Multiple solutions for a class of perturbed damped vibration problems

Mohamad Reza Heidari Tavania ${ }^{\text {a }}$, Ghasem A. Afrouzi ${ }^{\text {b }}$, Shapour Heidarkhanic,*
${ }^{a}$ Department of Mathematics, Science and Research branch, Islamic Azad University, Tehran, Iran.
${ }^{b}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
${ }^{c}$ Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran.

Abstract

The existence of three distinct weak solutions for a class of perturbed damped vibration problems with nonlinear terms depending on two real parameters is investigated. Our approach is based on variational methods. © 2016 All rights reserved.

Keywords: Multiple solutions, perturbed damped vibration problem, critical point theory, variational methods.
2010 MSC: 34C25, 58E30, 47H04.

1. Introduction

Consider the following perturbed damped vibration problem

$$
\left\{\begin{array}{l}
-\ddot{u}(t)-q(t) \dot{u}(t)+A(t) u(t)=\lambda \nabla F(t, u(t))+\mu \nabla G(t, u(t)) \quad \text { a.e. } t \in[0, T], \tag{1.1}\\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0,
\end{array}\right.
$$

where $T>0, q \in L^{1}(0, T ; \mathbb{R}), Q(t)=\int_{0}^{t} q(s) d s$ for all $t \in[0, T], Q(T)=0, A:[0, T] \rightarrow \mathbb{R}^{N \times N}$ is a continuous map from the interval $[0, T]$ to the set of N-order symmetric matrices, $\lambda>0, \mu \geq 0$ and $F, G:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are measurable with respect to t, for all $u \in \mathbb{R}^{N}$, continuously differentiable in u, for almost every $t \in[0, T]$, satisfies the following standard summability condition

[^0]\[

$$
\begin{equation*}
\sup _{|\xi| \leq a} \max \{|F(\cdot, \xi)|,|G(\cdot, \xi)|,|\nabla F(\cdot, \xi)|,|\nabla G(\cdot, \xi)|\} \in L^{1}([0, T]) \tag{1.2}
\end{equation*}
$$

\]

for any $a>0$, and $F(t, 0, \ldots, 0)=G(t, 0, \ldots, 0)=0$ for all $t \in[0, T]$.
Assume that $\nabla F, \nabla G$ are continuous in $[0, T] \times \mathbb{R}^{N}$, then the condition (1.2) is satisfied.
As a special case of dynamical systems, Hamiltonian systems are very important in the study of fluid mechanics, gas dynamics, nuclear physics and relativistic mechanics. Inspired by the monographs [21-23], the existence and multiplicity of periodic solutions for Hamiltonian systems have been investigated in many papers (see [2, 55-7, 13, 14, 16, 17, 25-27] and the references therein). For example, in [27] the authors obtained existence theorems for periodic solutions of a class of unbounded non-autonomous non-convex subquadratic second order Hamiltonian systems by using the minimax methods in critical point theory. In [13] Cordaro established a multiplicity result to an eigenvalue problem related to second-order Hamiltonian systems, and proved the existence of an open interval of positive eigenvalues in which the problem admits three distinct periodic solutions. In [16] Faraci studied the multiplicity of solutions of a second order non-autonomous system.

Very recently, some researchers have paid attention to the existence and multiplicity of solutions for damped vibration problems, for instance, see [9, 10, 12, 28, 31] and references therein. For example, Chen in [9, 10] studied a class of non-periodic damped vibration systems with subquadratic terms and with asymptotically quadratic terms, respectively, and obtained infinitely many nontrivial homoclinic orbits by a variant fountain theorem developed recently by Zou [33]. Wu and Chen in [30] based on variational principle presented three existence theorems for periodic solutions of a class of damped vibration problems. In particular, the authors in [29] based on variational methods and critical point theory studied the existence of one solution and multiple solutions for damped vibration problems. In [31, the authors using critical point theory and variational methods investigated the solutions of a Dirichlet boundary value problem for damped nonlinear impulsive differential equations.

In [11, 18, 19, 24] using variational methods and critical point theory the existence of multiple solutions for a class of perturbed second-order impulsive Hamiltonian systems was discussed.

We also cite the paper [20] in which employing a critical point theorem (local minimum result) for differentiable functionals, the existence of at least one non-trivial weak solution for a class of impulsive damped vibration systems under an asymptotical behaviour of the nonlinear datum at zero was proved.

In the present paper, motivated by [29], using two kinds of three critical points theorems obtained in [3, 8] which we recall in the next section (Theorems 2.1 and 2.2), we ensure the existence of at least three solutions for the problem (1.1); see Theorems 3.1 and 3.2 .

We also refer the reader to the papers [1, 4, 15] in which the existence of multiple solutions for boundary value problems is ensured.

The present paper is arranged as follows. In Section 2 we recall some basic definitions and preliminary results, while Section 3 is devoted to the existence of multiple solutions for the problem (1.1).

2. Preliminaries

Our main tools are three critical points theorems that we recall here in a convenient form. In the first one, the coercivity of the functional $\Phi-\lambda \Psi$ is required, in the second one a suitable sign hypothesis is assumed. The first has been obtained in [8], and it is a more precise version of Theorem 3.2 of [3]. The second has been established in [3].

Theorem 2.1 (8 , Theorem 3.6]). Let X be a reflexive real Banach space, $\Phi: X \longrightarrow \mathbb{R}$ be a coercive continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose

Gâteaux derivative admits a continuous inverse on $X^{*}, \Psi: X \longrightarrow \mathbb{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that $\Phi(0)=\Psi(0)=0$.
Assume that there exist $r>0$ and $\bar{x} \in X$, with $r<\Phi(\bar{x})$ such that
$\left(a_{1}\right) \frac{\sup _{x \in \Phi^{-1}(-\infty, r]} \Psi(x)}{r}<\frac{\Psi(\bar{x})}{\Phi(\bar{x})} ;$
$\left(a_{2}\right)$ for each $\lambda \in \Lambda_{r}:=\left(\frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup _{x \in \Phi^{-1}(-\infty, r]} \Psi(x)}\right)$ the functional $\Phi-\lambda \Psi$ is coercive.
Then, for each $\lambda \in \Lambda_{r}$ the functional $\Phi-\lambda \Psi$ has at least three distinct critical points in X.
Theorem 2.2 ([3, Corollary 3.1], [4, Theorem 2.2]). Let X be a reflexive real Banach space, Φ : $X \longrightarrow \mathbb{R}$ be convex, coercive and continuously Gâteaux differentiable functional whose derivative admits a continuous inverse on $X^{*}, \Psi: X \longrightarrow \mathbb{R}$ be a continuously Gâteaux differentiable functional whose derivative is compact, such that

1. $\inf _{X} \Phi=\Phi(0)=\Psi(0)=0 ;$
2. for each $\lambda>0$ and for every $x_{1}, x_{2} \in X$ which are local minima for the functional $\Phi-\lambda \Psi$ and such that $\Psi\left(x_{1}\right) \geq 0$ and $\Psi\left(x_{2}\right) \geq 0$, one has

$$
\inf _{s \in[0,1]} \Psi\left(s x_{1}+(1-s) x_{2}\right) \geq 0 .
$$

Assume that there are two positive constants r_{1}, r_{2} and $\bar{x} \in X$, with $2 r_{1}<\Phi(\bar{x})<\frac{r_{2}}{2}$, such that
$\left(b_{1}\right) \frac{\sup _{x \in \Phi^{-1}\left(-\infty, r_{1}\right)} \Psi(x)}{r_{1}}<\frac{2}{3} \frac{\Psi(\bar{x})}{\Phi(\bar{x})} ;$
$\left(b_{2}\right) \frac{\sup _{x \in \Phi^{-1}\left(-\infty, r_{2}\right)} \Psi(x)}{r_{2}}<\frac{1}{3} \frac{\Psi(\bar{x})}{\Phi(\bar{x})}$.
Then, for each $\lambda \in\left(\frac{3}{2} \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \min \left\{\frac{r_{1}}{\sup _{u \in \Phi^{-1}\left(-\infty, r_{1}\right)} \Psi(x)}, \frac{\frac{r_{2}}{2}}{\sup _{x \in \Phi^{-1}\left(-\infty, r_{2}\right)} \Psi(x)}\right\}\right)$, the functional $\Phi-\lambda \Psi$ has at least three distinct critical points which lie in $\Phi^{-1}\left(-\infty, r_{2}\right)$.

We assume that the matrix A satisfies the following conditions:
(A1) $A(t)=\left(a_{k l}(t)\right), k=1, \ldots, N, l=1, \ldots, N$, is a symmetric matrix with $a_{k l} \in L^{\infty}[0, T]$ for any $t \in[0, T] ;$
(A2) there exists $\delta>0$ such that $(A(t) \xi, \xi) \geq \delta|\xi|^{2}$ for any $\xi \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$, where (\cdot, \cdot) denotes the inner product in \mathbb{R}^{N}.

Let us recall some basic concepts. Denote

$$
E=\left\{u:[0, T] \rightarrow \mathbb{R}^{N} \mid u \text { is absolutely continuous, } u(0)=u(T), \quad \dot{u} \in L^{2}\left([0, T], \mathbb{R}^{N}\right)\right\}
$$

with the inner product

$$
\prec u, v \succ_{E}=\int_{0}^{T}[(\dot{u}(t), \dot{v}(t))+(u(t), v(t))] d t .
$$

The corresponding norm is defined by

$$
\|u\|_{E}=\left(\int_{0}^{T}\left(|\dot{u}(t)|^{2}+|u(t)|^{2}\right) d t\right)^{\frac{1}{2}} \forall u \in E .
$$

For every $u, v \in E$, we define

$$
\prec u, v \succ=\int_{0}^{T}\left[e^{Q(t)}(\dot{u}(t), \dot{v}(t))+e^{Q(t)}(A(t) u(t), v(t))\right] d t,
$$

and we observe that, by the assumptions (A1) and (A2), it defines an inner product in E. Then E is a separable and reflexive Banach space with the norm

$$
\|u\|=\prec u, u \succ^{\frac{1}{2}} \quad, \quad \forall u \in E .
$$

Obviously, E is a uniformly convex Banach space. Clearly, the norm $\|\cdot\|$ is equivalent to the norm $\|\cdot\|_{E}$ (see [17]).

Since $(E,\|\cdot\|)$ is compactly embedded in $C\left([0, T], \mathbb{R}^{N}\right)$ (see [21]), there exists a positive constant c such that

$$
\begin{equation*}
\|u\|_{\infty} \leq c\|u\| \tag{2.1}
\end{equation*}
$$

where $\|u\|_{\infty}=\max _{t \in[0, T]}|u(t)|$.
We use the following notations:

$$
G^{\theta}:=\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} G(t, x) d t, \quad t \in[0, T], \quad \forall \theta>0
$$

and

$$
G_{x_{0}}:=\int_{0}^{T} e^{Q(t)} G\left(t, x_{0}\right) d t, \quad \forall x_{0} \in \mathbb{R}^{N}
$$

We mean by a (weak) solution of the problem (1.1), any function $u \in E$ such that

$$
\begin{gathered}
\int_{0}^{T} e^{Q(t)}(\dot{u}(t), \dot{v}(t)) d t+\int_{0}^{T} e^{Q(t)}(A(t) u(t), v(t)) d t-\lambda \int_{0}^{T} e^{Q(t)}(\nabla F(t, u(t)), v(t)) d t \\
\quad-\mu \int_{0}^{T} e^{Q(t)}(\nabla G(t, u(t)), v(t)) d t=0
\end{gathered}
$$

for every $v \in E$.

3. Main results

In order to introduce our first result, fix $\theta>0$ and nonzero vector $x_{0} \in \mathbb{R}^{N}$ such that

$$
\frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}<\frac{\theta^{2}}{c^{2} \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t}
$$

and pick

$$
\lambda \in \Lambda:=] \frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}{2 \int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}, \frac{\theta^{2}}{2 c^{2} \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t}[
$$

and let

$$
\begin{aligned}
& \delta_{\lambda, G}:=\min \left\{\begin{array}{l}
\frac{\theta^{2}-2 c^{2} \lambda \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t}{2 c^{2} G^{\theta}}, \\
\end{array}\right. \\
&\left.\frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t-2 \lambda \int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}{2 G_{x_{0}}}\right\}
\end{aligned}
$$

and

$$
\begin{equation*}
\bar{\delta}_{\lambda, G}:=\min \left\{\delta_{\lambda, g}, \frac{1}{\max \left\{0,2 c^{2} \limsup _{|x| \rightarrow \infty} \frac{\sup _{t \in[0, T]} G(t, x)}{|x|^{2}}\right\}}\right\} \tag{3.1}
\end{equation*}
$$

where we read $\rho / 0=+\infty$, so that, for instance, $\bar{\delta}_{\lambda, G}=+\infty$ when

$$
\limsup _{|x| \rightarrow \infty} \frac{\sup _{t \in[0, T]} G(t, x)}{|x|^{2}} \leq 0
$$

and $G_{x_{0}}=G^{\theta}=0$. Now, we formulate our main result.
Theorem 3.1. Suppose that the assumptions (A1) and (A2) hold. Assume that there exist a positive constant θ and and a non-zero vector $x_{0} \in \mathbb{R}^{N}$ with $\theta<c\left(\delta \int_{0}^{T} e^{Q(t)} d t\right)^{\frac{1}{2}}\left|x_{0}\right|$ such that
$\left(B_{1}\right) \quad \frac{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t}{\theta^{2}}<\frac{1}{c^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t} \frac{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}{\left|x_{0}\right|^{2}} ;$
$\left(B_{2}\right) \quad$ there exist functions $h_{1}, h_{2} \in L^{1}(0, T, \mathbb{R})$ and two numbers $\alpha \in[0,1), M>0$ such that $\frac{(\nabla F(t, x), x)}{|x|} \leq h_{1}(t)|x|^{\alpha}+h_{2}(t)$ for all $x \in \mathbb{R}^{N}$ with $|x| \geq M$ and a.e $t \in[0, T]$.
Then, for each $\lambda \in \Lambda$ and for every function $G:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ which is measurable with respect to t, for all $u \in \mathbb{R}^{N}$, continuously differentiable in u, for almost every $t \in[0, T]$, satisfying (1.2) and the condition

$$
\limsup _{|x| \rightarrow \infty} \frac{\sup _{t \in[0, T]} G(t, x)}{|x|^{2}}<+\infty
$$

there exists $\bar{\delta}_{\lambda, G}>0$ given by (3.1) such that, for each $\mu \in\left[0, \bar{\delta}_{\lambda, G}[\right.$, the problem (1.1) admits at least three distinct weak solutions.

Proof. Fix λ as in the conclusion. Take $X=E$ and define the functionals $\Phi, \Psi: X \rightarrow \mathbb{R}$ as follows

$$
\Phi(u)=\frac{1}{2}\|u\|^{2}
$$

and

$$
\Psi(u)=\int_{0}^{T} e^{Q(t)}\left(F(t, u(t))+\frac{\mu}{\lambda} G(t, u(t)) d t\right.
$$

for every $u \in X$. It is well known that Ψ is a Gâteaux differentiable functional whose Gâteaux derivative at the point $u \in X$ is the functional $\Psi^{\prime}(u) \in X^{*}$, given by

$$
\Psi^{\prime}(u)(v)=\int_{0}^{T} e^{Q(t)}(\nabla F(t, u(t)), v(t)) d t+\frac{\mu}{\lambda} \int_{0}^{T} e^{Q(t)}(\nabla G(t, u(t)), v(t)) d t
$$

for every $v \in X$, and $\Psi^{\prime}: X \rightarrow X^{*}$ is a compact operator. Moreover, Φ is a Gâteaux differentiable functional whose Gâteaux derivative at the point $u \in X$ is the functional $\Phi^{\prime}(u) \in X^{*}$, given by

$$
\Phi^{\prime}(u)(v)=\int_{0}^{T} e^{Q(t)}(\dot{u}(t), \dot{v}(t)) d t+\int_{0}^{T} e^{Q(t)}(A(t) u(t), v(t)) d t
$$

for every $v \in X$. Since Φ^{\prime} is uniformly monotone on X, coercive and hemicontinuous in X, applying [32, Theorem 26. A] it admits a continuous inverse on X^{*}. Furthermore, Φ is sequentially weakly lower semicontinuous. Put $r=\frac{1}{2}\left(\frac{\theta}{c}\right)^{2}$ and $w(t):=x_{0}$ for all $t \in[0, T]$. It is easy to see that $w \in X$ and, in particular, one has

$$
\begin{equation*}
\frac{1}{2}\left|x_{0}\right|^{2} \delta \int_{0}^{T} e^{Q(t)} d t \leq \Phi(w) \leq \frac{1}{2}\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t \tag{3.2}
\end{equation*}
$$

This together with the condition $\theta<c\left(\delta \int_{0}^{T} e^{Q(t)} d t\right)^{\frac{1}{2}}\left|x_{0}\right|$ ensures

$$
0<r<\Phi(w)
$$

Bearing (2.1) in mind, we see that

$$
\begin{aligned}
\left.\left.\Phi^{-1}(]-\infty, r\right]\right) & =\{u \in X ; \Phi(u) \leq r\} \\
& =\left\{u \in X ; \frac{\|u\|^{2}}{2} \leq r\right\} \\
& \subseteq\{u \in X ;|u(t)| \leq \theta \text { for each } t \in[0, T]\},
\end{aligned}
$$

and it follows that

$$
\begin{aligned}
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(u) & =\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \int_{0}^{T} e^{Q(t)}\left[F(t, u(t))+\frac{\mu}{\lambda} G(t, u(t))\right] d t \\
& \leq \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t+\frac{\mu}{\lambda} G^{\theta} .
\end{aligned}
$$

So,

$$
\begin{align*}
\frac{\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi(u)}{r} & =\frac{\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \int_{0}^{T} e^{Q(t)}\left[F(t, u(t))+\frac{\mu}{\lambda} G(t, u(t))\right] d t}{r} \\
& \leq 2 c^{2} \frac{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t+\frac{\mu}{\lambda} G^{\theta}}{\theta^{2}}, \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\Psi(w)}{\Phi(w)} \geq \frac{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t+\frac{\mu}{\lambda} \int_{0}^{T} e^{Q(t)} G\left(t, x_{0}\right) d t}{\frac{1}{2}\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t} \tag{3.4}
\end{equation*}
$$

Since $\mu<\delta_{\lambda, g}$, one has

$$
\mu<\frac{\theta^{2}-2 c^{2} \lambda \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t}{2 c^{2} G^{\theta}}
$$

that is,

$$
\frac{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t+\frac{\mu}{\lambda} G^{\theta}}{\frac{1}{2}\left(\frac{\theta}{c}\right)^{2}}<\frac{1}{\lambda}
$$

Furthermore,

$$
\mu<\frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t-2 \lambda \int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}{2 G_{x_{0}}}
$$

that is,

$$
\frac{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t+\frac{\mu}{\lambda} G_{x_{0}}}{\frac{1}{2}\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}>\frac{1}{\lambda}
$$

Then,

$$
\begin{equation*}
\frac{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta} F(t, x) d t+\frac{\mu}{\lambda} G^{\theta}}{\frac{1}{2}\left(\frac{\theta}{c}\right)^{2}}<\frac{1}{\lambda}<\frac{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t+\frac{\mu}{\lambda} G_{x_{0}}}{\frac{1}{2}\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t} \tag{3.5}
\end{equation*}
$$

Hence from (3.3)-(3.5), we see that the condition $\left(a_{1}\right)$ of Theorem 2.1 is fulfilled. Finally, since $\mu<\bar{\delta}_{\lambda, G}$, we can fix $l>0$ such that

$$
\limsup _{|x| \rightarrow \infty} \frac{\sup _{t \in[0, T]} G(t, x)}{|x|^{2}}<l
$$

and $\mu l<\frac{1}{2 c^{2}}$. Therefore, there exists a function $\rho \in L^{1}([0, T])$ such that

$$
G(t, x) \leq l|x|^{2}+\rho(t)
$$

for every $t \in[0, T]$ and $x \in \mathbb{R}^{N}$.

Let

$$
\eta(t, x)=\frac{(\nabla F(t, x), x)}{|x|}-h_{1}(t)|x|^{\alpha}-h_{2}(t) \text { for all } t \in[0, T] \text { and } x \in \mathbb{R}^{N}
$$

Let $\beta(t)=\sup _{|x|<M} \eta(t, x)$. Then, by $\left(\mathrm{B}_{2}\right)$,

$$
\eta(t, x) \leq \begin{cases}0 & \text { if }|x| \geq M \\ \beta(t) & \text { if }|x|<M\end{cases}
$$

Thus

$$
\eta(t, s x) \leq \begin{cases}0 & \text { if } s \geq \frac{M}{|x|} \\ \beta(t) & \text { if } 0<s<\frac{M}{|x|}\end{cases}
$$

Therefore,

$$
\begin{aligned}
F(t, x)-F(t, 0) & =\int_{0}^{1} \nabla F(t, s x) \cdot x d s \\
& =\int_{0}^{1}|x|\left[\eta(t, s x)+h_{1}(t) s^{\alpha}|x|^{\alpha}+h_{2}(t)\right] d s \\
& \leq M \beta(t)+\frac{1}{\alpha+1}|x|^{\alpha+1} h_{1}(t)+|x| h_{2}(t) .
\end{aligned}
$$

Consequently, for $\lambda>0$ we have

$$
\begin{aligned}
\Phi(u)-\lambda \Psi(u)= & \frac{1}{2}\|u\|^{2}-\lambda \int_{0}^{T} e^{Q(t)}\left(F(t, u(t))+\frac{\mu}{\lambda} G(t, u(t)) d t\right. \\
\geq & \frac{1}{2}\|u\|^{2}-\lambda \int_{0}^{T} e^{Q(t)}\left[M \beta(t)+\frac{1}{\alpha+1}|u(t)|^{\alpha+1} h_{1}(t)+|u(t)| h_{2}(t)\right] d t \\
& -\lambda \int_{0}^{T} e^{Q(t)} F(t, 0) d t-\mu l \int_{0}^{T}|u(t)|^{2} d t-\mu\|\rho\|_{1} \\
\geq & \left(\frac{1}{2}-\mu l c^{2}\right)\|u\|^{2}-c_{1}\|u\|^{\alpha+1}-c_{2}\|u\|+c_{3}
\end{aligned}
$$

for some constants c_{1}, c_{2} and c_{3}. Since $\alpha \in[0,1)$, this follows $\lim _{\|u\| \rightarrow \infty}(\Phi(u)-\lambda \Psi(u))=+\infty, \quad \forall \lambda>0$, which means the functional $\Phi-\lambda \Psi$ is coercive, and the condition $\left(a_{2}\right)$ of Theorem 2.1 is satisfied.

From (3.3) and (3.5) one also has

$$
\lambda \in] \frac{\Phi(w)}{\Psi(w)}, \frac{r}{\sup _{\Phi(x) \leq r} \Psi(x)}[
$$

Finally, since the weak solutions of the problem (1.1) are exactly the solutions of the equation $\Phi^{\prime}(u)-\lambda \Psi^{\prime}(u)=0$ (see [29, Theorem 2.2]), Theorem 2.1 (with $\bar{x}=w$) concludes the result.

Now, we present a variant of Theorem 3.1. Here no asymptotic condition on the nonlinear term G is requested; on the other hand, the functions F and G are supposed to be nonnegative. Fix $\theta_{1}, \theta_{2}>0$ and nonzero vector $x_{0} \in \mathbb{R}^{N}$ such that

$$
\frac{3}{2} \frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}<\frac{1}{c^{2}} \min \left\{\frac{\theta_{1}^{2}}{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{1}} F(t, x) d t}, \frac{\theta_{2}^{2}}{2 \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{2}} F(t, x) d t}\right\}
$$

and picking

$$
\begin{aligned}
\lambda \in \Lambda^{\prime}:= &] \frac{3}{4} \frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}, \frac{1}{2 c^{2}} \\
& \min \left\{\frac{\theta_{1}^{2}}{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{1}} F(t, x) d t}, \frac{\theta_{2}^{2}}{2 \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{2}} F(t, x) d t}\right\}[,
\end{aligned}
$$

put

$$
\begin{equation*}
\delta_{\lambda, G}^{*}:=\min \left\{\frac{\theta_{1}^{2}-2 \lambda c^{2} \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{1}} F(t, x) d t}{2 c^{2} G^{\theta_{1}}}, \frac{\theta_{2}^{2}-4 \lambda c^{2} \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{2}} F(t, x) d t}{4 c^{2} G^{\theta_{2}}}\right\} \tag{3.6}
\end{equation*}
$$

Theorem 3.2. Suppose that the assumptions (A1) and (A2) hold. Let $F:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a nonnegative function satisfies the assumption (1.2). Assume that there exist a non-zero vector $x_{0} \in \mathbb{R}^{N}$ and two positive constants θ_{1} and θ_{2} with

$$
\frac{2\left(\frac{\theta_{1}}{c}\right)^{2}}{\delta \int_{0}^{T} e^{Q(t)} d t}<\left|x_{0}\right|^{2}<\frac{\frac{1}{2}\left(\frac{\theta_{2}}{c}\right)^{2}}{\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}
$$

such that
$\left(C_{1}\right)$

$$
\frac{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{1}} F(t, x) d t}{\theta_{1}^{2}}<\frac{2}{3} \frac{1}{c^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t} \frac{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}{\left|x_{0}\right|^{2}}
$$

$\left(C_{2}\right)$

$$
\frac{\int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{2}} F(t, x) d t}{\theta_{2}^{2}}<\frac{1}{3} \frac{1}{c^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\| \infty\right) \int_{0}^{T} e^{Q(t)} d t} \frac{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}{\left|x_{0}\right|^{2}}
$$

Then, for every $\lambda \in \Lambda^{\prime}$ and for every nonnegative function $G:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfying the assumption (1.2), there exists $\delta_{\lambda, G}^{*}>0$ given by (3.6) such that for each $\mu \in\left[0, \delta_{\lambda, G}^{*}\right)$, the problem (1.1) has at least three weak solutions $v^{j} ; j=1,2,3$ such that $\left\|v^{j}\right\|_{\infty}<\theta_{2}, \forall t \in[0, T], j=1,2,3$.

Proof. Fix λ and μ as in the conclusion and let Φ and Ψ be as given in the proof of Theorem 3.1. Put $r_{1}=\frac{1}{2}\left(\frac{\theta_{1}}{c}\right)^{2}, r_{2}=\frac{1}{2}\left(\frac{\theta_{2}}{c}\right)^{2}$ and $w(t):=x_{0}$ for all $t \in[0, T]$. The condition

$$
\frac{2\left(\frac{\theta_{1}}{c}\right)^{2}}{\delta \int_{0}^{T} e^{Q(t)} d t}<\left|x_{0}\right|^{2}<\frac{\frac{1}{2}\left(\frac{\theta_{2}}{c}\right)^{2}}{\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}
$$

in conjunction with (3.2) yields

$$
2 r_{1}<\Phi(w)<\frac{r_{2}}{2}
$$

Since $\mu<\delta_{\lambda, g}^{*}$, one has

$$
\begin{aligned}
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{1}\right]\right)} \Psi(u) & r_{1}
\end{aligned}=\frac{\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{1}\right]\right)} \int_{0}^{T} e^{Q(t)}\left[F(t, u(t))+\frac{\mu}{\lambda} G(t, u(t))\right] d t}{r_{1}}
$$

and

$$
\begin{aligned}
\frac{2 \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{2}\right]\right)} \Psi(u)}{r_{2}} & =\frac{2 \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{2}\right]\right)} \int_{0}^{T} e^{Q(t)}\left[F(t, u(t))+\frac{\mu}{\lambda} G(t, u(t))\right] d t}{r_{2}} \\
& \leq \frac{2 \int_{0}^{T} e^{Q(t)} \sup _{|x| \leq \theta_{2}} F(t, x) d t+\frac{\mu}{\lambda} G^{\theta_{2}}}{\frac{1}{2}\left(\frac{\theta_{2}}{c}\right)^{2}} \\
& <\frac{1}{\lambda}<\left.\frac{2}{3} \frac{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t+\frac{\mu}{\lambda} G_{x_{0}}}{1}\right|_{0} ^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t) d t} \\
& \leq \frac{2}{3} \frac{\Psi(w)}{\Phi(w)} .
\end{aligned}
$$

Therefore, $\left(b_{1}\right)$ and $\left(b_{2}\right)$ of Theorem 2.2 are verified. Finally, we show that $\Phi-\lambda \Psi$ satisfies the assumption 2. of Theorem 2.2. For this purpose let u^{1} and u^{2} be two local minima for $\Phi-\lambda \Psi$. Thus u^{1} and u^{2} are critical point for $\Phi-\lambda \Psi$. Since the functions F and G are nonnegative, we have

$$
(\lambda F+\mu G)\left(t, s u_{1}+(1-s) u_{2}\right) \geq 0
$$

and hence, $\Psi\left(s u_{1}+(1-s) u_{2}\right) \geq 0$, for all $s \in[0,1]$. Then, since the weak solutions of the problem (1.1) are exactly the solutions of the equation $\Phi^{\prime}(u)-\lambda \Psi^{\prime}(u)=0$ (see [29, Theorem 2.2]), by Theorem 2.2 the problem (1.1) possesses at least three periodic solutions $v^{j} ; j=1,2,3$ such that $\left\|v^{j}\right\|_{\infty}<\theta_{2}$, $j=1,2,3$.

A special case of Theorem 3.1 is the following theorem.

Theorem 3.3. Let $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a nonnegative continuously differentiable function such that $F(0, \cdots, 0)=0$. Assume that

$$
\liminf _{\xi \rightarrow 0} \frac{\max _{|x| \leq \xi} F(x)}{\xi^{2}}=\limsup _{|x| \rightarrow+\infty} \frac{F(x)}{|x|^{2}}=0 .
$$

Then, there is $\lambda^{*}>0$ such that for each $\lambda>\lambda^{*}$ and for every continuously differentiable function $G: \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $G(0, \cdots, 0)=0$, satisfying the asymptotical condition

$$
\limsup _{|x| \rightarrow \infty} \frac{G(x)}{|x|^{2}}<+\infty
$$

there exists $\delta_{\lambda, g}^{*}>0$ such that, for each $\mu \in\left[0, \delta_{\lambda, g}^{*}[\right.$, the problem

$$
\left\{\begin{array}{l}
-\ddot{u}(t)-q(t) \dot{u}(t)+A(t) u(t)=\lambda \nabla F(u(t))+\mu \nabla G(u(t)) \quad \text { a.e. } t \in[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

admits at least three classical solutions.
Proof. Fix $\lambda>\lambda^{*}:=\frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\| \|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}{2 F\left(x_{0}\right) \int_{0}^{T} e^{Q(t)} d t}$ for some non zero vector $x_{0} \in \mathbb{R}^{N}$. Since

$$
\liminf _{\xi \rightarrow 0} \frac{\max _{|x| \leq \xi} F(x)}{\xi^{2}}=0
$$

there is a sequence $\left.\left\{\theta_{n}\right\} \subset\right] 0,+\infty\left[\right.$ such that $\lim _{n \rightarrow \infty} \theta_{n}=0$ and

$$
\lim _{n \rightarrow \infty} \frac{\max _{|x| \leq \theta_{n}} F(x)}{\theta_{n}^{2}}=0
$$

Hence, there exists $\bar{\theta}>0$ such that

$$
\frac{\max _{|x| \leq \bar{\theta}} F(x)}{\bar{\theta}^{2}}<\min \left\{\frac{1}{c^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t} \frac{F\left(x_{0}\right)}{\left|x_{0}\right|^{2}} ; \frac{1}{2 \lambda c^{2} \int_{0}^{T} e^{Q(t)} d t}\right\}
$$

and $\bar{\theta}<\left|x_{0}\right| c\left(\delta \int_{0}^{T} e^{Q(t)} d t\right)^{\frac{1}{2}}$. Theorem 3.1 concludes the result.
Moreover, the following result is a consequence of Theorem 3.2.
Theorem 3.4. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a nonnegative continuously differentiable function such that $F(0,0,0)=0$,

$$
\lim _{\xi \rightarrow 0^{+}} \frac{\max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq \xi} F\left(x_{1}, x_{2}, x_{3}\right)}{\xi^{2}}=0,
$$

and

$$
\max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq 6} F\left(x_{1}, x_{2}, x_{3}\right)<\frac{4}{3 c^{2}\left(e^{3}-1\right)} F(1,1,1) .
$$

Then, for every $\lambda \in\left(\frac{27}{4 F(1,1,1)}, \frac{9}{c^{2}\left(e^{3}-1\right) \max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq 6} F(\xi)}\right)$ and for every nonnegative continuously differentiable function $G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $G(0,0,0)=0$, there exists $\delta_{\lambda, G}^{*}>0$ such that,
for each $\mu \in\left[0, \delta_{\lambda, G}^{*}[\right.$, the problem

$$
\left\{\begin{array}{l}
-\ddot{u}(t)-\dot{u}(t)+A(t) u(t)=\lambda \nabla F(u(t))+\mu \nabla G(u(t)) \quad \text { a.e. } t \in[0,3], \\
u(0)-u(3)=\dot{u}(0)-\dot{u}(3)=0,
\end{array}\right.
$$

where $A(t)$ is a third-order identity matrix, admits at least three classical solutions.
Proof. Choose $N=3, T=3, q(t)=1$ for all $t \in[0,3], \theta_{2}=6$ and $x_{0}=(1,1,1)$. Therefore,

$$
\frac{3}{2} \frac{\left|x_{0}\right|^{2}\left(\sum_{i, j=1}^{N}\left\|a_{i j}\right\|_{\infty}\right) \int_{0}^{T} e^{Q(t)} d t}{\int_{0}^{T} e^{Q(t)} F\left(t, x_{0}\right) d t}=\frac{27}{2 F(1,1,1)},
$$

and

$$
\frac{1}{c^{2}} \frac{\theta_{2}^{2}}{2 \int_{0}^{T} e^{Q(t)} \sup _{|\xi| \leq \theta_{2}} F(t, \xi) d t}=\frac{1}{c^{2}} \frac{18}{\left(e^{3}-1\right) \max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq 6} F\left(x_{1}, x_{2}, x_{3}\right)}
$$

Moreover, since

$$
\lim _{x \rightarrow 0^{+}} \frac{\max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq \xi} F\left(x_{1}, x_{2}, x_{3}\right)}{\xi^{2}}=0
$$

there exists a positive constant $\theta_{1}<c \sqrt{\frac{3\left(e^{3}-1\right)}{2}}$ such that

$$
\frac{\max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq \theta_{1}} F\left(x_{1}, x_{2}, x_{3}\right)}{\theta_{1}^{2}}<\frac{2}{27 c^{2}} F(1,1,1)
$$

and

$$
\frac{\theta_{1}^{2}}{\max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq \theta_{1}} F\left(x_{1}, x_{2}, x_{3}\right)}>\frac{18}{\max _{\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq 6} F\left(x_{1}, x_{2}, x_{3}\right)}
$$

Hence, since the assumptions of Theorem 3.2 are fulfilled, we have the conclusion from Theorem 3.2

References

[1] G. A. Afrouzi, S. Heidarkhani, S. Moradi, Perturbed elastic beam problems with nonlinear boundary conditions, Annal. Al. I. Cuza Univ. Math., (to appear). 1
[2] F. Antonacci, P. Magrone, Second order nonautonomous systems with symmetric potential changing sign, Rend. Mat. Appl., 18 (1998), 367-379. 1
[3] G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations, 244 (2008), 3031-3059. 1, 2, 2.2
[4] G. Bonanno, G. D'Aguì, Multiplicity results for a perturbed elliptic Neumann problem, Abstr. Appl. Anal., 2010 (2010), 10 pages. 1. 2.2
[5] G. Bonanno, R. Livrea, Periodic solutions for a class of second-order Hamiltonian systems, Electron. J. Differential Equations, 2005 (2005), 13 pages. 1
[6] G. Bonanno, R. Livrea, Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. Math. Anal. Appl., 363 (2010), 627-638.
[7] G. Bonanno, R. Livrea, Existence and multiplicity of periodic solutions for second order Hamiltonian systems depending on a parameter, J. Convex Anal., 20 (2013), 1075-1094. 1
[8] G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1-10. 1, 2, 2.1
[9] G. Chen, Nonperiodic damped vibration systems with asymptotically quadratic terms at infinity: infinitely many homoclinic orbits, Abstr. Appl. Anal., 2013 (2013), 7 pages. 1
[10] G. Chen, Non-periodic damped vibration systems with sublinear terms at infinity: infinitely many homoclinic orbits, Nonlinear Anal., 92 (2013), 168-176. 1
[11] H. Chen, Z. He, New results for perturbed Hamiltonian systems with impulses, Appl. Math. Comput., 218 (2012), 9489-9497. 1
[12] G.-W. Chen, J. Wang, Ground state homoclinic orbits of damped vibration problems, Bound. Value Probl., 2014 (2014), 15 pages. 1
[13] G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second order Hamiltonian systems, Abstr. Appl. Anal., 18 (2003), 1037-1045. 1
[14] G. Cordaro, G. Rao, Three periodic solutions for perturbed second order Hamiltonian systems, J. Math. Anal. Appl., 359 (2009), 780-785. 1]
[15] G. D'Agui, S. Heidarkhani, G. Molica Bisci, Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional p-Laplacian, Electron. J. Qual. Theory Diff. Eqns., 2013 (2013), 14 pages. 1
[16] F. Faraci, Multiple periodic solutions for second order systems with changing sign potential, J. Math. Anal. Appl., 319 (2006), 567-578. 1
[17] F. Faraci, R. Livrea, Infinitely many periodic solutions for a second-order nonautonomous system, Nonlinear Anal., 54 (2003), 417-429. 1, 2
[18] J. R. Graef, S. Heidarkhani, L. Kong, Infinitely many solutions for a class of perturbed second-order impulsive Hamiltonian systems, Acta Appl. Math., 139 (2015), 81-94. 1
[19] J. R. Graef, S. Heidarkhani, L. Kong, Nontrivial periodic solutions to second-order impulsive Hamiltonian systems, Electron. J. Differential Equations, 2015 (2015), 17 pages. 1
[20] S. Heidarkhani, G. A. Afrouzi, M. Ferrara, G. Caristi, S. Moradi, Existence results for impulsive damped vibration systems, Bull. Malays. Math. Sci. Soc., 2016 (2016), 20 pages. 1
[21] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, (1989). 1, 2
[22] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.
[23] P. H. Rabinowitz, Variational methods for Hamiltonian systems, Handbook of Dynamical Systems vol. 1, Part A, 2002 (2002), 1091-1127. 1.
[24] J. Sun, H. Chen, J. J. Nieto, M. Otero-Novoa, The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., 72 (2010), 4575-4586. 1
[25] C.-L. Tang, Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential, J. Math. Anal. Appl., 189 (1995), 671-675. 1
[26] C.-L. Tang, Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 126 (1998), 3263-3270.
[27] C.-L. Tang, X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl., 275 (2002), 870-882. 1
[28] X. Wu, J. Chen, Existence theorems of periodic solutions for a class of damped vibration problems, Appl. Math. Comput., 207 (2009), 230-235. 1
[29] X. Wu, S. Chen, K. Teng, On variational methods for a class of damped vibration problems, Nonlinear Anal., 68 (2008), 1432-1441. 1, 3, 3
[30] X. Wu, W. Zhang, Existence and multiplicity of homoclinic solutions for a class of damped vibration problems, Nonlinear Anal., 74 (2011), 4392-4398. 1
[31] J. Xiao, J. J. Nieto, Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin Inst., 348 (2011), 369-377. 1
[32] E. Zeidler, Nonlinear functional analysis and its applications, Vol. II: Linear monotone operators, Springer-Verlag, New York, (1985). 3
[33] W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358. 1 .

[^0]: *Corresponding author
 Email addresses: m.reza.h56@gmail.com (Mohamad Reza Heidari Tavani), afrouzi@umz.ac.ir (Ghasem A. Afrouzi), s.heidarkhani@razi.ac.ir (Shapour Heidarkhani)

