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Abstract

This work aims to introduce and discuss two new classes of separation properties namely, soft generalized Ry and Ry
in a soft generalized topological space defined on an initial universe set, by using the notions of soft g-open sets and soft g-
closure operator. We investigate some of their properties and characterizations. We further, investigate the relationships between
different generalized structures of soft topology, providing some illustrative examples and results. Additionally, we present
connections between these separation properties and those in some generated topologies. Furthermore, we show that being
SGRy, 1 =0,1 are soft generalized topological properties.
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1. Introduction and preliminaries

Molodtsov [21] introduced the concept of soft sets(or S-sets), in 1999 as a tool for dealing with un-
certain problems. Since then, many works have been published on S-set theory and its applications in
various fields, as in [1, 3, 4, 7-9, 13, 14, 16, 19]. Shabir-Naz [25] introduced the topological structure of
S-sets and studied various related concepts, leading to the development of generalized structures of soft
topology, including supra soft topology [12], infra soft topology [5], and soft generalized topology [27].
While many results from soft topology hold true in these generalized structures, some become invalid.
On the other hand, Csaszar [10] introduced the concept of generalized topology as a generalization of
general topology. Al-Omari-Noiri [2] proposed a unified theory of contra-(u, A)-continuous functions on
generalized topological spaces. Jyothis-Sunil [27, 28] defined the concept of soft generalized topology on
S-sets and studied some related notions.

Soft separability properties have been studied in many articles as in [6, 15, 23-26]. Jyothis-Sunil [29]
defined and studied some soft generalized separation axioms. In this work, we continue to study soft
generalized separation axioms and generalize some soft separability properties by defining the properties
SGRj, 1 =0,1. We discuss some results, characterizations, and relationships with supporting examples.
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This work is organized as follows. in the introduction, we review some known definitions and results
in the soft setting that will be used in the subsequent sections. In Section 2, we define a soft generalized
topology on a universe set U and discuss various examples, concepts, and properties, as well as the rela-
tionships between the generalized structures of soft topology. In Section 3, we present the definitions of
the soft generalized separation properties SGR; ,i = 0,1 and investigate the basic properties, character-
izations, and related theorems for them. In Section 4, we present more properties, results, relationships
with some necessary examples. We show that the SGR;, i = 0,1 are soft generalized topological property.

In all the paper, U refers to an initial universe set, T is the set of all parameters for U, 2! is the power
set of U, and SG-refers to soft generalized. Next, we give some concepts and results about S-set theory,
for more details see [11, 17, 18, 20, 21, 30].

An S-set Hr = (H,T) on U is a mapping H : T — 2Y that is, Hy can be written as a set of ordered
pairs Hr ={(t,h(t)) : t € T, H(t) € 2Y}. The class of all S-sets on U is symbolized by SS(U).

For Ht, Kt € SS(U) and x € U, we have following.

(i) If H(t) = 0 (resp. H(t) = U) for any t € T, then Hry is called a null (resp. universal) S-set and
symbolized by () (resp. U1).
(ii) The relative complement H$ of Ht, where H® : T — 2U is a mapping given by H¢(t) = U — H(t)
for every t € T. Clearly (H$)® = Hr.
(iii) Hr is an S-subset of Kt is symbolized by HyCKr if H(t) C K(t) forall t € T.
(iv) The S-union (resp. S-intersection) of Ht and Kt is an S-set Gt (resp. L) given by G (t) = H (t) UK (t)
(resp. L (t) =H (t)NK(t)) for all t € T and is symbolized by HrUGT (resp. HTNG1).

For Hr € SS(U), Y C U, and x € U, we have following.

(i) If H(t) = {x} and H(t") = 0 for every t' € T—{t}, then Hr is called an S-point on U symbolized by
xt. We write x¢ EH7 if for the element t € T, x € H (t). The class of all S-points in U is denoted by
SP(U).

(i) x e Hrif x e H(t) forallt € T, and x ¢ Hy if x ¢ H (t) for some t € T.

(iii) If H(t) ={x} for all t € T, then Hr is called an S-singleton point denoted by x1. We write xyeHt <=
X € Ht <= x¢€Ht forallt € T.

(iv) Y = (Y, T) refers to the S-set on U for which Y (t) =Y for all t € T, is called stable. We write x; # Yyt
if x #y.

Definition 1.1. Let SS(U) and SS(V) be the two families of all S-sets on U, V respectively and letu: U —
Vand p : T — E be two maps, then the map f : SS(U) — SS (V) is said to be a soft map (briefly,
S-map) and we have:

(i) for Hr € SS(U), the image fyu, (Ht) of Hy is the S set on V given by f., (Ht) (e) = U[u(H (1)) : t €
pl(e)}if p~t(e) # 0 and fup (Ht) () = () otherwise for any e € E;

(ii) for Gg € SS(V), the preimage f;%,(GE) of Gg is the S-set on U given by f;%(GE) (t) =u Y (G(p (1)
forany t e T.

The S-map fyp is called one-one (resp. onto and bijective), if u and p are one-one (resp. onto and
bijective). For more details about the properties of S-maps see [17].

Definition 1.2 ([10]). A generalized topology (or GT) on U is a collection o of subsets of U, which is closed
under arbitrary unions and satisfies ) € 0. Any set in (U, o) is called an g-open set.

Definition 1.3 ([22]). An GTS (U, T) is said to be:

(i) GRo if for any x # y € U with cl(x) # cl(y) implies cl(x)Ncl(y) = 0;
(ii) GRy if for any x # y € U with cl(x) # cl(y), there are disjoint g-open subsets F, G of U such that
x€Fand y € G.
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Definition 1.4 ([25]). A family T C SS(U) under a fixed set of parameters T is called a soft topology on
U if T is closed under arbitrary S-unions, finite S-intersections and tl, (T) € 1. The triple (U, T, T) is called
a soft topological space (or STS). Any element in 7 is called an S-open set, and the complement of any
S-open set is called an S-closed set.

The S-closure cl(Fy) of Fyr in (U, 7, T) is the S-intersection of all S-closed super sets of Fr, and the
S-interior int(Fy) of Fr is the S-union of all S-open sets contained in Fr.

Definition 1.5 ([23]). An STS (U, T, T) is said to be:

(i) SRy if for any x¢ # y¢ € SP(U) with x¢Ecl(y¢) implies yiEcl(xy);
(i) SRy if for any x¢ # y¢ € SP(U) with cl(x¢) # cl(y¢), there are disjoint S-open subsets Fr, Gt of U
such that x; € Fr and y € Gr.

2. On soft generalized topological spaces

Jyothis-Sunil [27] gave the definition of soft generalized topology on a soft set. In this section, we give
the definition of soft generalized topology on an initial universe set U as one of the generalized structures
of soft topology. More examples, concepts, and properties are presented. In addition, the connections
with other generalized structures of soft topology are examined.

First, we recall the definitions of some generalized structures of soft topology such as supra soft
topology [12] and infra soft topology [5] as follows.

Definition 2.1. A family o C SS(U) with a fixed set of parameters T is said to be:

(i) a supra soft topology (briefly, SST) on U if the S-union of any number of S-sets in o belongs to o
and 0, U € o; B
(ii) an infra soft topology (briefly, IST) on U if it is closed under finite S-intersections and () € o.

Definition 2.2. A collection g of S-sets on U with a fixed set of parameters T is said to be a soft generalized

topology on U if ) € g and it is closed under arbitrary S-unions of members in g. The triple (U, g, T) is
called a soft generalized topological space (briefly, SGTS), any element in g is called a soft g-open set
(briefly, Sg-open), and its relative complement is called an Sg-closed set. The set of all Sg-closed sets in U
is denoted by g°¢.

In the next, we give some examples of soft generalized topologies on U.

Example 2.3. The following classes are soft generalized topologies on U.
(1) g1 ={Hit € SS{U): Hir C Hor C--- C Hir, 1€

(2) g2 = {HT €SS (U) 2XTEHT} U{@}

3) g5 ={0,U, Fr, F$} for any Fr € SS(U).

(4) g4 = {6, Hy} for any Ht € SS(U).

Remark 2.4. Let (U, g, T) be an SGTS and (U, T, T) be STS, then we have:

(1) if Ht and Fy are two Sg-open sets, then HtNFt need not be Sg-open set;

(2) if Ht is an Sg-open set and Fr is S-open set, then H1NFt need not be Sg-open set, but if g = SS(U),
Ht € g, and Fr € 71, then HyNFy is Sg-open set;

(3) if gi are SGTs on U for all i € |, then Ng; is SGT on U.

Now by the next results and examples, we can describe the relationships between the generalized
structures of ST such as SST, IST, and SGT as follows.
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Result 2.5. Clearly, every ST on U is an SST, SGT, and IST on U, but the converse is not true in general.
The next examples show it.

Example 2.6. Let U = {a,b,c,d,e}, T = {t1, t2}, and o = {6, U, Fr, G, Ht), where, Fr = {(t1,{a,d}), (t2,
{Cl, C})}/ GT = {(tlr{b/ d}) s (t2/{br C})}/ and HT = {(tlr{a/ bl d}) s (tZ/{a/ b/ C})} One can Verify that o is an
SST and SGT on U, but not ST.

Example 2.7. Let U = {a,b,c}, T = {t1,tp}, and ¢ = {6, U, Fr, Ht), where Fr = {(ty,{a}), (t, )}, HT =
{(t1,{b, c}), (t2,{b})}. One can check that o is an IST on U, but not (ST, SST, SGT) on U.

Result 2. Clearly, every SST is an SGT, but the converse is not true in general. The next example shows
it.

Example 2.8. From the Example 2.6, consider the class g = {ﬁ, GT,Hrt}, it is clear that g is an SGT on U,
but not SST.

Result 3. An IST is independent of SST and SGT. The next example shows it.

Example 2.9. Let U = {a,b,c}, T = {t1,t2}, and 0 = {@, U, Fr, Hy), where, Fr = {(t1,{a,c}), (t5, W)},
Ht = {(t1,{b}), (tp,{b})}, then o is an GST and SST on U, but not IST. On other hand, the collection o in
Example 2.7 is an IST on U, but is neither SST and nor SGT on U.

The relationships among ST, SST, IST, and SGT can be summarized as follows:

ST<=, SST <, 56T

AN

IST

Definition 2.10. Let (U, o) be a generalized topological space and T be a fixed set of parameters. The
family go ={Fr : F(t) = A forallt € T and A € o} defines an SGT, called stable SGT on U generated by
0. In general, an SGTS (U, g, T) is called stable if any Sg-open set in (U, g, T) is stable.

Definition 2.11. An SGTS (U, g, T) is called a strong stable soft generalized topological space (briefly,
strong stable SGTS) if g ={Ht :H(t) =B forall t € T and B C U}. In this case any S-singleton point x1
in Ut is an Sg-open set.

Definition 2.12. Let (U, g, T) be an SGTS, the collection gy = {H(t) : Hr € g} for each t € T defines a
generalized topology on U, called a parametric GT.

Remark 2.13.

(1) If (U, g, T) is a strong stable SGTS, we have:
(i) any element in (U, g, T) is both Sg-open and Sg-closed set;
(ii) (U, g¢) is a discrete space for all t € T;
(iii) every (U, gy, T) is a subspace of a strong stable SGTS (U, g, T);
(iv) every strong stable SGTS (U, g, T) is a subspace of soft discrete space (U, T, T).
(2) Let (U, 0) be a discrete TS, we have the SGT g, which is defined in Definition 2.10, is a strong stable
SGT on U.

Definition 2.14. For SGT (U, g, T), if H® € g for every H € g, then (U, g, T) is called a complemental SGTS.
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Example 2.15.

(1) Let U ={a,b,c}, T = {ty, to}, and the class o = {(}, U, {c} {a b} {b, c} {a,c}}. Then oisa GT on U and

from Definition 2.10, we have the class g = {@ u, {c} {a b}, {b c} {a cl}tis an SGT on U.
(2) Let U = {x, y,z} T = {tl,tz} and T = SS(U) be a soft discrete topology on U. The class g =

{(D U, xt,yT, 2T, {x y}, {x z}, {y,z}} is a strong stable SGT on U and any element in g is both Sg-open
and Sg-closed set. Moreover, g is a complemental SGT and it is a subspace of T. On other hand,
gt, = g, = {0, U, {x}, {y}, {z},{x, y},{x, 2} ,{y, z}} is a discrete topology on U.

Definition 2.16. An S-set Hr in (U, g,T) is said to be an Sg-neighborhood (briefly, Sg-nbd) of x if there
is an F1 € g such that x;{€FrCHr.

Notation. Oy, refers to an Sg-open set containing x¢, and is called an Sg-open nbd of x;.

Definition 2.17. Let Ht be an S-set in SGTS (U, g, T). Then the Sg-closure clg(Ht) of Ht is the S-
intersection of all Sg-closed super sets of Hy, and the Sg-interior inty(Hy) of Ht is the S-union of all
Sg-open sets contained in Hr.

Proposition 2.18. Let (U, g, T) be an SGTS and Ht, Ky € SS(U), we have:
(i) Hy € g ifand only if clg(Ht) = Hy;

(ii) HyCFy implies clg(Ht)Cclg(Fr);

(iii) x¢Eclg(Hr) if and only if Ox,NHt # 0 for all O, € g.

Proof. The proofs of (i) and (ii) are obvious.

(iii) Let xtéclg(HT), then x¢€Fr for all Fr € g. such that Ht CFy. Suppose that there is an Sg-open set
O, containing x; with OXﬁHT = @, then HT§O§t. This is a contradiction. Hence the result holds.
Conversely, suppose that xtéclg(HT), then x¢€(clg (Ht)) = Oy, i.e., there is an Sg-open set containing
x¢ such that HrN(clg (Hy))¢ = (), and the result holds. O

Definition 2.19. Let (U, g,T) be an SGTS and Y C U. The family gy = {YNHt : Hy€g} is an SGT on
Y, and (Y, gy, T) is called an SGT-subspace of (U, g,T). For the SGT-subspace (Y, gy, T) of (U,g,T) and
He € SS(Y) we have Hy is an Sg-open set in Y if and only if Ht = YNGr for some Gt € g.

Definition 2.20. Let (U, g, T) be an SGTS, Hy € SS(U), and x; € SP(U), thenjhe soft generalized kernel
of Hr, denoted as SGK (Hr) is the S-set given as SGK (Hy) = N{Fr € g : HrCFr}. In particular, the soft
generalized kernel of x; € SP(U) is given by SGK (x¢) = "{Fr € g: x:EFT}.

Lemma 2.21. Let (U, g, T) bean SGTS and Ht € SS(U). Then SGK (Ht) = U{x¢ € SP(U) : clg(xt)ﬁHT # 07}

Proof. Let xt€SGK (Ht). Suppose that clg (x¢) AHT = @, then HTi(clg (x¢))¢ and xt%(clg (x¢))€, which
is an Sg-open set containing Hy. This contradicts with x{ ESGK (Hr). So, clg (x¢) ﬁHT;«é@ and SGK (Hy)
C Ufxe € SP (W) : clg (x¢) FTHT 40},

Conversely, let clg (x¢) ﬁHT#@. Suppose xt%GSK (Ht), then there is an Kt € g such that HtCKy and
xt%KT. Now let ytéclg (x¢) NHT, we have ytéclg (x¢) and since Kt is an Sg-open set containing y; this
implies x{ €K, a contradiction. So x¢€SGK (Hr). O

Lemma 2.22. Let (U, g, T) be an SGTS and x€SP(U), then y€SGK (x¢) if and only if x¢Eclg(yq).
Proof. It is obvious. O

Lemma 2.23. Let (U, g, T) be an SGTS and x¢, y¢ € SP(U), then SGK(x¢) # SGK(y¢) if and only if clg (x¢) #
clg (ye).
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Proof. Let SGK(xt)# SGK(y¢), there is z; € SP(U) with z; ESGK(x{) and 2¢2SGK(yy). If e €SGK(x¢), from
Lemma 2.21, we get x¢clg (z¢) # 0 implies x¢Eclg (z¢), that is clg (x¢) éclg (z¢). Similarly, if zt%SGK(yt)
we get ytéclg (z¢). Since clg (xt) éclg (z¢) and ytéclg (x¢), we have yeéclg (xt). Hence clg (x¢) # clg (yt).

Conversely, let clg (x¢) # clg (y¢), there is zy € SP(U) with ztéclg (x¢) and ze%clg (yt). Thus, there is

an Sg-open set containing z; and so x{ but not y¢. Hence yt%SG K(x¢) and the proof is complete. O

Now, let us give the next definition which is obtained by replacing T and S-open sets in [29] with g
and Sg-open sets, respectively.

Definition 2.24. An SGTS (U, g, T) is said to be:

(i) soft generalized Ty (briefly, SGTy) iff for any x{, y¢(x # y) there are Sg-open sets Hr and Fr such
that x{€F1 and yt%HT or yt€Ht and x¢&HT;
(ii) soft generalized Ty (briefly, SGT;) iff for any x¢, y¢(x # y) there are Sg-open sets Ht and Fr such
that x¢eHT, yt;HT and y{€F, Xt &Fr;
(iii) soft generalized T, (briefly, SGT;) iff for any x¢, y¢(x # y) there are Sg-open sets Hy and Fy such
that x{€HT, yt€F1 and HTNFeT = 0.

Remark 2.25. Clearly, SGT, = SGT; = SGTy

3. On soft generalized Ry and Ry spaces

In the following, we introduce and study two new classes of soft generalized separation properties,
called SGR;, i =0,1 and investigate some characterizations for them.

Definition 3.1. An SGTS (U, g, T) is called soft Generalized R (briefly, SGRy) iff for any x # y € SP(U)
with xtéclg (y¢) implies ytéclg (x¢)-

Theorem 3.2. An SGTS (U, g, T) is SGRy if and only zfclg(xt)iHT forall Hy € g, x¢€HT.

Proof. Let (U, g, T) be SGRy. Suppose clg(xt)iHT for some Ht € g and x{€Hr, there is an S-point y such
that y¢Eclg(x¢), yt;HT. So that ytﬁHT:@ for some Hte€g, x¢€Ht and x¢, yt € SP(U) with x #y. Thus
xt%clg (y¢) . This is a contradiction. Thus, the necessary part holds.

Conversely, let xt%clg (yt), there is an Sg-open set Ky containing x; such that ytﬁKT:@ this implies
that yt%KT. By hypothesis clq (x¢)CKT, we get yt%clg(xt). Therefore (U, g, T) is SGRy. O

Theorem 3.3. For SGTS (U, g, T) and x, € SP(U), the next items are equivalent:
(1) (U,g,T)is SGRy;

(2) for any Ht € g© with x¢&Hr, we have clg (x¢)AHT=0;

(3) for any x¢, yr € SP(U) (x #y), either clg (x¢) =clg(y) or clg(xt)ﬁclg(yt)zﬁ.
Proof.

(1) = (2) It follows from that of the above theorem.

(2) = (3) Let x¢ # ye € SP(U) with clg(x¢)#clg(ye), there is z¢Eclg(x¢) and zt%clg(yt)(or, ztgclg(yt)
and z¢¢clg(x¢)). Thus there is Hr € g such that Yt#HT,z¢€HT and so, x{€Ht. Therefore, xe#clg(ye).
From (2) we get, clg (xt)ﬁclg (yt)=0. The proof of the rest case is similar.

(32 = (1) Letx¢#yt € SP(U) with xt%clg (yt), we get clg(x¢)#clg(yt). From (3), we have clg (xt)ﬁclg (yt)
=0 which implies y¢€ clg (y¢) Clclg (x¢))© and so, yeéclg(xy).
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Corollary 3.4. An SGTS (U, g, T) is SGRy if and only if for any x¢ # yr € SP(U) with clg(x¢)7#clg(yr) implies
clg(x¢)Nelg(ye) = 0.

Proof. It follows from that of the above theorems. O

Theorem 3.5. For SGTS (U, g, T) the next statements are equivalent:
(1) (U,g,T)is SGRy;

(2) Hr € g¢ = Ht = SGK(HT);

(3) Ht € g€ and xi€HT = SGK(x¢)CHr;

(4) x¢ € SP(U) = SGK (x¢) gclg (xt).

Proof.

(1) = (2) Let Ht € g°. Suppose that xt%HT, we have xtéHj which is an Sg-open set contajning x¢. Since
(U, g, T) is SGRy, we get clg (x¢) CHS implies clg (x+) NHt=0. From Lemma 2.21, we get x;#SGK(Hr). So,
Hy=SGK(Hr).

(2) = (3) It follows from that FrCGt implies SGK(FT)ESGK(GT).

(3) = (4) Obvious.

(4) = (1) Let x¢ # y¢ € SP(U) with x¢€clg (y¢). From Lemma 2.22, we get y:€SGK(x¢). Since

xt&clg (x¢), which is an Sg-closed set and from (4), we have y(ESGK (x{) Cclg (x¢), that is yi&Eclg (x¢)
and this completes the proof. O

Proposition 3.6. An SGTS (U, g, T) is SGRy if and only ifclg(xt)QSGK (x¢) for all x¢ € SP(U).

Proof. It follows from Lemma 2.22 and Theorem 3.2. 0
From Lemma 2.22 and the above proposition, one can verify the next corollary.

Corollary 3.7. An SGTS (U, g, T) is SGRy if for any x¢ € SP(U), SGK (x¢) = clg(x¢).

Theorem 3.8. An SGTS (U, g, T) is SGRo if and only if for any x¢ # y¢ € SP(U) with SGK(x¢) # SGK(yt)
implies SGK(x¢)NSGK(y¢) = 0.

Proof.

= Let (U,g,T) be an SGRy and x¢ # y¢ € SP(U) with GSK(x¢) # GSK(y{). By Lemma 2.23, we get
clg(x¢) # clg(yt). Suppose SGK(x¢)NSGK(y¢) # 0, there is z;€SGK(x¢)ASGK(y¢). Since z¢ESGK(xt),
from Lemma 2.22 we have, xtéclg (z¢) implies clg (xt)ﬁclg (z¢). Since xtéclg (x¢) and from Corollary 3.4,
we get clg(x¢) = clg(z¢). Similarly, since z¢€SGK(y¢), we have cg(yt) = dg(z¢)=clg(x¢). This is a
contradiction. Therefore, SGK (x¢) NSGK (ye) = 0.

<= Let x¢ # y¢ € SP(U) with clg(x¢)#clg (yt) From Lemma 2.23, we have SGK(x) # GSK(y¢). By

hypothesis, we get SGK (x¢) NSGK (ye) = 0. Suppose that cl (xt)ﬁcl (yt);«é@ there is z¢ € SP(U) such
that z¢€clg (x¢) and z¢Eclg(yt). Form Lemma 2.22, we have XtEGSK(Zt) and y¢€SGK(z,) and by Lemma

2.21, we obtain, SGK(xt)ﬁSGK(zt) #+ 6 and SGK(y¢)NSGK(zy) # @ ByNhypothesis we get, SGK (x¢) =
SGK(z¢) and SGIS(yt) =SGK(z¢) = SGK(x¢). So, SGK(x{)NSGK(y¢) # 0. This is a contradiction. Thus
cly (xt)ﬁclg (y¢)=0. Hence by Corollary 3.4, we obtain the result. O

Definition 3.9. An SGTS (U, g, T) is called soft generalized R; (briefly, SGR;) iff for any x¢ # y¢ € SP(U),
with clg (x¢)#clg(yt), there are Sg-open sets Hr, Kt such that xt€HT and y¢ €Kt with HrNKt = ¢.

Proposition 3.10. Every SGR; space is SGRy.



J. Al-Mufarrij, S. Saleh, J. Math. Computer Sci., 32 (2024), 43-53 50

Proof. Let x¢ # y¢ € SP(U) with xtéclg(yt), then clg(x¢)#clg(y¢). Since (U, g, T) is SGRy, there is Hr € g
such that y€Ht and x{¢Ht. So y¢ ¢clg(x¢), and this completes the proof. O

The converse of the above theorem is not necessary true, the next example shows it.

Example 3.11. Let U be an infinite set. The class g = {0} U{Hr : (H(t))€ is a finite subset of U for all t € T}
is SGT on U and (U, g, T) is called an SG cofinite space. Now one can verify g is SGRy. But it is not SGR;.
Indeed, suppose that (U, g, T) is SGRy and x¢ # y¢ € SP(U) with clg(x¢)#clg(yt), there are Fr,Gt € g
such that x{€Ft,yt€Gt and FrNGT = () implies (F (t))° U (G (t))¢ = U. Since (F (1)), (G (1)) are finite
subsets of U, this means that U is finite. This is a contradiction. Thus (U, g, T) is not SGR;.

Theorem 3.12. Every strong stable SGTS (U, g, T) is SGR;,1 =0, 1.

Proof. For the casei=1, let (U, g, T) be a strong SGTS and x¢,yt € SP(U)(x # y) such that clg(x¢)#clg (Y1),

there are Sg-open sets x1,yt such that x;€xt and yi€yrt with xt Nyt = 0. Hence (U, g, T) is SGR;. The
proof of other case is obvious. O

Corollary 3.13. Every stable SGTS (U, g, T) is SGRy, 1 =0, 1.

Theorem 3.14. An SGTS (U, g, T) is SGRy if and only if for any x¢ # y¢ € SP(U) with SGK(x¢) # SGK(y¢),
there are Hy, Kt € g such that clg(xt)iHT, clg(yt)iKT and HNKt = 0.

Proof. 1t follows by using Lemma 2.22. O

Proposition 3.15. For SGTS (U, g, T), the next statements are equivalent.

(1) (U,g,T)is SGRy.

(2) Forany x¢ # y¢ € SP(U) with xtéclg(yt), there are F1, Gt € g such that x¢€Ft, yt€Gy, and FrNGT = 0.

(3) For any x¢ #y¢ € SP(U) with clg (x¢) #clg(yt), there are Fr, Gt € g such that clg (x¢) CFr and clg (yt)iGT
with FrAGT = 0.

Proof. 1t follows from the above theorem and Lemma 2.23. 0
Theorem 3.16. Every complemental SGTS (U, g, T) is SGRy, i =0,1.

Proof. We will prove only the case i = 1. The proof of other case is similar. Let x¢ # y¢ € SP(U) and
xt¢clg(yt), then xté(clg (yt))¢ = Ht € g. Since (U,g,T) is a complemental SGTS, we have ytéclg (ye) =
Gt € g. Clearly, HrNGt = 0 and so, from Proposition 3.15 (2), the result holds. O

Corollary 3.17. Every SR; space is SGRy, fori =0, 1.

4. More properties and relations
Theorem 4.1. Every SGT subspace (Y, gy, T) of SGR; (U, g, T) is SGRy, i =0, 1.

Proof. We will show the case i = 1. The proof of the rest case is similar. Let x¢ # y¢ € SP(Y) with
clg(x¢)#clg(yt), then x¢,y¢ are different S-points in U with clg(x¢)7#clg(y¢). Since (U, g, T) is SGRy, there
are F1, Gt € g such that x;€F and y{€Gt with Ft NG = 6 So there are Sg-open sets HY = YrOFT € gy
and V}( = YTNGT € gy containing x¢, Yy, respectively, with u{ﬁvg = 6 Therefore (Y, gy, T) is SGR;. [

The next example shows a SGTS with SGR; and another GTS which does not have GR; fori =0, 1.
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Example 4.2. Let U = {a,b,c} and T = {t;,t2}. The class g = {@, U, Fi1, Fo1), where Fir = {(t;, W)} and
Fo1 = {(t2, U)} is a SGT on U. One can verify that (U,g, T) is SGRy and SGR;. On the other hand, the
class T = {0,{a},{a,b}} is a GT on U which is not GRy. Indeed, for the different points a,b € U with
cl(a) = U # cl(b) ={b, c}, we have cl(a) Ncl(b) = {b,c} # 0.

Theorem 4.3. If (U, g, T) is SGRy, then (U, g¢) is GRy forallt € T,1 =0, 1.

Proof. We will prove the case i = 1. The proof of the case i = 0 is similar. Let x,y € U and x # y with
cl(x) # cl(y), then either x¢cl(y) or y & cl(x). Thus, x¢&clg(y¢) or yi&clg(x¢) this implies clg (x¢)#clg (y¢).
Since (U, g, T) is SGRy, there are Ht, Kt€g such that x;€Ht and y{ €K with HtNKt = () and so, there are
H(t) and K(t) € gt such that x € H(t) and y € K(t) with H(t)NK(t) = @ for all t € T. Therefore (U, g¢) is
GR; forallte T. O

The next example shows that the converse of the above theorem may not be true.

Example 4.4. Let U = {a,b} and T = {t1,t,}. Consider the class g = {5, u, Hit, Ho1, HaT, Hyt}, where
Hit = {(t1, {a})}, Hot = {(t1,{a}), (t2,{aP)}, Ha1 = {(t1,{a}), (t2,{b})}, and Hyr = {(t1,{a}), (t2, W)}, which
is a SGT on U and the class g, = {0, U,{a},{b}} is a GT on U. It is clear that (U, g¢,) is GR; and GRy.
But (U, g,T) is not SGR¢. Indeed, for at,, by, € SP(U)(a# b), we have, U = clg(ay,) # clg(by,) = by, but

clg(at,)Neclg(by, )#40. Hence (U, g, T) is not SGR;.

Proposition 4.5. Let (U, g, T) be a strong stable SGTS, then (U, g, T) is SGRy if and only if (U, g¢) is GR; for all
teTandi=0,1.

Proof. We will give the proof for i = 1. The proof for the case i = 0 is similar.

— The proof follows from that of Theorem 4.3.

<= Let x¢ # yt € SP(U) with clg(x¢)7#clg(yt), then x # y with cl(x) # cl(y). Since (U, g¢) is GRy, there
are g-open subsets F, K of U such that x € F and y € K with FNK = @ imply there are Ht, Vr€g such
that F = H(t) and K = V(t) for all t € T with x;€Ht and y{€Vt with HtNV1 = (). Therefore, (U, g, T) is
SGR;. O]

Theorem 4.6. A GTS (U, o) is GR; if and only if (U, g5, T) is SGR;, 1 =0, 1.

Proof. We will give the proof for i = 1. The proof for the case i = 0 is similar.
— The proof is similar to that of the converse part in the above proposition.
<= Let x # y € U with cl(x) # cl(y), we have either x ¢ cl(y) or y ¢ cl(x) and this implies that
xt&clg(yt) or yegclg(xt), then clg(x¢)#clg(yt). Since (U, go, T) is SGRy, there are Fr, GT€ge such that

xtEFT, Yt €GT and FrNG1=0. Thus, there are disjoint g-open sets A, B € o such thatx € F(t) = Aand y €
G (t) =B forall t € T. Hence (U, o) is GR;. d

Theorem 4.7. If (U, g, T) is SGT;, then it is SGRi_1, for i =1,2.

Proof. We will prove the case i = 1. The proof for the case i = 2 is obvious. Let (U, g,T) be SGT; and
Ht be an Sg-open set containing x;. We need to prove that clg(xt)iHT. So let yt%HT, then xtéclg(yt)
and x¢,y: are different S-points. Since (U, g, T) is SGT;, there is K1€g such that y¢€Ky and xt%KT, then
ytéclg (xt). Therefore clgq (x¢)CHr. This completes the proof. O

The converse of the above theorem may not be true. The next example shows it.

Example 4.8. Let U = {a,b} and T = {t;,tp}. The class g = {@, U, Fi1, Fo1), where, Fi1 = {(t;, W)} and
Fo1 = {(t2, U)} is an SGT on U. One can verify (U, g, T) is SGRy and SGR; but not SGT;. Indeed, for two
S-points ay,, by,, the Sg-open sets which are containing ay, are U and Fy1 but also, they are containing
by,. Thus (U, g, T) is not SGT;. Moreover, one can check that (U, g, T) is not SGT».
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Theorem 4.9. For SGTS (U, g, T), we have:

(1) (U,qg,T)is SGTy < it is both SGRy and SGTy;
(2) (U,qg,T)is SGTy <= it is both SGRy and SGTy.

Proof. We will show the case (1). The proof of the other case is similar.

The necessity part follows from Theorem 4.7 and Remark 2.25.

Conversely, let x; # y¢ € SP(U) with x¢¢clg(y¢). Since (U, g, T) is SGRy, then yi&clg(x¢) and so,
clg(xt) # clg(yt). Again, (U,g,T) is SGRy, so there are disjoint Sg-open sets Fr, Hy containing x¢,yt,
respectively. Hence (U, g, T) is SGT». O

Corollary 4.10. (U, g, T) is SGT, <= it is both SGRy and SGT.
Definition 4.11. An S-map fyp : (U, g, T) — (V, 0, E) is called:

(i) Sg-continuous if f;é (Fe) € g for any Sg-open set Fg € o ([27]);
(ii) Sg-openif fy, (G1) € o0 for any Sg-open set Gt € g ([27]);
(iii) Sg-homeomorphism if it is bijective, Sg-continuous, and Sg-open.

Definition 4.12. A property is called a soft generalized-topological property if the property is preserved
by Sg-homeomorphism.

Theorem 4.13. For a bijective Sg-continuous map fyp : (U, g, T) — (V,0,E),if (V, 0, E) is SGRy, then (U, g, T)
is also SGR;, i = 0.1.

Proof. We will prove only the case i = 1. The proof of the rest case is similar. To show that (U, g, T) is
SGRy, let x¢,y¢ € SP(U)(x # y). Since fy,;, is one-one, there are two distinct S-points ae, be in V such that
fup (x¢t) = ae and fyup (y¢) = be. Since (V, 0, E) is SGRy, there are two Sg-open sets Hig, Hye € o such
that a.€Hig and be.€Hye and so, xtéqul,(ng) and ytéf;}?(HQE). Since fyp is Sg-continuous, we have
f;%(HlE),f;%,(HZE) are Sg-open sets in (U, g, T) with f;é(HlE)ﬁf;}j(HzE) = (. Thus (U,g,T) is SGR;. O
Theorem 4.14. For a bijective Sg-open map fyp : (U, g, T) — (V,0,E), if (U, g, T) is SGRy, then (V,0,E) is
also SGR;, i =0.1.

Proof. We will prove only the case i = 1. The proof of the rest case is similar. To show that (V, 0, E) is SGR;.
Let ae # be€SP(V). Since fy, is onto, there are two distinct S-points x¢,y¢ in U such that f,, (x¢) = ae
and fyup (yt) = be. By hypothesis, there are two Sg-open sets Hy, Hyt€g such that xt€H1g,yt€Hoe and
SO, aeéfup(HlT) and beéfup(Hﬂ). Since fyp, is Sg-open, we have fy, (Hi1), fup(HoT) are Sg-open sets
in (V, 0, E) with fup (Hig) Nfup (Hat) =0. Hence (V, 0, E) is SGRy. O

From the above two theorems, we have the next theorem.

Theorem 4.15. Let fp, : (U, G, T) — (V,0,E) be an Sg-homeomorphism map, then (U, g, T) is SGR; if and
only if (V,0,E) is SGRy, 1 =0.1.

Corollary 4.16. The soft generalized properties SGR; are SG-topological property, for i =0, 1.

Corollary 4.17. From Remark 2.25, Proposition 3.10, Corollary 3.17, and Theorems 4.7 and 4.9, the following
implications hold and describe the relationships between SGR; and other soft separation properties.

SGT, = SGT; = SGTy

4 4
SGR; = SGRy
L T

SRy = SRy
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5. Conclusion

In this work, we defined and studied a new class of soft generalized properties called soft generalized
Ro and R axioms in soft generalized topological spaces, and have obtained some characterizations of these
properties. We also, investigated the relationships between various generalized topological structures of
soft topology and presented several results with supported examples. In the future work, we will study
the notions of Ry and R; properties in supra soft topological spaces and investigate some soft generalized
notions such as compactness and connectedness in this new setting. It is stated that the results obtained
in the paper may be useful for further research on soft set theory and its applications.
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