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Abstract

We present an equilibrium result for abstract economies for majorized condensing type correspondences on Hausdorff
topological vector spaces. In addition we obtain new maximal element and coincidence point results for collectively multi-
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1. Introduction

The main aim of this paper is to present an existence theory for maximal element type and coinci-
dence elements for multi-valued maps of condensing or compact type in the topological vector space
setting. First we present an equilibrium theory for abstract economies for maps (constraints, preferences)
majorized by upper semicontinuous maps with closed convex values and this abstract economy result
will motivate the general maximal element type result.

Now we describe the maps considered in this paper. Let H be the C̆ech homology functor with com-
pact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space, Hq(X) being the q-
dimensional C̆ech homology group with compact carriers of X. For a continuous map f : X → X, H(f) is
the induced linear map f? = {f?q}, where f?q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty,
Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y, and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ → X is called a
Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic;
(ii) p is a perfect map; i.e.; p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.
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Let φ : X → Y be a multi-valued map (note for each x ∈ X we assume φ(x) is a nonempty subset of
Y). A pair (p,q) of single valued continuous maps of the form X

p← Γ
q→ Y is called a selected pair of φ

(written (p,q) ⊂ φ) if the following two conditions hold:

(i) p is a Vietoris map;
(ii) q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [6]. An upper semicontinuous map φ : X → Y

with compact values is said to be admissible (and we write φ ∈ Ad(X, Y)) provided there exists a selected
pair (p,q) of φ. An example of an admissible map is a Kakutani map. An upper semicontinuous map
φ : X → CK(Y) is said to be Kakutani (and we write φ ∈ Kak(X, Y)); here Y is a Hausdorff topological
vector space and CK(Y) denotes the family of nonempty, convex, compact subsets of Y.

Later we will use C(Y) which will denote the family of nonempty convex closed subsets of Y.
We also discuss the following classes of maps in this paper. Let Z and W be subsets of Hausdorff

topological vector spaces Y1 and Y2 and G a multifunction. We say G ∈ DKT(Z,W) [3] if W is convex
and there exists a map S : Z → W with co(S(x)) ⊆ G(x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and the
fibre S−1(w) = {z ∈ Z : w ∈ S(z)} is open (in Z) for each w ∈ W. We say G ∈ HLPY(Z,W) [7, 9] if W is
convex and there exists a map S : Z → W with co(S(x)) ⊆ G(x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and
Z =

⋃
{intS−1(w) : w ∈W}.

Now we consider a general class of maps, namely the PK maps of Park. Let X and Y be Hausdorff
topological spaces. Given a class X of maps, X(X, Y) denotes the set of maps F : X → 2Y (nonempty
subsets of Y) belonging to X, and Xc the set of finite compositions of maps in X. We let

F(X) = {Z : Fix F 6= ∅ for all F ∈ X(Z,Z)} ,

where FixF denotes the set of fixed points of F. The class U of maps is defined by the following properties:

(i) U contains the class C of single valued continuous functions;
(ii) each F ∈ Uc is upper semicontinuous and compact valued; and

(iii) Bn ∈ F(Uc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ Rn : ‖x‖ 6 1}.

We say F ∈ PK(X, Y) if for any compact subset K of X there is a G ∈ Uc(K, Y) with G(x) ⊆ F(x) for each
x ∈ K. Recall PK is closed under compositions.

For a subset K of a topological space X, we denote by CovX(K) the directed set of all coverings of K by
open sets of X (usually we write Cov(K) = CovX(K)). Given two maps F,G : X → 2Y and α ∈ Cov(Y), F
and G are said to be α-close if for any x ∈ X there exists Ux ∈ α, y ∈ F(x)∩Ux and w ∈ G(x)∩Ux.

Let Q be a class of topological spaces. A space Y is an extension space for Q (written Y ∈ ES(Q)) if
for any pair (X,K) in Q with K ⊆ X closed, any continuous function f0 : K → Y extends to a continuous
function f : X → Y. A space Y is an approximate extension space for Q (written Y ∈ AES(Q)) if for any
α ∈ Cov(Y) and any pair (X,K) in Q with K ⊆ X closed, and any continuous function f0 : K → Y there
exists a continuous function f : X→ Y such that f|K is α-close to f0.

Let V be a subset of a Hausdorff topological vector space E. Then we say V is Schauder admissible
if for every compact subset K of V and every covering α ∈ CovV(K) there exists a continuous function
πα : K→ V such that

(i) πα and i : K→ V are α-close;
(ii) πα(K) is contained in a subset C ⊆ V with C ∈ AES(compact).

Theorem 1.1 ([1, 11]). Let X be a Schauder admissible subset of a Hausdorff topological vector space and Ψ ∈
PK(X,X) a compact upper semicontinuous map with closed values. Then there exists an x ∈ X with x ∈ Ψ(x).

Remark 1.2. Other variations of Theorem 1.1 can be found in [12] (see also [8] for another result).

We now list two well known results from the literature [16, 17].
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Theorem 1.3. Let X and Y be two topological spaces and A an open subset of X. Suppose F1 : X→ 2Y , F2 : A→ 2Y

are upper semicontinuous such that F2(x) ⊂ F1(x) for all x ∈ A. Then the map F : X→ 2Y defined by

F(x) =

{
F1(x), x /∈ A,
F2(x), x ∈ A,

is upper semicontinuous.

Theorem 1.4. Let X be a topological vector space and Y a normal space. If F,G : X→ Y have closed values and are
upper semicontinuous at x ∈ X, then F∩G is also upper semicontinuous at x.

2. Abstract economies and maximal elements

Let I be the set of agents and we describe the abstract economy as Γ = (Xi,Ai,Bi,Pi)i∈I, where
Ai,Bi : X ≡

∏
i∈I Xi → Ei are constraint correspondences, Pi : X → Ei is a preference correspondence

and Xi is a choice (or strategy) set which is a subset of a Hausdorff topological vector space Ei. We are
interested in finding an equilibrium point for Γ , i.e., a point x ∈ X with xi ∈ Bi(x) and Ai(x)∩ Pi(x) = ∅;
here xi denotes the projection of x on Xi.

We begin by discussing maximal type maps motivated from the literature (see [9, 10, 14–17]). Let Z
and W be sets in a Hausdorff topological vector space E with Z paracompact and W a closed convex
normal subset of E. Suppose H : Z → W and for each x ∈ Z assume there exists a map Ax : Z → W and
an open set Ox containing x with H(z) ⊆ Ax(z) for every z ∈ Ox, Ax : Ox →W is upper semicontinuous
with closed convex values. We claim there exists a map Ψ : Z → W with H(z) ⊆ Ψ(z) for z ∈ Z and
Ψ : Z → W is upper semicontinuous with closed convex values. To see this note {Ox}x∈Z is an open
covering of Z and since Z is paracompact there exists [4, 5] a locally finite open covering {Vx}x∈Z of Z
with x ∈ Vx and Vx ⊆ Ox for x ∈ Z, and for each x ∈ Z let

Qx(z) =

{
Ax(z), z ∈ Vx,
W, z ∈ Z\Vx.

Now Theorem 1.3 guarantees that Qx : Z→W is upper semicontinuous with closed convex values. Next
note H(z) ⊆ Qx(z) for every z ∈ Z since if z ∈ Vx, then since Vx ⊆ Ux and H(w) ⊆ Ax(w) for w ∈ Ox we
have H(z) ⊆ Qx(z) whereas if z ∈ Z\Vx, then it is immediate since Qx(z) =W. Now define Ψ : Z→W by

Ψ(z) =
⋂
x∈Z

Qx(z) for z ∈ Z.

Note Ψ : Z → W has closed convex values with H(w) ⊆ Ψ(w) for w ∈ Z since H(z) ⊆ Qx(z) for every
z ∈ Z (for each x ∈ X). It remains to show Ψ : Z → W is upper semicontinuous. Let u ∈ Z. There exists
an open neighbourhood Nu of u such that {x ∈ Z : Nu ∩ Vx 6= ∅} = {x1, . . . , xnu} (a finite set). Note if
x /∈ {x1, . . . , xnu}, then ∅ = Vx ∩Nu so Qx(z) =W for z ∈ Nu and so we have

Ψ(z) =
⋂
x∈Z

Qx(z) =

nu⋂
j=1

Qxj(z) for z ∈ Nu.

Now for j ∈ {1, . . . ,nu} note Qxj : Z → W is upper semicontinuous (so Q?
xj

: Nu → W, the restriction of
Qxj to Nu, is upper semicontinuous) so Theorem 1.4 guarantees that Ψ : Nu → W is upper semicontinu-
ous (at u). Since Nu is open we have that Ψ : Z→W is upper semicontinuous (at u).

We begin with our abstract economy result when the maps Bi are of compact or condensing type.
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Theorem 2.1. Let Γ = (Xi,Ai,Bi,Pi)i∈I be an abstract economy with {Xi}i∈I a family of nonempty convex closed
normal sets each in a Hausdorff topological vector space Ei (here I is an index set). For each i ∈ I assume the
following conditions hold:

clBi(≡ Bi) : X ≡
∏
i∈I

Xi → C(Xi) is upper semicontinuous

and

Ui = {x ∈ X : Ai(x)∩ Pi(x) 6= ∅} is open in X (2.1)

(recall C(Xi) denotes the family of nonempty convex closed subsets of Xi). Also for each i ∈ I suppose there exists a
map Ψi : Ui → Xi with (Ai ∩ Pi)(z) ⊆ Ψi(z) for z ∈ Ui and Ψi : Ui → Xi is upper semicontinuous with closed
convex values. In addition assume either

yi /∈ Ψi(y) for all y ∈ Ui, ∀i ∈ I (2.2)

or

there exists a j0 ∈ I with yj0 /∈ Ψj0(y) for y ∈ Uj0 (2.3)

occurs (here yi denotes the projection of y on Xi). Suppose there is a compact subset K of X with B(K) ⊆ K (here
B(x) =

∏
i∈I Bi(x) for x ∈ X) and assume

K is a Schauder admissible subset of E ≡
∏
i∈I

Ei.

Then there exists an x ∈ X with xi ∈ Bi(x) for each i ∈ I and if (2.2) holds we have Ai(x) ∩ Pi(x) = ∅ for each
i ∈ I whereas if (2.3) holds we have Aj0(x)∩ Pj0(x) = ∅.

Proof. If Ui = ∅ for all i ∈ I, then from Theorem 1.1 (applied to B =
∏
i∈I Bi : K → CK(K)) there exists a

y ∈ K with y ∈ B(y), i.e., yi ∈ Bi(y) for each i ∈ I. Now since Ui = ∅ for all i ∈ I, then by definition we
have Ai(x)∩ Pi(x) = ∅ for all i ∈ I.

As a result we assume for the remainder of the proof that there exists an i0 ∈ I with Ui0 6= ∅. We will
assume that Ui 6= ∅ for each i ∈ I (we will also remark on the situation that Ui 6= ∅ for i ∈ J ⊆ I and
Ui = ∅ for i ∈ I\J at each step below). Let i ∈ I. Note Bi|Ui : Ui → C(Xi) is upper semicontinuous so from
Theorem 1.4 (note Xi is a normal subset of Ei) we have that Ψi ∩ Bi : Ui → X is upper semicontinuous.
Let Fi : X→ Xi be given by

Fi(x) =

{
Bi(x), x ∈ Ui,
(Ψi ∩Bi)(x), x ∈ X\Ui,

so Theorem 1.3 guarantees that Fi : X → Xi is upper semicontinuous with nonempty convex and closed
values (note for x ∈ Ui that (Ψi ∩ Bi)(x) ⊆ Bi(x)). Note we also remark that if Ui 6= ∅ for i ∈ J ⊆ I and
Ui = ∅ for i ∈ I\J, then choose Fi as above if i ∈ J whereas choose Fi = Bi if i ∈ I\J.

Let F : X→ C(X) be given by
F(x) =

∏
i∈I

Fi(x) for x ∈ X,

and note F : K → CK(K) so F ∈ Kak(K,K). Now Theorem 1.1 guarantees a y ∈ X with y ∈ F(y), i.e.,
yi ∈ Fi(y) for each i ∈ I. Thus yi ∈ Bi(y) for each i ∈ I since if y /∈ Ui we have Fi(y) = Bi(y) whereas if
y ∈ Ui we have Fi(y) = (Ψi ∩ Bi)(y) ⊆ Bi(y) (we have a similar result if Ui 6= ∅ for i ∈ J ⊆ I and Ui = ∅
for i ∈ I\J).

First suppose (2.2) occurs. Fix i ∈ I. We claim y /∈ Ui. If not, then y ∈ Ui so yi ∈ (Ψi ∩Bi)(y) ⊆ Ψi(y),
i.e., yi ∈ Ψi(y), a contradiction. Thus y /∈ Ui. We can do this argument for all i ∈ I so the result in the
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statement of Theorem 2.1 holds (note if Ui 6= ∅ for i ∈ J ⊆ I and Ui = ∅ for i ∈ I\J, then note if i ∈ I\J we
have Ui = ∅ so y /∈ Ui whereas if i ∈ J, then the argument above gives y /∈ Ui, so in both cases we have
y /∈ Ui).

Next suppose (2.3) occurs. Suppose y ∈ Uj0 . Then yj0 ∈ (Ψj0 ∩ Bj0)(y) ⊆ Ψj0(y), i.e., yj0 ∈ Ψj0(y),
a contradiction. Thus y /∈ Uj0 so the result in the statement of Theorem 2.1 holds (note if Ui 6= ∅ for
i ∈ J ⊆ I and Ui = ∅ for i ∈ I\J, then note if j0 ∈ I\J we have Uj0 = ∅ so y /∈ Uj0 whereas if j0 ∈ J, then the
argument above gives y /∈ Uj0 , so in both cases we have y /∈ Uj0).

Remark 2.2. For each i ∈ I suppose (2.1) is changed to Ui is paracompact and open in X. Also for each
i ∈ I suppose Ai ∩ Pi : Ui → Xi and for each x ∈ Ui assume there exists a map Ai,x : Ui → Xi and an
open set Oi,x (in Ui) containing x with (Ai ∩ Pi)(z) ⊆ Ai,x(z) for every z ∈ Oi,x and Ai,x : Oi,x → Xi is
upper semicontinuous with closed convex values. Also suppose either

zi /∈ Ai,x(z) for all z ∈ Oi,x, ∀x ∈ Ui, ∀i ∈ I, (2.4)

or

there exists j0 ∈ I with zj0 /∈ Aj0,x(z) for all z ∈ Oj0,x, ∀x ∈ Uj0 (2.5)

occurs.
Then the discussion before Theorem 2.1 (with Z = Ui, W = Xi, H = Ai ∩Pi and Ax = Ai,x) guarantees

that there exists a map Ψi : Ui → Xi as described in the statement of Theorem 2.1, i.e., (Ai ∩Pi)(z) ⊆ Ψi(z)
for z ∈ Ui and Ψi : Ui → Xi is upper semicontinuous with closed convex values: here {Oi,x}x∈Ui is an
open covering of Ui so there exists a locally finite open covering {Vi,x}x∈Ui of Ui (recall Ui is assumed
paracompact) with x ∈ Vi,x and Vi,x ⊆ Oi,x for x ∈ Ui, and for each x ∈ Ui,

Qi,x(z) =

{
Ai,x(z), z ∈ Vi,x,
Xi, z ∈ Ui\Vi,x,

and Ψi : Ui → Xi is
Ψi(z) =

⋂
x∈Ui

Qi,x(z) for z ∈ Ui.

Also note (2.4) (respectively (2.5)) implies (2.2) (respectively (2.3)). To see this let i ∈ I and y ∈ Ui.
Now y ∈ Vi,x for some x ∈ Ui since {Vi,x}x∈Ui is a locally finite open covering of Ui with x ∈ Vi,x and
Vi,x ⊆ Oi,x for x ∈ Ui. Now note Qi,x(y) = Ai,x(y) so

Ψi(y) =
⋂
z∈Ui

Qi,z(y) ⊆ Qi,x(y) = Ai,x(y).

Next note the following maximal element type result.

Theorem 2.3. Let {Xi}i∈I be a family of nonempty sets each in a Hausdorff topological vector space Ei (here I is
an index set). For each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi and assume there exists a map Ψi : X → Xi with

Fi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X → Xi is upper semicontinuous with closed convex values. Assume there is a
compact subset K of X with Ψ(K) ⊆ K (here Ψ(x) =

∏
i∈I Ψi(x) for x ∈ X) and suppose

K is a Schauder admissible subset of E ≡
∏
i∈I

Ei. (2.6)

Also suppose for each x ∈ X there is a j ∈ I with xj /∈ Ψj(x). Then there exists a y ∈ X and an i0 ∈ I with
Fi0(y) = ∅.

Proof. Suppose the conclusion is false. Then for each x ∈ X we have Fi(x) 6= ∅ for all i ∈ I and since
Fi(z) ⊆ Ψi(z) for z ∈ X, then Ψi(x) 6= ∅ for all i ∈ I. As a result Ψ ∈ Kak(K,K) so Theorem 1.1 guarantees
a y ∈ K with y ∈ Ψ(y). Thus yi ∈ Ψi(y) for i ∈ I, a contradiction.
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Remark 2.4.

(i). Note that Theorem 2.3 improves Theorems 2.6 and 2.9 in [13].

(ii). We can rewrite Theorem 2.3 with Ψi = Fi. Let {Xi}i∈I be a family of nonempty sets each in a
Hausdorff topological vector space Ei (here I is an index set). For each i ∈ I suppose Fi : X ≡

∏
i∈I Xi →

Xi is upper semicontinuous with nonempty closed convex values. Assume there is a compact subset K of
X with F(K) ⊆ K (here F(x) =

∏
i∈I Fi(x) for x ∈ X) and suppose (2.6) holds. Then there exists a y ∈ X

with yi ∈ Fi(y) for i ∈ I.
The proof is immediate since F ∈ Kak(K,K) so Theorem 1.1 gives the result.

(iii). Let X be paracompact and {Xi}i∈I a family of nonempty convex closed normal sets each in a Haus-
dorff topological vector space Ei. For each i ∈ I suppose Fi : X → Xi and for each x ∈ X assume there
is a map Ai,x : X → Xi and an open set Ui,x containing x with Fi(z) ⊆ Ai,x(z) for every z ∈ Ui,x and
Ai,x : Ui,x → Xi is upper semicontinuous with closed convex values. Also assume

there exists j0 ∈ I with zj0 /∈ Aj0,x(z) for all z ∈ X, ∀x ∈ X. (2.7)

Now from the discussion before Theorem 2.1 (with Z = X, W = Xi, H = Fi and Ax = Ai,x) there exists a
map Ψi : X→ Xi with Fi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X→ Xi is upper semicontinuous with closed convex
values: here {Ui,x}x∈X is an open covering of X so there exists a locally finite open covering {Vi,x}x∈X of X
(recall X is assumed paracompact) with x ∈ Vi,x and Vi,x ⊆ Ui,x for x ∈ X, and for each x ∈ X,

Qi,x(z) =

{
Ai,x(z), z ∈ Vi,x,
Xi, z ∈ X\Vi,x,

and Ψi : X→ Xi is
Ψi(z) =

⋂
x∈X

Qi,x(z) for z ∈ X.

Now (2.7) implies that for each x ∈ X there is a j ∈ I with xj /∈ Ψj(x). To see this fix a y ∈ X. From (2.7)
for all x ∈ X there exists a j0 ∈ I with yj0 /∈ Aj0,x(y). Now since {Vj0,x}x∈X is a locally finite open covering
of X there exists an x? ∈ X with y ∈ Vj0,x? so

Ψj0(y) =
⋂
x∈X

Qj0,x(y) ⊆ Qj0,x?(y) = Aj0,x?(y),

and so yj0 /∈ Ψj0(y).

Next we consider some collectively coincidence type results.

Theorem 2.5. Let {Xi}i∈I, {Yi}i∈J be families of nonempty sets each in a Hausdorff topological vector space Ei (here
I and J are index sets). For each i ∈ J suppose Fi : X ≡

∏
i∈I Xi → Yi and assume there exists a map Ψi : X→ Yi

with Fi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X → Yi is upper semicontinuous with closed convex values. For each j ∈ I
suppose Gj : Y ≡

∏
i∈J Yi → Xj and Gj ∈ Kak(Y,Xj). Also assume there is a subset Ω of X and a compact subset

K of Y with Ψ(Ω) ⊆ K and G(K) ⊆ Ω and suppose

Ω is a Schauder admissible subset of E ≡
∏
i∈I

Ei; (2.8)

here Ψ(x) =
∏
i∈J Ψi(x) for x ∈ X and G(y) =

∏
i∈I Gi(y) for y ∈ Y. Finally suppose either for each (x,y) ∈

X× Y with xi ∈ Gi(y) for all i ∈ I there exists a j0 ∈ J with yj0 /∈ Ψj0(y) or for each (x,y) ∈ X× Y with
yj ∈ Ψj(x) for all j ∈ J there exists an i0 ∈ I with xi0 /∈ Gi0(y) occurs. Then there exists a y ∈ X and an i0 ∈ J
with Fi0(y) = ∅.
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Proof. Suppose the conclusion is false. Then for each x ∈ X we have Fi(x) 6= ∅ for all i ∈ J and since
Fi(z) ⊆ Ψi(z) for z ∈ X, then Ψi(x) 6= ∅ for all i ∈ J. Now note Ψ ∈ Kak(Ω,K) and G ∈ Kak(K,Ω) so
GΨ ∈ Ad(Ω,Ω) is a compact map (recall K is compact). Theorem 1.1 guarantees an x ∈ X (in fact x ∈ Ω)
with x ∈ G(Ψ(x)). Let y ∈ Ψ(x) with x ∈ G(y). Then yj ∈ Ψj(x) for all j ∈ J and xi ∈ Gi(y) for all i ∈ I, a
contradiction.

Remark 2.6.

(i). Note one could also consider the map ΨG instead of GΨ in the proof of Theorem 2.5 if one rephrases
the statement of Theorem 2.5.

(ii). To get a contradiction in the proof of Theorem 2.5 one only needs the statement ”there exists an
x ∈ X (in fact x ∈ Ω) with x ∈ G(Ψ(x))” to be false, so one could list other conditions to guarantee the
contradiction.

(iii). We could rewrite Theorem 2.5 with Ψi = Fi. Let {Xi}i∈I, {Yi}i∈J be families of nonempty sets
each in a Hausdorff topological vector space Ei (here I and J are index sets). For each i ∈ J suppose
Fi : X ≡

∏
i∈I Xi → Yi is upper semicontinuous with nonempty closed convex values. For each j ∈ I

suppose Gj : Y ≡
∏
i∈J Yi → Xj and Gj ∈ Kak(Y,Xj). Also assume there is a subset Ω of X and a compact

subset K of Y with F(Ω) ⊆ K and G(K) ⊆ Ω and suppose (2.8) holds; here F(x) =
∏
i∈J Fi(x) for x ∈ X

and G(y) =
∏
i∈I Gi(y) for y ∈ Y. Then there exists an x ∈ X and a y ∈ Y with yj ∈ Fj(x) for all j ∈ J and

xi ∈ Gi(y) for all i ∈ I.
The proof is immediate since F ∈ Kak(Ω,K), G ∈ Kak(K,Ω) so GF ∈ Ad(Ω,Ω) and apply Theorem

1.1.

(iv). Let X be paracompact and {Yi}i∈J a family of nonempty convex closed normal sets each in Ei. For
each i ∈ J suppose Fi : X → Yi and for each x ∈ X assume there is a map Ai,x : X → Yi and an open set
Ui,x containing x with Fi(z) ⊆ Ai,x(z) for every z ∈ Ui,x and Ai,x : Ui,x → Yi is upper semicontinuous
with closed convex values. Also assume{

for each (w,y) ∈ X× Y with wi ∈ Gi(y) for all i ∈ I,
there exists a j0 ∈ J with yj0 /∈ Aj0,x(w) for all x ∈ X.

Now from the discussion before Theorem 2.1 (with Z = X, W = Yi, H = Fi and Ax = Ai,x) there exists a
map Ψi : X→ Yi with Fi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X→ Yi is upper semicontinuous with closed convex
values: here {Ui,x}x∈X is an open covering of X so there exists a locally finite open covering {Vi,x}x∈X of X
(recall X is assumed paracompact) with x ∈ Vi,x and Vi,x ⊆ Ui,x for x ∈ X, and for each x ∈ X,

Qi,x(z) =

{
Ai,x(z), z ∈ Vi,x,
Xi, z ∈ X\Vi,x,

and Ψi : X→ Yi is
Ψi(z) =

⋂
x∈X

Qi,x(z) for z ∈ X.

We now claim for each (w,y) ∈ X× Y with wi ∈ Gi(y) for all i ∈ I there exists a j0 ∈ J with yj0 /∈ Ψj0(w).
To see this note for each x ∈ X there is a j0 ∈ J with yj0 /∈ Aj0,x(w). Now since {Vj0,x}x∈X is a locally finite
open covering of X there exists an x? ∈ X with w ∈ Vj0,x? so

Ψj0(w) =
⋂
x∈X

Qj0,x(w) ⊆ Qj0,x?(w) = Aj0,x?(y),

and so yj0 /∈ Ψj0(w).
Next in Theorem 2.5 we will replace Gj ∈ Kak(Y,Xj) with Gj ∈ Ad(Y,Xj). To do this recall the finite

product of admissible with respect to Gorniewicz maps is admissible with respect to Gorniewicz.
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Theorem 2.7. Let {Xi}Ni=1, {Yi}
N0
i=1 be families of nonempty sets each in a Hausdorff topological vector space Ei.

For each i ∈ {1, . . . ,N0} suppose Fi : X ≡
∏N
i=1 Xi → Yi and assume there exists a map Ψi : X→ Yi with Fi(z) ⊆

Ψi(z) for z ∈ X and Ψi : X → Yi is upper semicontinuous with closed convex values. For each j ∈ {1, . . . ,N}

suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and Gj ∈ Ad(Y,Xj). Also assume there is a subset Ω of X and a compact subset

K of Y with Ψ(Ω) ⊆ K and G(K) ⊆ Ω and suppose

Ω is a Schauder admissible subset of E ≡
N∏
i=1

Ei;

here Ψ(x) =
∏N0
i=1 Ψi(x) for x ∈ X and G(y) =

∏N
i=1 Gi(y) for y ∈ Y. Finally suppose either for each

(x,y) ∈ X× Y with xi ∈ Gi(y) for all i ∈ {1, . . . ,N} there exists a j0 ∈ {1, . . . ,N0} with yj0 /∈ Ψj0(y) or for each
(x,y) ∈ X× Y with yj ∈ Ψj(x) for all j ∈ {1, . . . ,N0} there exists an i0 ∈ {1, . . . ,N} with xi0 /∈ Gi0(y) occurs.
Then there exists a y ∈ X and an i0 ∈ {1, . . . ,N0} with Fi0(y) = ∅.

Proof. Suppose the conclusion is false. Then note Ψ ∈ Kak(Ω,K) and G ∈ Ad(K,Ω) so GΨ ∈ Ad(Ω,Ω) is
a compact map. Theorem 1.1 guarantees an x ∈ X (in fact x ∈ Ω) with x ∈ G(Ψ(x)), a contradiction.

Remark 2.8.

(i) Note {1, . . . ,N0} could be replaced by J (an index set) in Theorem 2.7.
(ii) There is an analogue of Remark 2.6 (i)-(iv) in this situation also.

Theorem 2.9. Let {Xi}Ni=1, {Yi}
N0
i=1 be families of nonempty sets each in a Hausdorff topological vector space Ei and

in addition {Xi}
N
i=1 is a family of convex sets. For each i ∈ {1, . . . ,N0} suppose Fi : X ≡

∏N
i=1 Xi → Yi and assume

there exists a map Ψi : X→ Yi with Fi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X→ Yi is upper semicontinuous with closed
convex values. For each j ∈ {1, . . . ,N} suppose Gj : Y ≡

∏N0
i=1 Yi → Xj and Gj ∈ DKT(Y,Xj). Also assume

there is a convex subset Ωi of Xi for each i ∈ {1, . . . ,N} and a compact subset Kj of Yj for each j ∈ {1, . . . ,N0}

with Ψi(Ω) ⊆ Ki for each i ∈ {1, . . . ,N0} and Gj(K) ⊆ Ωj for each j ∈ {1, . . . ,N}; here Ω =
∏N
i=1Ωi and

K =
∏N0
i=1 Ki. Finally suppose either for each (x,y) ∈ X× Y with xi ∈ Gi(y) for all i ∈ {1, . . . ,N} there exists a

j0 ∈ {1, . . . .,N0} with yj0 /∈ Ψj0(y) or for each (x,y) ∈ X× Y with yj ∈ Ψj(x) for all j ∈ {1, . . . ,N0} there exists
an i0 ∈ {1, . . . ,N} with xi0 /∈ Gi0(y) occurs. Then there exists a y ∈ X and an i0 ∈ {1, . . . ,N0} with Fi0(y) = ∅.

Proof. Suppose the conclusion is false. Fix j ∈ {1, . . . ,N0}. Now let Sj : Y → Xj with Sj(y) 6= ∅ for y ∈ Y,
co (Sj(y)) ⊆ Gj(y) for y ∈ Y and S−1

j (w) is open (in Y) for each w ∈ Xj. Let G?
j (respectively, S?j ) denote

the restriction of Gi (respectively, Sj) to K. Note G?
j ∈ DKT(K,Ωj) since for x ∈ Ωj we have

(S?j )
−1(x) = {z ∈ K : x ∈ S?j (z)} = {z ∈ K : x ∈ Sj(z)} = K∩ {z ∈ Y : x ∈ Sj(z)} = K∩ S−1

j (x),

which is open in K ∩ Y = K. Now for each j ∈ {1, . . . ,N} from [2, 3] there exists a continuous (single
valued) selection gj : K→ Ωj of Gj with gj(y) ∈ Gj(y) for y ∈ K and there exists a finite set Rj of Ωj with
gj(K) ⊆ co (Rj) ≡ Qj. Let Q =

∏N
i=1 Qi (⊆ Ω; note for each j ∈ {1, . . . ,N} that Qj = co (Rj) ⊆ Ωj since

Ωj is convex) and note Q is compact. Let

g(y) =

N∏
i=1

gi(y) for y ∈ K,

and note g : K→ Q is continuous. Now let

Ψ(x) =

N0∏
i=1

Ψi(x),

and note Ψ ∈ Kak(Q,K). Then gΨ ∈ Ad(Q,Q) and Q is a compact convex set in a finite dimensional
subspace of E =

∏N
i=1 Ei, so Theorem 1.1 guarantees an x ∈ Q with x ∈ g (Ψ(x)). Let y ∈ Ψ(x) with

x = g(y) so yi ∈ Ψi(y) for i ∈ {1, . . . ,N0} and xi = gi(y) ∈ Gi(y) for i ∈ {1, . . . ,N}, a contradiction.
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Remark 2.10. In Theorem 2.9 note Gj(Y,Xj) could be replaced by Gj ∈ HLPY(Y,Xj) since one has G?
j ∈

HLPY(K,Ωj) and, then, from [7, 9] one can deduce the existence of a continuous selection gj : K→ Ωj of
Gj. To see that G?

j ∈ HLPY(K,Ωj) let Sj : Y → Xj with Sj(y) 6= ∅ for y ∈ Y, co (Sj(y)) ⊆ Gj(y) for y ∈ Y
and Y = {intS−1

j (w) : w ∈ Xj}. Also let S?j denotes the restriction of Sj to K. To show G?
j ∈ HLPY(K,Ωj)

we need to show K =
⋃
{intK S−1

j (w) : w ∈ Ωj}. Note

K = K∩ Y = K∩
(⋃

{intS−1
j (w) : w ∈ Xj}

)
=
⋃

{K∩ intS−1
j (w) : w ∈ Xj},

so K ⊆
⋃
{intK S−1

j (w) : w ∈ Xj} since for each w ∈ Xj we have that K ∩ intS−1
j (w) is open in K. On the

other hand clearly
⋃
{intK S−1

j (w) : w ∈ Xj} ⊆ K so as a result

K =
⋃

{intK S−1
j (w) : w ∈ Xj}.

Now for any y ∈ K from above there exists a w ∈ Xj with y ∈ intK S−1
j (w) ⊆ S−1

j (w) so w ∈ Sj(y) ⊆ Ωj
since co (S?j (y)) ⊆ G?

j (y) and Gj(K) ⊆ Ωj, i.e., for any y ∈ K there exists a w ∈ Ωj with y ∈ intK S−1
j (w).

Thus
K =

⋃
{intK S−1

j (w) : w ∈ Ωj},

so G?
j ∈ HLPY(K,Ωj).

Remark 2.11.
(i) Note one could also consider the map Ψg instead of gΨ in the proof of Theorem 2.9 if one rephrases

the statement of Theorem 2.9.
(ii) To get a contradiction in the proof of Theorem 2.9 one only needs the statement ”there exists an

x ∈ X (in fact x ∈ Q) with x ∈ g(Ψ(x))” to be false, so one could list other conditions to guarantee
the contradiction.

(iii) We can replace {1, . . . ,N} and {1, . . . ,N0} with I and J index sets in Theorem 2.9 provided we rephrase
Theorem 2.9 so that Theorem 1.1 can be applied.

Remark 2.12.

(i). Let X be paracompact and {Yi}
N0
i=1 a family of nonempty convex closed normal sets each in Ei. For

each i ∈ {1, . . . ,N0} suppose Fi : X → Yi and for each x ∈ X assume there is a map Ai,x : X → Yi and
an open set Ui,x containing x with Fi(z) ⊆ Ai,x(z) for every z ∈ Ui,x and Ai,x : Ui,x → Yi is upper
semicontinuous with closed convex values. Also assume{

for each (w,y) ∈ X× Y with wi ∈ Gi(y) for all i ∈ {1, . . . ,N},
there exists a j0 ∈ {1, . . . ,N0} with yj0 /∈ Aj0,x(w) for all x ∈ X.

Then as in Remark 2.6 (ii) there exists a map Ψi : X → Yi with Fi(z) ⊆ Ψi(z) for z ∈ X and Ψi : X → Yi
is upper semicontinuous with closed convex values. Also for each (w,y) ∈ X× Y with wi ∈ Gi(y) for all
i ∈ {1, . . . ,N}, there exists a j0 ∈ {1, . . . ,N0} with yj0 /∈ Ψj0(w).
(ii). Note Theorem 2.9 improves Theorem 2.17 in [13], where part of an assumption there was inadver-
tently omitted (but in fact it is a condition mentioned in Remark 2.11 (ii)).

(iiii). In Theorem 2.9 if Ψi = Fi for i ∈ {1, . . . ,N0}, then Theorem 2.9 improves Theorem 2.15 in [13], where
there part of an assumption there was inadvertently omitted (but in fact it is a condition mentioned in
Remark 2.11 (ii)). In fact one can rephrase Theorem 2.9, when Ψi = Fi as follows. Let {Xi}

N
i=1, {Yi}

N0
i=1

be families of nonempty sets each in a Hausdorff topological vector space Ei and in addition {Xi}
N
i=1 is a

family of convex sets. For each i ∈ {1, . . . ,N0} suppose Fi : X ≡
∏N
i=1 Xi → Yi is upper semicontinuous

with nonempty closed convex values. For each j ∈ {1, . . . ,N} suppose Gj : Y ≡
∏N0
i=1 Yi → Xj and

Gj ∈ DKT(Y,Xj). Also assume there is a subset Ωi of Xi for each i ∈ {1, . . . ,N} and a compact subset Kj of
Yj for each j ∈ {1, . . . ,N0} with Ψi(Ω) ⊆ Ki for each i ∈ {1, . . . ,N0} and Gj(K) ⊆ Ωj for each j ∈ {1, . . . ,N};
here Ω =

∏N
i=1Ωi and K =

∏N0
i=1 Ki. Then there exists an x ∈ X and a y ∈ Y with yi ∈ Fi(x) for

i ∈ {1, . . . ,N0} and xi ∈ Gi(y) for i ∈ {1, . . . ,N}.
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