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1. Introduction

Consider the following perturbed damped vibration problem{
−ü(t)− q(t)u̇(t) + A(t)u(t) = λ∇F (t, u(t)) + µ∇G(t, u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

(1.1)

where T > 0, q ∈ L1(0, T ;R), Q(t) =
∫ t

0
q(s)ds for all t ∈ [0, T ], Q(T ) = 0, A : [0, T ] → RN×N is a

continuous map from the interval [0, T ] to the set of N -order symmetric matrices, λ > 0, µ ≥ 0 and
F,G : [0, T ]× RN → R are measurable with respect to t, for all u ∈ RN , continuously differentiable
in u, for almost every t ∈ [0, T ], satisfies the following standard summability condition
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sup
|ξ|≤a

max{|F (·, ξ)|, |G(·, ξ)|, |∇F (·, ξ)|, |∇G(·, ξ)|} ∈ L1([0, T ]) (1.2)

for any a > 0, and F (t, 0, . . . , 0) = G(t, 0, . . . , 0) = 0 for all t ∈ [0, T ].
Assume that ∇F,∇G are continuous in [0, T ]× RN , then the condition (1.2) is satisfied.
As a special case of dynamical systems, Hamiltonian systems are very important in the study

of fluid mechanics, gas dynamics, nuclear physics and relativistic mechanics. Inspired by the mono-
graphs [21–23], the existence and multiplicity of periodic solutions for Hamiltonian systems have
been investigated in many papers (see [2, 5–7, 13, 14, 16, 17, 25–27] and the references therein).
For example, in [27] the authors obtained existence theorems for periodic solutions of a class of
unbounded non-autonomous non-convex subquadratic second order Hamiltonian systems by using
the minimax methods in critical point theory. In [13] Cordaro established a multiplicity result to
an eigenvalue problem related to second-order Hamiltonian systems, and proved the existence of an
open interval of positive eigenvalues in which the problem admits three distinct periodic solutions.
In [16] Faraci studied the multiplicity of solutions of a second order non-autonomous system.

Very recently, some researchers have paid attention to the existence and multiplicity of solutions
for damped vibration problems, for instance, see [9, 10, 12, 28–31] and references therein. For
example, Chen in [9, 10] studied a class of non-periodic damped vibration systems with subquadratic
terms and with asymptotically quadratic terms, respectively, and obtained infinitely many nontrivial
homoclinic orbits by a variant fountain theorem developed recently by Zou [33]. Wu and Chen in
[30] based on variational principle presented three existence theorems for periodic solutions of a class
of damped vibration problems. In particular, the authors in [29] based on variational methods and
critical point theory studied the existence of one solution and multiple solutions for damped vibration
problems. In [31], the authors using critical point theory and variational methods investigated the
solutions of a Dirichlet boundary value problem for damped nonlinear impulsive differential equations.

In [11, 18, 19, 24] using variational methods and critical point theory the existence of multiple
solutions for a class of perturbed second-order impulsive Hamiltonian systems was discussed.

We also cite the paper [20] in which employing a critical point theorem (local minimum result)
for differentiable functionals, the existence of at least one non-trivial weak solution for a class of
impulsive damped vibration systems under an asymptotical behaviour of the nonlinear datum at
zero was proved.

In the present paper, motivated by [29], using two kinds of three critical points theorems obtained
in [3, 8] which we recall in the next section (Theorems 2.1 and 2.2), we ensure the existence of at
least three solutions for the problem (1.1); see Theorems 3.1 and 3.2.

We also refer the reader to the papers [1, 4, 15] in which the existence of multiple solutions for
boundary value problems is ensured.

The present paper is arranged as follows. In Section 2 we recall some basic definitions and
preliminary results, while Section 3 is devoted to the existence of multiple solutions for the problem
(1.1).

2. Preliminaries

Our main tools are three critical points theorems that we recall here in a convenient form. In
the first one, the coercivity of the functional Φ − λΨ is required, in the second one a suitable sign
hypothesis is assumed. The first has been obtained in [8], and it is a more precise version of Theorem
3.2 of [3]. The second has been established in [3].

Theorem 2.1 ([8, Theorem 3.6 ]). Let X be a reflexive real Banach space, Φ : X −→ R be a coercive
continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose
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Gâteaux derivative admits a continuous inverse on X∗, Ψ : X −→ R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact such that Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and x ∈ X, with r < Φ(x) such that

(a1)
supx∈Φ−1(−∞,r] Ψ(x)

r
<

Ψ(x)

Φ(x)
;

(a2) for each λ ∈ Λr :=

(
Φ(x)

Ψ(x)
,

r

supx∈Φ−1(−∞,r] Ψ(x)

)
the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points in X.

Theorem 2.2 ([3, Corollary 3.1], [4, Theorem 2.2]). Let X be a reflexive real Banach space, Φ :
X −→ R be convex, coercive and continuously Gâteaux differentiable functional whose derivative
admits a continuous inverse on X∗, Ψ : X −→ R be a continuously Gâteaux differentiable functional
whose derivative is compact, such that

1. infX Φ = Φ(0) = Ψ(0) = 0;

2. for each λ > 0 and for every x1, x2 ∈ X which are local minima for the functional Φ− λΨ and
such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0, one has

inf
s∈[0,1]

Ψ(sx1 + (1− s)x2) ≥ 0.

Assume that there are two positive constants r1, r2 and x ∈ X, with 2r1 < Φ(x) < r2
2
, such that

(b1)
supx∈Φ−1(−∞,r1) Ψ(x)

r1

<
2

3

Ψ(x)

Φ(x)
;

(b2)
supx∈Φ−1(−∞,r2) Ψ(x)

r2

<
1

3

Ψ(x)

Φ(x)
.

Then, for each λ ∈

(
3

2

Φ(x)

Ψ(x)
, min

{
r1

supu∈Φ−1(−∞,r1) Ψ(x)
,

r2
2

supx∈Φ−1(−∞,r2) Ψ(x)

})
, the functional

Φ− λΨ has at least three distinct critical points which lie in Φ−1(−∞, r2).

We assume that the matrix A satisfies the following conditions:

(A1) A(t) = (akl(t)), k = 1, . . . , N , l = 1, . . . , N , is a symmetric matrix with akl ∈ L∞[0, T ] for any
t ∈ [0, T ];

(A2) there exists δ > 0 such that (A(t)ξ, ξ) ≥ δ|ξ|2 for any ξ ∈ RN and a.e. t ∈ [0, T ], where (·, ·)
denotes the inner product in RN .

Let us recall some basic concepts. Denote

E = {u : [0, T ]→ RN | u is absolutely continuous, u(0) = u(T ), u̇ ∈ L2([0, T ],RN)},

with the inner product

≺ u, v �E=

∫ T

0

[(u̇(t), v̇(t)) + (u(t), v(t))]dt.
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The corresponding norm is defined by

‖u‖E =
(∫ T

0

(|u̇(t)|2 + |u(t)|2)dt
) 1

2 ∀ u ∈ E.

For every u, v ∈ E, we define

≺ u, v �=

∫ T

0

[eQ(t)(u̇(t), v̇(t)) + eQ(t)(A(t)u(t), v(t))]dt,

and we observe that, by the assumptions (A1) and (A2), it defines an inner product in E. Then E
is a separable and reflexive Banach space with the norm

‖u‖ =≺ u, u �
1
2 , ∀u ∈ E.

Obviously, E is a uniformly convex Banach space. Clearly, the norm ‖ · ‖ is equivalent to the
norm ‖ · ‖E (see [17]).

Since (E, ‖ · ‖) is compactly embedded in C([0, T ],RN) (see [21]), there exists a positive constant
c such that

‖u‖∞ ≤ c ‖ u ‖, (2.1)

where ‖u‖∞ = maxt∈[0,T ] | u(t) |.
We use the following notations:

Gθ :=

∫ T

0

eQ(t) sup
|x|≤θ

G(t, x)dt, t ∈ [0, T ], ∀ θ > 0,

and

Gx0 :=

∫ T

0

eQ(t)G(t, x0)dt, ∀ x0 ∈ RN .

We mean by a (weak) solution of the problem (1.1), any function u ∈ E such that∫ T

0

eQ(t)(u̇(t), v̇(t))dt+

∫ T

0

eQ(t)(A(t)u(t), v(t))dt− λ
∫ T

0

eQ(t)(∇F (t, u(t)), v(t))dt

− µ
∫ T

0

eQ(t)(∇G(t, u(t)), v(t))dt = 0

for every v ∈ E.

3. Main results

In order to introduce our first result, fix θ > 0 and nonzero vector x0 ∈ RN such that

|x0|2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt∫ T

0

eQ(t)F (t, x0)dt

<
θ2

c2

∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt

,

and pick

λ ∈ Λ :=

 |x0|2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt

2

∫ T

0

eQ(t)F (t, x0)dt

,
θ2

2c2

∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt

 ,
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and let

δλ,G := min


θ2 − 2c2λ

∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt

2c2Gθ
,

|x0|2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt− 2λ

∫ T

0

eQ(t)F (t, x0)dt

2Gx0

 ,

and

δλ,G := min

δλ,g,
1

max

{
0, 2c2 lim sup

|x|→∞

supt∈[0,T ] G(t, x)

|x|2

}
 , (3.1)

where we read ρ/0 = +∞, so that, for instance, δλ,G = +∞ when

lim sup
|x|→∞

supt∈[0,T ] G(t, x)

|x|2
≤ 0,

and Gx0 = Gθ = 0. Now, we formulate our main result.

Theorem 3.1. Suppose that the assumptions (A1) and (A2) hold. Assume that there exist a positive

constant θ and and a non-zero vector x0 ∈ RN with θ < c(δ
∫ T

0
eQ(t)dt)

1
2 |x0| such that

(B1)

∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt

θ2
< 1

c2(
∑N

i,j=1 ‖aij‖∞)
∫ T
0 eQ(t)dt

∫ T

0

eQ(t)F (t, x0)dt

|x0|2
;

(B2) there exist functions h1, h2 ∈ L1(0, T,R) and two numbers α ∈ [0, 1), M > 0 such that
(∇F (t, x), x)

|x|
≤ h1(t)|x|α + h2(t) for all x ∈ RN with |x| ≥M and a.e t ∈ [0, T ].

Then, for each λ ∈ Λ and for every function G : [0, T ] × RN → R which is measurable with respect
to t, for all u ∈ RN , continuously differentiable in u, for almost every t ∈ [0, T ], satisfying (1.2) and
the condition

lim sup
|x|→∞

supt∈[0,T ] G(t, x)

|x|2
< +∞,

there exists δλ,G > 0 given by (3.1) such that, for each µ ∈ [0, δλ,G[, the problem (1.1) admits at least
three distinct weak solutions.

Proof. Fix λ as in the conclusion. Take X = E and define the functionals Φ, Ψ : X → R as follows

Φ(u) =
1

2
‖u‖2,

and

Ψ(u) =

∫ T

0

eQ(t)(F (t, u(t)) +
µ

λ
G(t, u(t))dt
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for every u ∈ X. It is well known that Ψ is a Gâteaux differentiable functional whose Gâteaux
derivative at the point u ∈ X is the functional Ψ′(u) ∈ X∗, given by

Ψ′(u)(v) =

∫ T

0

eQ(t)(∇F (t, u(t)), v(t))dt+
µ

λ

∫ T

0

eQ(t)(∇G(t, u(t)), v(t))dt

for every v ∈ X, and Ψ′ : X → X∗ is a compact operator. Moreover, Φ is a Gâteaux differentiable
functional whose Gâteaux derivative at the point u ∈ X is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =

∫ T

0

eQ(t)(u̇(t), v̇(t))dt+

∫ T

0

eQ(t)(A(t)u(t), v(t))dt

for every v ∈ X. Since Φ′ is uniformly monotone on X, coercive and hemicontinuous in X, applying
[32, Theorem 26. A] it admits a continuous inverse on X∗. Furthermore, Φ is sequentially weakly

lower semicontinuous. Put r =
1

2
(
θ

c
)2 and w(t) := x0 for all t ∈ [0, T ]. It is easy to see that w ∈ X

and, in particular, one has

1

2
|x0|2δ

∫ T

0

eQ(t)dt ≤ Φ(w) ≤ 1

2
|x0|2(

N∑
i,j=1

‖aij‖∞)

∫ T

0

eQ(t)dt. (3.2)

This together with the condition θ < c(δ
∫ T

0
eQ(t)dt)

1
2 |x0| ensures

0 < r < Φ(w).

Bearing (2.1) in mind, we see that

Φ−1(]−∞, r]) = {u ∈ X; Φ(u) ≤ r}

=

{
u ∈ X;

||u||2

2
≤ r

}
⊆ {u ∈ X; |u(t)| ≤ θ for each t ∈ [0, T ]} ,

and it follows that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

∫ T

0

eQ(t)[F (t, u(t)) +
µ

λ
G(t, u(t))]dt

≤
∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt+
µ

λ
Gθ.

So,

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
=

sup
u∈Φ−1(]−∞,r])

∫ T

0

eQ(t)[F (t, u(t)) +
µ

λ
G(t, u(t))]dt

r

≤ 2c2

∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt+
µ

λ
Gθ

θ2
, (3.3)



M. R. Heidari Tavani, et al., J. Math. Computer Sci. 16 (2016), 351–363 357

and

Ψ(w)

Φ(w)
≥

∫ T

0

eQ(t)F (t, x0)dt+
µ

λ

∫ T

0

eQ(t)G(t, x0)dt

1

2
|x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

. (3.4)

Since µ < δλ,g, one has

µ <

θ2 − 2c2λ

∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt

2c2Gθ
,

that is, ∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt+
µ

λ
Gθ

1

2
(
θ

c
)2

<
1

λ
.

Furthermore,

µ <

|x0|2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt− 2λ

∫ T

0

eQ(t)F (t, x0)dt

2Gx0

,

that is, ∫ T

0

eQ(t)F (t, x0)dt+
µ

λ
Gx0

1

2
|x0|2(

N∑
i,j=1

‖aij‖∞)

∫ T

0

eQ(t)dt

>
1

λ
.

Then, ∫ T

0

eQ(t) sup
|x|≤θ

F (t, x)dt+
µ

λ
Gθ

1

2
(
θ

c
)2

<
1

λ
<

∫ T

0

eQ(t)F (t, x0)dt+
µ

λ
Gx0

1

2
|x0|2(

N∑
i,j=1

‖aij‖∞)

∫ T

0

eQ(t)dt

. (3.5)

Hence from (3.3)–(3.5), we see that the condition (a1) of Theorem 2.1 is fulfilled. Finally, since
µ < δλ,G, we can fix l > 0 such that

lim sup
|x|→∞

supt∈[0,T ] G(t, x)

|x|2
< l,

and µl <
1

2c2
. Therefore, there exists a function ρ ∈ L1([0, T ]) such that

G(t, x) ≤ l|x|2 + ρ(t)

for every t ∈ [0, T ] and x ∈ RN .
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Let

η(t, x) =
(∇F (t, x), x)

|x|
− h1(t)|x|α − h2(t) for all t ∈ [0, T ] and x ∈ RN .

Let β(t) = sup
|x|<M

η(t, x). Then, by (B2),

η(t, x) ≤
{

0 if |x| ≥M
β(t) if |x| < M.

Thus

η(t, sx) ≤


0 if s ≥ M

|x|
β(t) if 0 < s <

M

|x|
.

Therefore,

F (t, x)− F (t, 0) =

∫ 1

0

∇F (t, sx) · xds

=

∫ 1

0

|x|[η(t, sx) + h1(t)sα|x|α + h2(t)]ds

≤Mβ(t) +
1

α + 1
|x|α+1h1(t) + |x|h2(t).

Consequently, for λ > 0 we have

Φ(u)− λΨ(u) =
1

2
‖u‖2 − λ

∫ T

0

eQ(t)(F (t, u(t)) +
µ

λ
G(t, u(t))dt

≥ 1

2
‖u‖2 − λ

∫ T

0

eQ(t)
[
Mβ(t) +

1

α + 1
|u(t)|α+1h1(t) + |u(t)|h2(t)

]
dt

− λ
∫ T

0

eQ(t)F (t, 0)dt− µl
∫ T

0

|u(t)|2dt− µ‖ρ‖1

≥ (
1

2
− µlc2)‖u‖2 − c1‖u‖α+1 − c2‖u‖+ c3

for some constants c1, c2 and c3. Since α ∈ [0, 1), this follows lim
‖u‖→∞

(Φ(u)− λΨ(u)) = +∞, ∀λ > 0,

which means the functional Φ− λΨ is coercive, and the condition (a2) of Theorem 2.1 is satisfied.
From (3.3) and (3.5) one also has

λ ∈

]
Φ(w)

Ψ(w)
,

r

supΦ(x)≤r Ψ(x)

[
.

Finally, since the weak solutions of the problem (1.1) are exactly the solutions of the equation
Φ′(u)− λΨ′(u) = 0 (see [29, Theorem 2.2]), Theorem 2.1 (with x = w) concludes the result.

Now, we present a variant of Theorem 3.1. Here no asymptotic condition on the nonlinear term G
is requested; on the other hand, the functions F and G are supposed to be nonnegative. Fix θ1, θ2 > 0
and nonzero vector x0 ∈ RN such that
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3

2

|x0|2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt∫ T

0

eQ(t)F (t, x0)dt

<
1

c2
min

{
θ2

1∫ T

0

eQ(t) sup
|x|≤θ1

F (t, x)dt

,
θ2

2

2

∫ T

0

eQ(t) sup
|x|≤θ2

F (t, x)dt

}
,

and picking

λ ∈ Λ′ :=
]3

4

|x0|2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt∫ T

0

eQ(t)F (t, x0)dt

,
1

2c2

min

{
θ2

1∫ T

0

eQ(t) sup
|x|≤θ1

F (t, x)dt

,
θ2

2

2

∫ T

0

eQ(t) sup
|x|≤θ2

F (t, x)dt

}[
,

put

δ∗λ,G := min


θ2

1 − 2λc2

∫ T

0

eQ(t) sup
|x|≤θ1

F (t, x)dt

2c2Gθ1
,

θ2
2 − 4λc2

∫ T

0

eQ(t) sup
|x|≤θ2

F (t, x)dt

4c2Gθ2

 . (3.6)

Theorem 3.2. Suppose that the assumptions (A1) and (A2) hold. Let F : [0, T ] × RN → R be
a nonnegative function satisfies the assumption (1.2). Assume that there exist a non-zero vector
x0 ∈ RN and two positive constants θ1 and θ2 with

2(
θ1

c
)2

δ
∫ T

0
eQ(t)dt

< |x0|2 <

1

2
(
θ2

c
)2

(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt

,

such that

(C1)

∫ T

0

eQ(t) sup
|x|≤θ1

F (t, x)dt

θ2
1

< 2
3

1

c2(
∑N

i,j=1 ‖aij‖∞)
∫ T
0 eQ(t)dt

∫ T

0

eQ(t)F (t, x0)dt

|x0|2
;

(C2)

∫ T

0

eQ(t) sup
|x|≤θ2

F (t, x)dt

θ2
2

< 1
3

1

c2(
∑N

i,j=1 ‖aij‖∞)
∫ T
0 eQ(t)dt

∫ T

0

eQ(t)F (t, x0)dt

|x0|2
.

Then, for every λ ∈ Λ′ and for every nonnegative function G : [0, T ] × RN → R satisfying the
assumption (1.2), there exists δ∗λ,G > 0 given by (3.6) such that for each µ ∈ [0, δ∗λ,G), the problem
(1.1) has at least three weak solutions vj; j = 1, 2, 3 such that ‖vj‖∞ < θ2, ∀t ∈ [0, T ], j = 1, 2, 3.

Proof. Fix λ and µ as in the conclusion and let Φ and Ψ be as given in the proof of Theorem 3.1.

Put r1 =
1

2
(
θ1

c
)2, r2 =

1

2
(
θ2

c
)2 and w(t) := x0 for all t ∈ [0, T ]. The condition

2(
θ1

c
)2

δ
∫ T

0
eQ(t)dt

< |x0|2 <

1

2
(
θ2

c
)2

(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt

,
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in conjunction with (3.2) yields

2r1 < Φ(w) <
r2

2
.

Since µ < δ∗λ,g, one has

sup
u∈Φ−1(]−∞,r1])

Ψ(u)

r1

=

sup
u∈Φ−1(]−∞,r1])

∫ T

0

eQ(t)[F (t, u(t)) +
µ

λ
G(t, u(t))]dt

r1

≤

∫ T

0

eQ(t) sup
|x|≤θ1

F (t, x)dt+
µ

λ
Gθ1

1

2
(
θ1

c
)2

<
1

λ
<

2

3

∫ T

0

eQ(t)F (t, x0)dt+
µ

λ
Gx0

1

2
|x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

≤ 2

3

Ψ(w)

Φ(w)
,

and

2 sup
u∈Φ−1(]−∞,r2])

Ψ(u)

r2

=

2 sup
u∈Φ−1(]−∞,r2])

∫ T

0

eQ(t)[F (t, u(t)) +
µ

λ
G(t, u(t))]dt

r2

≤
2

∫ T

0

eQ(t) sup
|x|≤θ2

F (t, x)dt+
µ

λ
Gθ2

1

2
(
θ2

c
)2

<
1

λ
<

2

3

∫ T

0

eQ(t)F (t, x0)dt+
µ

λ
Gx0

1

2
|x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0
eQ(t)dt

≤ 2

3

Ψ(w)

Φ(w)
.

Therefore, (b1) and (b2) of Theorem 2.2 are verified. Finally, we show that Φ − λΨ satisfies the
assumption 2. of Theorem 2.2. For this purpose let u1 and u2 be two local minima for Φ−λΨ. Thus
u1 and u2 are critical point for Φ− λΨ. Since the functions F and G are nonnegative, we have

(λF + µG)(t, su1 + (1− s)u2) ≥ 0,

and hence, Ψ(su1 + (1− s)u2) ≥ 0, for all s ∈ [0, 1]. Then, since the weak solutions of the problem
(1.1) are exactly the solutions of the equation Φ′(u)−λΨ′(u) = 0 (see [29, Theorem 2.2]), by Theorem
2.2 the problem (1.1) possesses at least three periodic solutions vj; j = 1, 2, 3 such that ‖vj‖∞ < θ2,
j = 1, 2, 3.

A special case of Theorem 3.1 is the following theorem.
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Theorem 3.3. Let F : RN → R be a nonnegative continuously differentiable function such that
F (0, · · · , 0) = 0. Assume that

lim inf
ξ→0

max|x|≤ξ F (x)

ξ2
= lim sup
|x|→+∞

F (x)

|x|2
= 0.

Then, there is λ∗ > 0 such that for each λ > λ∗ and for every continuously differentiable function
G : RN → R such that G(0, · · · , 0) = 0, satisfying the asymptotical condition

lim sup
|x|→∞

G(x)

|x|2
< +∞,

there exists δ∗λ,g > 0 such that, for each µ ∈ [0, δ∗λ,g[, the problem{
−ü(t)− q(t)u̇(t) + A(t)u(t) = λ∇F (u(t)) + µ∇G(u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

admits at least three classical solutions.

Proof. Fix λ > λ∗ :=
|x0|2(

∑N
i,j=1 ‖aij‖∞)

∫ T
0 eQ(t)dt

2F (x0)

∫ T

0

eQ(t)dt

for some non zero vector x0 ∈ RN . Since

lim inf
ξ→0

max|x|≤ξ F (x)

ξ2
= 0,

there is a sequence {θn} ⊂]0,+∞[ such that lim
n→∞

θn = 0 and

lim
n→∞

max|x|≤θn F (x)

θ2
n

= 0.

Hence, there exists θ > 0 such that

max
|x|≤θ

F (x)

θ
2 < min

{
1

c2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt

F (x0)

|x0|2
;

1

2λc2
∫ T

0
eQ(t)dt

}
,

and θ < |x0|c(δ
∫ T

0
eQ(t)dt)

1
2 . Theorem 3.1 concludes the result.

Moreover, the following result is a consequence of Theorem 3.2.

Theorem 3.4. Let F : R3 → R be a nonnegative continuously differentiable function such that
F (0, 0, 0) = 0,

lim
ξ→0+

max|(x1,x2,x3)|≤ξ F (x1, x2, x3)

ξ2
= 0,

and

max
|(x1,x2,x3)|≤6

F (x1, x2, x3) <
4

3c2(e3 − 1)
F (1, 1, 1).

Then, for every λ ∈
(

27

4F (1, 1, 1)
,

9

c2(e3 − 1) max|(x1,x2,x3)|≤6 F (ξ)

)
and for every nonnegative con-

tinuously differentiable function G : R3 → R such that G(0, 0, 0) = 0, there exists δ∗λ,G > 0 such that,
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for each µ ∈ [0, δ∗λ,G[, the problem{
−ü(t)− u̇(t) + A(t)u(t) = λ∇F (u(t)) + µ∇G(u(t)) a.e. t ∈ [0, 3],
u(0)− u(3) = u̇(0)− u̇(3) = 0,

where A(t) is a third-order identity matrix, admits at least three classical solutions.

Proof. Choose N = 3, T = 3, q(t) = 1 for all t ∈ [0, 3], θ2 = 6 and x0 = (1, 1, 1). Therefore,

3

2

|x0|2(
∑N

i,j=1 ‖aij‖∞)
∫ T

0
eQ(t)dt∫ T

0

eQ(t)F (t, x0)dt

=
27

2F (1, 1, 1)
,

and
1

c2

θ2
2

2

∫ T

0

eQ(t) sup
|ξ|≤θ2

F (t, ξ)dt

=
1

c2

18

(e3 − 1) max
|(x1,x2,x3)|≤6

F (x1, x2, x3)
.

Moreover, since

lim
x→0+

max|(x1,x2,x3)|≤ξ F (x1, x2, x3)

ξ2
= 0,

there exists a positive constant θ1 < c
√

3(e3−1)
2

such that

max
|(x1,x2,x3)|≤θ1

F (x1, x2, x3)

θ2
1

<
2

27c2
F (1, 1, 1),

and
θ2

1

max
|(x1,x2,x3)|≤θ1

F (x1, x2, x3)
>

18

max
|(x1,x2,x3)|≤6

F (x1, x2, x3)
.

Hence, since the assumptions of Theorem 3.2 are fulfilled, we have the conclusion from Theorem
3.2.
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