , IST , and SGT as follows.
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Result 2.5. Clearly, every ST on U is an SST , SGT , and IST on U, but the converse is not true in general.
The next examples show it.

Example 2.6. Let U = {a,b, c,d, e}, T = {t1, t2}, and σ = {∅̃, Ũ, FT ,GT ,HT }, where, FT = {(t1, {a,d}) , (t2,
{a, c})}, GT = {(t1, {b,d}) , (t2, {b, c})}, and HT = {(t1, {a,b,d}) , (t2, {a,b, c})}. One can verify that σ is an
SST and SGT on U, but not ST .

Example 2.7. Let U = {a,b, c}, T = {t1, t2}, and σ = {∅̃, Ũ, FT ,HT }, where FT = {(t1, {a}) , (t2, ∅)}, HT =
{(t1, {b, c}) , (t2, {b})}. One can check that σ is an IST on U, but not (ST , SST , SGT ) on U.

Result 2. Clearly, every SST is an SGT , but the converse is not true in general. The next example shows
it.

Example 2.8. From the Example 2.6, consider the class g = {∅̃,GT ,HT }, it is clear that g is an SGT on U,
but not SST .

Result 3. An IST is independent of SST and SGT . The next example shows it.

Example 2.9. Let U = {a,b, c}, T = {t1, t2}, and σ = {∅̃, Ũ, FT ,HT }, where, FT = {(t1, {a, c}) , (t2,U)},
HT = {(t1, {b}) , (t2, {b})}, then σ is an GST and SST on U, but not IST . On other hand, the collection σ in
Example 2.7 is an IST on U, but is neither SST and nor SGT on U.

The relationships among ST , SST , IST , and SGT can be summarized as follows:

Definition 2.10. Let (U,σ) be a generalized topological space and T be a fixed set of parameters. The
family gσ = {FT : F (t) = A for all t ∈ T and A ∈ σ} defines an SGT , called stable SGT on U generated by
σ. In general, an SGTS (U,g, T) is called stable if any Sg-open set in (U,g, T) is stable.

Definition 2.11. An SGTS (U,g, T) is called a strong stable soft generalized topological space (briefly,
strong stable SGTS) if g = {HT : H (t) = B for all t ∈ T and B ⊂ U}. In this case any S-singleton point xT
in UT is an Sg-open set.

Definition 2.12. Let (U,g, T) be an SGTS, the collection gt = {H(t) : HT ∈ g} for each t ∈ T defines a
generalized topology on U, called a parametric GT .

Remark 2.13.

(1) If (U,g, T) is a strong stable SGTS, we have:
(i) any element in (U,g, T) is both Sg-open and Sg-closed set;

(ii) (U,gt) is a discrete space for all t ∈ T ;
(iii) every (U,gσ, T) is a subspace of a strong stable SGTS (U,g, T);
(iv) every strong stable SGTS (U,g, T) is a subspace of soft discrete space (U, τ, T).

(2) Let (U,σ) be a discrete TS, we have the SGT gσ, which is defined in Definition 2.10, is a strong stable
SGT on U.

Definition 2.14. For SGT (U,g, T), if Hc ∈ g for every H ∈ g, then (U,g, T) is called a complemental SGTS.
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Example 2.15.

(1) Let U = {a,b, c}, T = {t1, t2}, and the class σ = {∅,U, {c} , {a,b} , {b, c} , {a, c}}. Then σ is a GT on U and

from Definition 2.10, we have the class gσ = {∅̃, Ũ, {̃c}, {̃a,b}, {̃b, c} ,{̃a, c}} is an SGT on U.
(2) Let U = {x,y, z}, T = {t1, t2} and τ = SS(U) be a soft discrete topology on U. The class g =

{∅̃, Ũ, xT ,yT , zT , {̃x,y}, {̃x, z}, {̃y, z}} is a strong stable SGT on U and any element in g is both Sg-open
and Sg-closed set. Moreover, g is a complemental SGT and it is a subspace of τ. On other hand,
gt1 = gt2 = {∅,U, {x} , {y} , {z} , {x,y} , {x, z} , {y, z}} is a discrete topology on U.

Definition 2.16. An S-set HT in (U,g, T) is said to be an Sg-neighborhood (briefly, Sg-nbd) of xt if there
is an FT ∈ g such that xt∈̃FT ⊆̃HT .

Notation. Oxt refers to an Sg-open set containing xt, and is called an Sg-open nbd of xt.

Definition 2.17. Let HT be an S-set in SGTS (U,g, T). Then the Sg-closure clg(HT ) of HT is the S-
intersection of all Sg-closed super sets of HT , and the Sg-interior intg(HT ) of HT is the S-union of all
Sg-open sets contained in HT .

Proposition 2.18. Let (U,g, T) be an SGTS and HT , KT ∈ SS(U), we have:

(i) HT ∈ gc if and only if clg(HT ) = HT ;
(ii) HT ⊆̃FT implies clg(HT )⊆̃clg(FT );

(iii) xt∈̃clg(HT ) if and only if Oxt∩̃HT 6= ∅̃ for all Oxt ∈ g.

Proof. The proofs of (i) and (ii) are obvious.

(iii) Let xt∈̃clg(HT ), then xt∈̃FT for all FT ∈ gc such that HT ⊆̃FT . Suppose that there is an Sg-open set
Oxt containing xt with Oxt∩̃HT = ∅̃, then HT ⊆̃Ocxt . This is a contradiction. Hence the result holds.
Conversely, suppose that xt /̃∈clg(HT ), then xt∈̃(clg (HT ))

c = Oxt , i.e., there is an Sg-open set containing
xt such that HT ∩̃(clg (HT ))

c = ∅̃, and the result holds.

Definition 2.19. Let (U,g, T) be an SGTS and Y ⊆ U. The family gY = {Ỹ∩̃HT : HT∈g} is an SGT on
Y, and (Y,gY , T) is called an SGT -subspace of (U,g, T). For the SGT -subspace (Y,gY , T) of (U,g, T) and
HE ∈ SS(Y) we have HT is an Sg-open set in Y if and only if HT = Ỹ∩̃GT for some GT ∈ g.

Definition 2.20. Let (U,g, T) be an SGTS, HT ∈ SS (U), and xt ∈ SP(U), then the soft generalized kernel
of HT , denoted as SGK (HT ) is the S-set given as SGK (HT ) = ∩̃{FT ∈ g : HT ⊆̃FT }. In particular, the soft
generalized kernel of xt ∈ SP(U) is given by SGK (xt) = ∩̃{FT ∈ g : xt∈̃FT }.

Lemma 2.21. Let (U,g, T) be an SGTS andHT ∈ SS(U). Then SGK (HT ) = ∪̃{xt ∈ SP(U) : clg(xt)∩̃HT 6= ∅T }.

Proof. Let xt∈̃SGK (HT ). Suppose that clg (xt) ∩̃HT = ∅̃, then HT ⊆̃(clg (xt))
c and xt /̃∈(clg (xt))

c, which
is an Sg-open set containing HT . This contradicts with xt∈̃SGK (HT ). So, clg (xt) ∩̃HT 6=∅̃ and SGK (HT )

⊆̃ ∪̃{xt ∈ SP (U) : clg (xt) ∩̃HT 6=∅̃}.
Conversely, let clg (xt) ∩̃HT 6=∅̃. Suppose xt /̃∈GSK (HT ), then there is an KT ∈ g such that HT ⊆̃KT and

xt /̃∈KT . Now let yt∈̃clg (xt) ∩̃HT , we have yt∈̃clg (xt) and since KT is an Sg-open set containing yt this
implies xt∈̃KT , a contradiction. So xt∈̃SGK (HT ).

Lemma 2.22. Let (U,g, T) be an SGTS and xt∈SP(U), then yt∈̃SGK (xt) if and only if xt∈̃clg(yt).

Proof. It is obvious.

Lemma 2.23. Let (U,g, T) be an SGTS and xt, yt ∈ SP(U), then SGK(xt) 6= SGK(yt) if and only if clg (xt) 6=
clg (yt).
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Proof. Let SGK(xt) 6= SGK(yt), there is zt ∈ SP(U) with zt∈̃SGK(xt) and zt /̃∈SGK(yt). If zt∈̃SGK(xt), from
Lemma 2.21, we get xt∩̃clg (zt) 6= ∅̃ implies xt∈̃clg (zt), that is clg (xt) ⊆̃clg (zt). Similarly, if zt /̃∈SGK(yt)
we get yt /̃∈clg (zt). Since clg (xt) ⊂̃clg (zt) and yt /̃∈clg (xt), we have ye /̃∈clg (xt). Hence clg (xt) 6= clg (yt).

Conversely, let clg (xt) 6= clg (yt), there is zt ∈ SP(U) with zt∈̃clg (xt) and ze /̃∈clg (yt). Thus, there is
an Sg-open set containing zt and so xt but not yt. Hence yt /̃∈SGK(xt) and the proof is complete.

Now, let us give the next definition which is obtained by replacing τ and S-open sets in [29] with g
and Sg-open sets, respectively.

Definition 2.24. An SGTS (U,g, T) is said to be:

(i) soft generalized T0 (briefly, SGT0) iff for any xt, yt(x 6= y) there are Sg-open sets HT and FT such
that xt∈̃FT and yt /̃∈HT or yt∈̃HT and xt /̃∈HT ;

(ii) soft generalized T1 (briefly, SGT1) iff for any xt, yt(x 6= y) there are Sg-open sets HT and FT such
that xt∈̃HT , yt /̃∈HT and yt∈̃FT , xt /̃∈FT ;

(iii) soft generalized T2 (briefly, SGT2) iff for any xt, yt(x 6= y) there are Sg-open sets HT and FT such
that xt∈̃HT , yt∈̃FT and HT ∩̃FET = ∅̃.

Remark 2.25. Clearly, SGT2 =⇒ SGT1 =⇒ SGT0

3. On soft generalized R0 and R1 spaces

In the following, we introduce and study two new classes of soft generalized separation properties,
called SGRi, i = 0, 1 and investigate some characterizations for them.

Definition 3.1. An SGTS (U,g, T) is called soft Generalized R0 (briefly, SGR0) iff for any xt 6= yt ∈ SP(U)
with xt∈̃clg(yt) implies yt∈̃clg(xt).

Theorem 3.2. An SGTS (U,g, T) is SGR0 if and only if clg(xt)⊆̃HT for all HT ∈ g, xt∈̃HT .

Proof. Let (U,g, T) be SGR0. Suppose clg(xt)˜6⊆HT for some HT ∈ g and xt∈̃HT , there is an S-point yt such
that yt∈̃clg(xt), yt /̃∈HT . So that yt∩̃HT=∅̃ for some HT∈g, xt∈̃HT and xt, yt ∈ SP(U) with x 6= y. Thus
xt /̃∈clg(yt) . This is a contradiction. Thus, the necessary part holds.

Conversely, let xt /̃∈clg(yt), there is an Sg-open set KT containing xt such that yt∩̃KT=∅̃ this implies
that yt /̃∈KT . By hypothesis clg(xt)⊆̃KT , we get yt /̃∈clg(xt). Therefore (U,g, T) is SGR0.

Theorem 3.3. For SGTS (U,g, T) and xt ∈ SP(U), the next items are equivalent:

(1) (U,g, T) is SGR0;
(2) for any HT ∈ gc with xt /̃∈HT , we have clg(xt)∩̃HT=∅̃;
(3) for any xt, yt ∈ SP(U) (x 6= y), either clg (xt)=clg(yt) or clg(xt)∩̃clg(yt)=∅̃.

Proof.

(1) =⇒ (2) It follows from that of the above theorem.

(2) =⇒ (3) Let xt 6= yt ∈ SP(U) with clg(xt) 6=clg(yt), there is zt∈̃clg(xt) and zt /̃∈clg(yt)(or, zt∈̃clg(yt)
and zt /̃∈clg(xt)). Thus there is HT ∈ g such that yt /̃∈HT , zt∈̃HT and so, xt∈̃HT . Therefore, xt /̃∈clg(yt).
From (2) we get, clg(xt)∩̃clg(yt)=∅̃. The proof of the rest case is similar.

(3) =⇒ (1) Let xt 6=yt ∈ SP(U) with xt /̃∈clg(yt), we get clg(xt) 6=clg(yt). From (3), we have clg(xt)∩̃clg(yt)
=∅̃ which implies yt∈̃ clg (yt) ⊂̃(clg (xt))

c and so, yt /̃∈clg(xt).
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Corollary 3.4. An SGTS (U,g, T) is SGR0 if and only if for any xt 6= yt ∈ SP(U) with clg(xt) 6=clg(yt) implies
clg(xt)∩̃clg(yt) = ∅̃.

Proof. It follows from that of the above theorems.

Theorem 3.5. For SGTS (U,g, T) the next statements are equivalent:

(1) (U,g, T) is SGR0;
(2) HT ∈ gc =⇒ HT = SGK(HT );
(3) HT ∈ gc and xt∈̃HT =⇒ SGK(xt)⊆̃HT ;
(4) xt ∈ SP (U) =⇒ SGK (xt) ⊆̃clg (xt) .

Proof.

(1) =⇒ (2) LetHT ∈ gc. Suppose that xt /̃∈HT , we have xt∈̃HcT which is an Sg-open set containing xt. Since
(U,g, T) is SGR0, we get clg (xt) ⊆̃HcT implies clg (xt) ∩̃HT=∅̃. From Lemma 2.21, we get xt /̃∈SGK(HT ). So,
HT=SGK(HT ).

(2) =⇒ (3) It follows from that FT ⊆̃GT implies SGK(FT )⊆̃SGK(GT ).
(3) =⇒ (4) Obvious.

(4) =⇒ (1) Let xt 6= yt ∈ SP(U) with xt∈̃clg (yt). From Lemma 2.22, we get yt∈̃SGK (xt). Since
xt∈̃clg (xt), which is an Sg-closed set and from (4), we have yt∈̃SGK (xt) ⊆̃clg (xt), that is yt∈̃clg (xt)
and this completes the proof.

Proposition 3.6. An SGTS (U,g, T) is SGR0 if and only if clg(xt)⊆̃SGK (xt) for all xt ∈ SP(U).

Proof. It follows from Lemma 2.22 and Theorem 3.2.

From Lemma 2.22 and the above proposition, one can verify the next corollary.

Corollary 3.7. An SGTS (U,g, T) is SGR0 if for any xt ∈ SP(U), SGK (xt) = clg(xt).

Theorem 3.8. An SGTS (U,g, T) is SGR0 if and only if for any xt 6= yt ∈ SP(U) with SGK(xt) 6= SGK(yt)

implies SGK(xt)∩̃SGK(yt) = ∅̃.

Proof.

=⇒ Let (U,g, T) be an SGR0 and xt 6= yt ∈ SP(U) with GSK(xt) 6= GSK(yt). By Lemma 2.23, we get
clg(xt) 6= clg(yt). Suppose SGK(xt)∩̃SGK(yt) 6= ∅̃, there is zt∈̃SGK(xt)∩̃SGK(yt). Since zt∈̃SGK(xt),

from Lemma 2.22 we have, xt∈̃clg(zt) implies clg(xt)⊂̃clg(zt). Since xt∈̃clg(xt) and from Corollary 3.4,
we get clg(xt) = clg(zt). Similarly, since zt∈̃SGK(yt), we have clg(yt) = clg(zt)=clg(xt). This is a
contradiction. Therefore, SGK (xe) ∩̃SGK (ye) = ∅̃.
⇐= Let xt 6= yt ∈ SP(U) with clg(xt) 6=clg(yt). From Lemma 2.23, we have SGK(xt) 6= GSK(yt). By
hypothesis, we get SGK (xe) ∩̃SGK (ye) = ∅̃. Suppose that clg(xt)∩̃clg(yt) 6=∅̃, there is zt ∈ SP(U) such
that zt∈̃clg (xt) and zt∈̃clg(yt). Form Lemma 2.22, we have xt∈̃GSK(zt) and yt∈̃SGK(zt) and by Lemma
2.21, we obtain, SGK(xt)∩̃SGK(zt) 6= ∅̃ and SGK(yt)∩̃SGK(zt) 6= ∅̃. By hypothesis we get, SGK (xt) =

SGK(zt) and SGK (yt)=SGK(zt) = SGK(xt). So, SGK(xt)∩̃SGK(yt) 6= ∅̃. This is a contradiction. Thus
clg(xt)∩̃clg(yt)=∅̃. Hence by Corollary 3.4, we obtain the result.

Definition 3.9. An SGTS (U,g, T) is called soft generalized R1 (briefly, SGR1) iff for any xt 6= yt ∈ SP(U),
with clg(xt) 6=clg(yt), there are Sg-open sets HT ,KT such that xt∈̃HT and yt∈̃KT with HT ∩̃KT = φ̃.

Proposition 3.10. Every SGR1 space is SGR0.
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Proof. Let xt 6= yt ∈ SP(U) with xt /̃∈clg(yt), then clg(xt) 6=clg(yt). Since (U,g, T) is SGR1, there is HT ∈ g
such that yt∈̃HT and xt /̃∈HT . So yt /̃∈clg(xt), and this completes the proof.

The converse of the above theorem is not necessary true, the next example shows it.

Example 3.11. Let U be an infinite set. The class g = {∅̃}∪ {HT : (H (t))c is a finite subset of U for all t ∈ T }
is SGT on U and (U,g, T) is called an SG cofinite space. Now one can verify g is SGR0. But it is not SGR1.
Indeed, suppose that (U,g, T) is SGR1 and xt 6= yt ∈ SP(U) with clg(xt) 6=clg(yt), there are FT ,GT ∈ g
such that xt∈̃FT ,yt∈̃GT and FT ∩̃GT = ∅̃ implies (F (t))c ∪ (G (t))c = U. Since (F (t))c, (G (t))c are finite
subsets of U, this means that U is finite. This is a contradiction. Thus (U,g, T) is not SGR1.

Theorem 3.12. Every strong stable SGTS (U,g, T) is SGRi, i = 0, 1.

Proof. For the case i=1, let (U,g, T) be a strong SGTS and xt,yt ∈ SP(U)(x 6= y) such that clg(xt) 6=clg(yt),
there are Sg-open sets xT ,yT such that xt∈̃xT and yt∈̃yT with xT ∩̃yT = ∅̃. Hence (U,g, T) is SGR1. The
proof of other case is obvious.

Corollary 3.13. Every stable SGTS (U,g, T) is SGRi, i = 0, 1.

Theorem 3.14. An SGTS (U,g, T) is SGR1 if and only if for any xt 6= yt ∈ SP(U) with SGK(xt) 6= SGK(yt),
there are HT ,KT ∈ g such that clg(xt)⊆̃HT , clg(yt)⊆̃KT and HT ∩̃KT = ∅̃.

Proof. It follows by using Lemma 2.22.

Proposition 3.15. For SGTS (U,g, T), the next statements are equivalent.

(1) (U,g, T) is SGR1.
(2) For any xt 6= yt ∈ SP(U) with xt /̃∈clg(yt), there are FT ,GT ∈ g such that xt∈̃FT , yt∈̃GT , and FT ∩̃GT = ∅̃.
(3) For any xt 6=yt∈SP(U) with clg (xt) 6=clg(yt), there are FT ,GT ∈ g such that clg (xt) ⊆̃FT and clg(yt)⊆̃GT

with FT ∩̃GT = ∅̃.

Proof. It follows from the above theorem and Lemma 2.23.

Theorem 3.16. Every complemental SGTS (U,g, T) is SGRi, i = 0, 1.

Proof. We will prove only the case i = 1. The proof of other case is similar. Let xt 6= yt ∈ SP(U) and
xt /̃∈clg(yt), then xt∈̃(clg (yt))

c = HT ∈ g. Since (U,g, T) is a complemental SGTS, we have yt∈̃clg (yt) =
GT ∈ g. Clearly, HT ∩̃GT = ∅̃ and so, from Proposition 3.15 (2), the result holds.

Corollary 3.17. Every SRi space is SGRi, for i = 0, 1.

4. More properties and relations

Theorem 4.1. Every SGT subspace (Y,gY , T) of SGRi (U,g, T) is SGRi, i = 0, 1.

Proof. We will show the case i = 1. The proof of the rest case is similar. Let xt 6= yt ∈ SP(Y) with
clg(xt) 6=clg(yt), then xt,yt are different S-points in U with clg(xt) 6=clg(yt). Since (U,g, T) is SGR1, there
are FT ,GT ∈ g such that xt∈̃FT and yt∈̃GT with FT ∩̃GT = ∅̃. So there are Sg-open sets HYT = YT ∩̃FT ∈ gY
and VYT = YT ∩̃GT ∈ gY containing xt,yt, respectively, with UYE∩̃VYE = ∅̃. Therefore (Y,gY , T) is SGR1.

The next example shows a SGTS with SGRi and another GTS which does not have GRi for i = 0, 1.
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Example 4.2. Let U = {a,b, c} and T = {t1, t2}. The class g = {∅̃, Ũ, F1T , F2T }, where F1T = {(t1,U)} and
F2T = {(t2,U)} is a SGT on U. One can verify that (U,g, T) is SGR0 and SGR1. On the other hand, the
class τ = {∅, {a}, {a,b}} is a GT on U which is not GR0. Indeed, for the different points a,b ∈ U with
cl(a) = U 6= cl(b) = {b, c}, we have cl(a)∩ cl(b) = {b, c} 6= ∅.

Theorem 4.3. If (U,g, T) is SGRi, then (U,gt) is GRi for all t ∈ T , i = 0, 1.

Proof. We will prove the case i = 1. The proof of the case i = 0 is similar. Let x,y ∈ U and x 6= y with
cl(x) 6= cl(y), then either x/∈cl(y) or y /∈ cl(x). Thus, xt /∈clg(yt) or yt /∈clg(xt) this implies clg(xt) 6=clg(yt).
Since (U,g, T) is SGR1, there are HT ,KT ∈̃g such that xt∈̃HT and yt∈̃KT with HT ∩̃KT = ∅̃ and so, there are
H(t) and K(t) ∈ gt such that x ∈ H(t) and y ∈ K(t) with H(t)∩K(t) = ∅ for all t ∈ T . Therefore (U,gt) is
GR1 for all t ∈ T .

The next example shows that the converse of the above theorem may not be true.

Example 4.4. Let U = {a,b} and T = {t1, t2}. Consider the class g = {∅̃, Ũ, H1T ,H2T ,H3T ,H4T }, where
H1T = {(t1, {a})} ,H2T = {(t1, {a}) , (t2, {a})}, H3T = {(t1, {a}) , (t2, {b})}, and H4T = {(t1, {a}) , (t2,U)}, which
is a SGT on U and the class gt2 = {∅,U, {a} , {b}} is a GT on U. It is clear that (U,gt2) is GR1 and GR0.
But (U,g, T) is not SGR0. Indeed, for at1 , bt1 ∈ SP(U)(a 6= b), we have, Ũ = clg(at1) 6= clg(bt1) = bt1 but
clg(at1)∩̃clg(bt1) 6=∅̃. Hence (U,g, T) is not SGR1.

Proposition 4.5. Let (U,g, T) be a strong stable SGTS, then (U,g, T) is SGRi if and only if (U,gt) is GRi for all
t ∈ T and i = 0, 1.

Proof. We will give the proof for i = 1. The proof for the case i = 0 is similar.

=⇒ The proof follows from that of Theorem 4.3.

⇐= Let xt 6= yt ∈ SP(U) with clg(xt) 6=clg(yt), then x 6= y with cl(x) 6= cl(y). Since (U,gt) is GR1, there
are g-open subsets F,K of U such that x ∈ F and y ∈ K with F ∩ K = ∅ imply there are HT ,VT ∈̃g such
that F = H(t) and K = V(t) for all t ∈ T with xt∈̃HT and yt∈̃VT with HT ∩̃VT = ∅̃. Therefore, (U,g, T) is
SGR1.

Theorem 4.6. A GTS (U,σ) is GRi if and only if (U,gσ, T) is SGRi, i = 0, 1.

Proof. We will give the proof for i = 1. The proof for the case i = 0 is similar.

=⇒ The proof is similar to that of the converse part in the above proposition.

⇐= Let x 6= y ∈ U with cl(x) 6= cl(y), we have either x /∈ cl(y) or y /∈ cl(x) and this implies that
xt /∈clg(yt) or yt /∈clg(xt), then clg(xt) 6=clg(yt). Since (U,gσ, T) is SGR1, there are FT ,GT ∈̃gσ such that
xt∈̃FT ,yt∈̃GT and FT ∩̃GT=∅̃. Thus, there are disjoint g-open sets A,B ∈ σ such that x ∈ F (t) = A and y ∈
G (t) = B for all t ∈ T . Hence (U,σ) is GR1.

Theorem 4.7. If (U,g, T) is SGTi, then it is SGRi−1, for i = 1, 2.

Proof. We will prove the case i = 1. The proof for the case i = 2 is obvious. Let (U,g, T) be SGT1 and
HT be an Sg-open set containing xt. We need to prove that clg(xt)⊆̃HT . So let yt /̃∈HT , then xt /̃∈clg(yt)
and xt,yt are different S-points. Since (U,g, T) is SGT 1, there is KT ∈̃g such that yt∈̃KT and xt /̃∈KT , then
yt /̃∈clg(xt). Therefore clg(xt)⊆̃HT . This completes the proof.

The converse of the above theorem may not be true. The next example shows it.

Example 4.8. Let U = {a,b} and T = {t1, t2}. The class g = {∅̃, Ũ, F1T , F2T }, where, F1T = {(t1,U)} and
F2T = {(t2,U)} is an SGT on U. One can verify (U,g, T) is SGR0 and SGR1 but not SGT 1. Indeed, for two
S-points at1 ,bt1 , the Sg-open sets which are containing at1 are Ũ and F1T but also, they are containing
bt1 . Thus (U,g, T) is not SGT 1. Moreover, one can check that (U,g, T) is not SGT 2.
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Theorem 4.9. For SGTS (U,g, T), we have:

(1) (U,g, T) is SGT 2 ⇐⇒ it is both SGR1 and SGT0;
(2) (U,g, T) is SGT1 ⇐⇒ it is both SGR0 and SGT 0.

Proof. We will show the case (1). The proof of the other case is similar.
The necessity part follows from Theorem 4.7 and Remark 2.25.
Conversely, let xt 6= yt ∈ SP(U) with xt /̃∈clg(yt). Since (U,g, T) is SGR0, then yt /̃∈clg(xt) and so,

clg(xt) 6= clg(yt). Again, (U,g, T) is SGR1, so there are disjoint Sg-open sets FT ,HT containing xt,yt,
respectively. Hence (U,g, T) is SGT 2.

Corollary 4.10. (U,g, T) is SGT 2 ⇐⇒ it is both SGR1 and SGT 1.

Definition 4.11. An S-map fup : (U,g, T) −→ (V ,σ,E) is called:

(i) Sg-continuous if f−1
up(FE) ∈ g for any Sg-open set FE ∈ σ ([27]);

(ii) Sg-open if fup (GT ) ∈ σ for any Sg-open set GT ∈ g ([27]);
(iii) Sg-homeomorphism if it is bijective, Sg-continuous, and Sg-open.

Definition 4.12. A property is called a soft generalized-topological property if the property is preserved
by Sg-homeomorphism.

Theorem 4.13. For a bijective Sg-continuous map fup : (U,g, T) −→ (V ,σ,E), if (V ,σ,E) is SGRi, then (U,g, T)
is also SGRi, i = 0.1.

Proof. We will prove only the case i = 1. The proof of the rest case is similar. To show that (U,g, T) is
SGR1, let xt,yt ∈ SP(U)(x 6= y). Since fup is one-one, there are two distinct S-points ae,be in V such that
fup (xt) = ae and fup (yt) = be. Since (V ,σ,E) is SGR1, there are two Sg-open sets H1E,H2E ∈ σ such
that ae∈̃H1E and be∈̃H2E and so, xt∈̃f−1

up(H1E) and yt∈̃f−1
up(H2E). Since fup is Sg-continuous, we have

f−1
up(H1E), f−1

up(H2E) are Sg-open sets in (U,g, T) with f−1
up(H1E)∩̃f−1

up(H2E) = ∅̃. Thus (U,g, T) is SGR1.

Theorem 4.14. For a bijective Sg-open map fup : (U,g, T) −→ (V ,σ,E), if (U,g, T) is SGRi, then (V ,σ,E) is
also SGRi, i = 0.1.

Proof. We will prove only the case i = 1. The proof of the rest case is similar. To show that (V ,σ,E) is SGR1.
Let ae 6= be∈SP(V). Since fup is onto, there are two distinct S-points xt,yt in U such that fup (xt) = ae
and fup (yt) = be. By hypothesis, there are two Sg-open sets H1T ,H2T∈g such that xt∈̃H1E,yt∈̃H2E and
so, ae∈̃fup(H1T ) and be∈̃fup(H2T ). Since fup is Sg-open, we have fup(H1T ), fup(H2T ) are Sg-open sets
in (V ,σ,E) with fup (H1E) ∩̃fup (H2T )=∅̃. Hence (V ,σ,E) is SGR1.

From the above two theorems, we have the next theorem.

Theorem 4.15. Let fup : (U,G, T) −→ (V ,σ,E) be an Sg-homeomorphism map, then (U,g, T) is SGRi if and
only if (V ,σ,E) is SGRi, i = 0.1.

Corollary 4.16. The soft generalized properties SGRi are SG-topological property, for i = 0, 1.

Corollary 4.17. From Remark 2.25, Proposition 3.10, Corollary 3.17, and Theorems 4.7 and 4.9, the following
implications hold and describe the relationships between SGRi and other soft separation properties.

SGT2 =⇒ SGT1 =⇒ SGT0
⇓ ⇓
SGR1 =⇒ SGR0
⇑ ⇑
SR1 =⇒ SR0
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5. Conclusion

In this work, we defined and studied a new class of soft generalized properties called soft generalized
R0 and R1 axioms in soft generalized topological spaces, and have obtained some characterizations of these
properties. We also, investigated the relationships between various generalized topological structures of
soft topology and presented several results with supported examples. In the future work, we will study
the notions of R0 and R1 properties in supra soft topological spaces and investigate some soft generalized
notions such as compactness and connectedness in this new setting. It is stated that the results obtained
in the paper may be useful for further research on soft set theory and its applications.
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[8] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358.
[9] B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294. 1
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