

The Journal of Mathematics and Computer Science Vol .2 No.3 (2011) 448-452

Some Normal Edge-transitive Cayley Graphs on Dihedral Groups

A. Asghar Talebi

Department of mathematics University of mazandaran, babolsar, Iran Email: a.talebi@umz.ac.ir

Received: July 2010, Revised: October 2010 Online Publication: January 2011

Abstract

Let *G* be a group and *S* a subset of *G* such that $1_G \notin S$ and $S = S^{-1}$. Let $\Gamma = Cay(G, S)$ be a Cayley graph on *G* relative to. Then Γ is said to be normal edge-transitive, if $N_{Aut(\Gamma)}(G)$ acts transitively on edges. In this paper we determine all normal edge-transitive Cayley graphs on a dihedral Group D_{2n} of valency n. In addition we classify normal edge-transitive Cayley graphs $\Gamma = Cay(D_{2p}, S)$ of valency four, for a prime p and give some normal edge-transitive Cayley graphs $\Gamma = Cay(D_{2n}, S)$ of valency four that n is not a prime.

Keyword: Cayley graph, normal edge-transitive, Dihedral groups,

1 Introduction

For a given graph Γ , we denote by $V(\Gamma)$, $E(\Gamma)$, $Aut(\Gamma)$ the vertex set, edge set and automorphism group, respectively. Let *G* be a group and let *S* be a subset of *G* such that $1_G \notin S$ and $S = S^{-1}$. The Cayley graph $\Gamma = Cay(G, S)$ on *G* relative to *S* is defined by $V(\Gamma) = G, E(\Gamma) = \{\{g, sg\} | g \in G, s \in S\}$. The graph $\Gamma = Cay(G, S)$ is vertex-transitive, since $Aut(\Gamma)$ contains the right regular representation *G*. Thus $G \leq Aut(Cay(G, S))$ and this action of

G is regular on vertices, that is, G is transitive on vertices and only the identity element of G fixes a vertex. A Cayley graph $\Gamma = Cay(G,S)$ is said to be edge-transitive if $Aut(\Gamma)$ is transitive on edges. In this paper graphs are finite, simple connected and undirected. It is difficult to find the full automorphism group of a graph in general, and so this makes it difficult to decide whether it is edge-trasitive. On the other hand we often have sufficien information about the group G to determine $N = N_{Aut(\Gamma)}(G)$, because N is the semidirect product N = G.Aut(G,S), where $Aut(G,S) = \{\sigma \in Aut(G): S^{\sigma} = S\}$. Hence we focus attention on those graphs for which $N_{Aut(\Gamma)}(G)$ is transitive on edges. Such a graph is said to be normal edge-transitive. Thus it is often possible to determine whether Cay(G,S) is normal edge-transitive. In [5] Praeger gave an approach to analyzing normal edge-transitive Cayley graphs. Houlis in [4] determined the isomorphism types of all connected normal edge-transitive undirected Cayley graphs for Z_{pq} where p,q are primes, and for $G = Z_p \times Z_q$, p a prime. In this paper we determined all normal edge-transitive Cayley graphs on a dihedral Group D_{2n} of valency n. In addition we classify normal edge-transitive Cayley graphs $\Gamma = Cay(D_{2v}, S)$ of valency four, for a prime p and give some normal edge-transitive Cayley graphs $\Gamma = Cay(D_{2n}, S)$ of valency four such that *n* is not a prime.

The group –and graph- theoretic notation and terminology are standard; see [2], [3], and [6] for example.

The rest of this paper is organized as follows: In the section 2 we give some preliminaries. In the section 3 we give all normal edge-transitive Cayley graphs on a dihedral group of valency n and also we classify normal edge-transitive Cayley graphs $\Gamma = Cay(D_{2p}, S)$ of valency four, for a prime p.

2 Preliminaries

The following Propositions are basic for Cayley graphs.

Propositions 2.1. Let $\Gamma = Cay(G, S)$ be a Cayley graph on *G* relative to *S*. Then Γ is connected if and only if $G = \langle S \rangle$.

Let $\Gamma = Cay(G, S)$ be a Cayley graph on *G* relative to *S*, and let $A = Aut(\Gamma)$. Obviously, $A \ge G$. Aut(G, S). It is easy to prove the following.

Propositions 2.2. [2]

(1) $N_A(G) = G.Aut(G,S),$

(2) A = G.Aut(G, S) is equivalence to $G \lhd A$.

Propositions 2.3. [6] Let $\Gamma = Cay(G, S)$ be a Cayley graph on a finite group *G*. Then Γ is normal edge-transitive if and only if Aut(G, S) is either transitive on *S* or has two orbits in *S* which are inverses of each other.

3 Normal edge-transitive Cayley graphs on dihedral groups

Throughout this section, let $D_{2n} = \langle a, b : a^2 = b^n = 1, a^{-1}ba = b^{-1} \rangle$ denote the dihedral group of order 2*n*. For $n \ge 3$, any automorphism of D_{2n} can be expressed by $\sigma(r,s)$, where $b^{\sigma(r,s)} = b^r$, (n,r) = 1 and $a^{\sigma(r,s)} = ab^s$.

Lemma 3.1 Let $\Gamma = Cay(D_{2n}, S)$ be a normal edge-transitive Cayley graph on the dihedral group D_{2n} . Then $Aut(D_{2n}, S)$ is transitive on .

Proof. Let $\Gamma = Cay(D_{2n}, S)$ be a normal edge-transitive Cayley graph for a dihedral group D_{2n} . By Proposition 2.3, $Aut(D_{2n}, S)$ is either transitive on S or has two orbits in S which are inverses of each other. We show that the latter case dose not arise. Let $Aut(D_{2n}, S)$ has two orbits T and T^{-1} such that $= T \cup T^{-1}$. Suppose that S contains a^t for some t, and $a^t \in T$. Since $Aut(D_{2n}, S)$ is transitive on T and for every $\sigma \in Aut(D_{2n})$, $(a^t)^{\sigma} \in \langle a \rangle$, we have $T \subset \langle a \rangle$. Thus $S = T \cup T^{-1} \subseteq \langle a \rangle$. This is contradiction with connectivity of Γ . Hence elements of S have order2, and we get $T = T^{-1}$, a contradiction.

Propositions 3.2. Let $\Gamma = Cay(D_{2n}, S)$ be a Cayley graph on the dihedral group D_{2n} . Let k be a positive integer with $k \ge 2$. If $S = \{a, ab, ab^{1+l}, ab^{1+l+l^2}, \dots, ab^{1+l+\dots+l^{k-2}}\}$, for an integer l satisfying $1 + l + \dots + l^{k-1} \equiv 0 \pmod{n}$, then Γ is normal edge transitive.

Proof. Let $\Gamma = Cay(D_{2n}, S)$ be a Cayley graph in which $S = \{a, ab, ab^{1+l}, ab^{1+l+l^2}, ..., ab^{1+l+\dots+l^{k-2}}\}$, for an integer l satisfying $1 + l + \dots + l^{k-1} \equiv 0 \pmod{n}$. Consider mapping $\alpha: D_{2n} \to D_{2n}$ by $b \to b^l, a \to ab$. Clearly, we get that $\sigma \in Aut(D_{2n}, S)$ and $< \alpha >$ acts transitively on S. Then by Proposition 2.3, $\Gamma = Cay(D_{2n}, S)$ is normal edge transitive.

Theorem 3.3. Let $\Gamma = Cay(D_{2n}, S)$ be a Cayley graph on the dihedral group D_{2n} of valency. Then Γ is normal edge-transitive if and only if $S = \{a, ab, ab^2, ..., ab^{n-1}\}$.

Proof. Let $\Gamma = Cay(D_{2n}, S)$ such that $S = \{a, ab, ab^2, ..., ab^{n-1}\}$. Then $Aut(D_{2n}, S) = Aut(D_{2n})$. We show that $Aut(D_{2n})$ is transitive on S. For any $ab^i, 0 \le i \le n-1$ there exist $\sigma(r, s) \in Aut(D_{2n})$ such that $a^{\sigma(r,i)} = ab^i$. Hence $a^{Aut(D_{2n})} = S$ and this implies that $Aut(D_{2n})$ is transitive on S. Conversely, let $\Gamma = Cay(D_{2n}, S)$, |S| = n be normal edge transitive. If S contains b^t , for some t, then $S = (b^t)^{Aut(D_{2n})} \subseteq \langle b \rangle$ and hence $D_{2n} = \langle S \rangle \subseteq \langle b \rangle$, a contrary. Thus $\subseteq D_{2n} - \langle b \rangle$. Since $|S| = |D_{2n} - \langle b \rangle |= n$, $S = D_{2n} - \langle b \rangle = \{a, ab, ..., ab^{n-1}\}$.

Theorem 3.4. Let $\Gamma = Cay(D_{2n}, S)$ be a Cayley graph on the dihedral group D_{2n} of valency four. If $S = \{a, ab, ab^i, ab^{1-i}\}$ such that $(n, 2i - 1) = 1, 2i(1 - i) \equiv 0 \pmod{n}$ then Γ is normal edge transitive. **Proof.** Let $\Gamma = Cay(D_{2n}, S)$ be a Cayley graph on the dihedral group D_{2n} of valency four, for $S = \{a, ab, ab^2, ..., ab^{n-1}\}$ such that $(n, 2i - 1) = 1, 2i(1 - i) \equiv 0 \pmod{n}$. We show that $Aut(D_{2n}, S)$ is transitive on S. There are automorphisms $\sigma_1 = \sigma(n - 1, 1), \sigma_2 = \sigma(n - (2i - 1), i)$, and $\sigma_3 = \sigma(2i - 1, 1 - i)$ such that $a^{\sigma_1} = ab, a^{\sigma_2} = ab^j$ and $a^{\sigma_3} = ab^{1-i}$. Also we have $\sigma_1, \sigma_2, \sigma_3 \in Aut(G, S)$. Hence $Aut(D_{2n}, S)$ is transitive on S, and by Proposition 2.3 Γ is normal edge transitive.

Theorem 3.5. Let $\Gamma = Cay(D_{2p}, S)$ be a Cayley graph on the dihedral group D_{2p} of valency four, where p is a prime number. Then Γ is normal edge-transitive, if and only if Γ is isomorphic with $\Gamma = Cay(D_{2p}, S)$ where $S = \{a, ab, ab^{1+l}, ab^{1+l+l^2}\}$ for an integer l satisfying $1 + l + l^2 + l^3 \equiv 0 \pmod{n}$.

Proof. By Proposition 3.2, if $S = \{a, ab, ab^{1+l}, ab^{1+l+l^2}\}$ for an integer l satisfying $1 + l + l^2 + l^3 \equiv 0 \pmod{p}$, then graph $Cay(D_{2p}, S)$ is normal edge- transitive. Conversely, let $\Gamma = Cay(D_{2p}, S)$ be a normal edge-transitive Cayley graph on the dihedral group D_{2p} of valency four. By lemma $3.1, Aut(D_{2p}, S)$ is transitive on S. Since for every automorphism α of $Aut(D_{2p}), \langle b \rangle^{\alpha} = \langle b \rangle, S$ is not contain $b^t, 0 \le t \le p - 1$, thus we may assume that $S = \{a, ab^i, ab^j, ab^k\}$. We have only two transitive permutation group on S that are following :

(1)
$$Aut(D_{2p}, S) = \langle \alpha = (a, ab^i, ab^j, ab^k) \rangle$$

(II)
$$Aut(D_{2p}, S) = \langle \alpha_1 = (a, ab^i)(ab^j, ab^k), \alpha_2 = (a, ab^j)(ab^i, ab^k) \rangle$$

In the case (I), we have $a^{\alpha} = ab^{i}$, $(ab^{i})^{\alpha} = ab^{j}$, $(ab^{j})^{\alpha} = ab^{k}$ and $(ab^{k})^{\alpha} = a$. It follows that $(a.ab^{i})^{\alpha} = ab^{i}.ab^{j}$, $(ab^{i}.ab^{j})^{\alpha} = ab^{j}.ab^{k}$, $(ab^{j}.ab^{k})^{\alpha} = ab^{k}.a$ and $(ab^{k}.a)^{\alpha} = a.ab^{i}$, that is $(b^{i})^{\alpha} = b^{j-i}$, $(b^{j-i})^{\alpha} = b^{k-j}$, $(b^{k-j})^{\alpha} = b^{-k}$ and $(b^{-k})^{\alpha} = b^{i}$. Sinse α is a group automorphism of $\langle b \rangle$, This implies that $\langle b^{j} \rangle \subseteq \langle b^{i} \rangle, \langle b^{k} \rangle \subseteq \langle b^{i} \rangle$, and hence $\langle b^{i} \rangle \subseteq \langle b \rangle$. Thus (i, p) = 1 and without loss of generality, we may assume that i = 1 and $S = \{a, ab, ab^{j}, ab^{k}\}$. So we have $(a)^{\alpha} = ab$, $(ab)^{\alpha} = ab^{j}$, $(ab)^{\alpha} = ab^{j}$, $(ab^{j})^{\alpha} = ab^{k}$ and $(ab^{k})^{\alpha} = a$. Hence $(b)^{\alpha} = (a.ab)^{\alpha} = (a)^{\alpha}(ab)^{\alpha} = ab.ab^{i_{2}} = b^{j-1}$ and $ab^{k} = (ab^{j})^{\alpha} = ab \ b^{j(j-1)} = ab^{j(j-1)+1}$, $a = (ab^{k})^{\alpha} = ab.b^{k(j-1)} = ab^{j(j-1)^{2}+(j-1)+1}$. Let = j-1. Then we have $b^{k} = b^{l^{2}+l+1}$ and $1 + l + l^{2} + l^{3} \equiv 0 \pmod{p}$. Thus $S = \{a, ab, ab^{1+l}, ab^{1+l+l^{2}}\}$ and $1 + l + l^{2} + l^{3} \equiv 0 \pmod{p}$.

We show that the case (II) dos not arise. Let $\alpha_1 = \sigma(r, i)$, which (r, p) = 1. Then we have $(ab^i)^{\alpha_1} = ab^i \cdot b^{ri} = a$. Hence $b^{i+ri} = e$ and we conclude that $|i(1+r)| \cdot it$ follows that p = 1+r and so $\alpha_1 = \sigma(p-1,i)$. Furthermore, we have $ab^k = (ab^j)^{\alpha_1} = ab^i b^{j(p-1)} = ab^{i-j}$. This implies that $k \equiv i - j \pmod{p}$. Similarly, we get that $\alpha_2 = \sigma(p-1,j)$ and $k \equiv j - i \pmod{p}$. Hence $i - j \equiv j - i \pmod{p}$. This implies that |2(i-j)|, contrary.

In the end we give the following conjecture .

Conjecture. If Γ be a normal edge transitive Cayley graph on dihedral group of valency four, then Γ is isomorphism with $Cay(D_{2n}, S)$ in which either $S = \{a, ab, ab^{1+l}, ab^{1+l+l^2}\}$ for an integer l satisfying $1 + l + l^2 + l^3 \equiv 0 \pmod{p}$ or $S = \{a, ab, ab^i, ab^{i-1}\}$ such that $(n, 2i - 1) = 1, 2i(1 - i) \equiv 0 \pmod{n}$.

Proposition (3.3) shows that this conjecture holds for prime number *n*.

References

[1] N. Biggs, Algebric Graph Theory, Cambridge University Press, 1974.

[2] C. D. Godsil, On the full automorphism group of a graph, Combinatorica, 1(1981), 243-256.

[3] C. D. Godsil, G. royle, Algebric Graph Theory, Springer-verlag, New York, 2001.

[4] P. Houlis, Quotients of normal edge-transitive Cayley graphs, M.Sc. Thesis (University of Western Australia, 1998).

[5] C. E. Praeger. Finite Normal Edge-Transitive Cayley Graphs, Bull. Austral. Math. Soc Vol. 60 (1999) 207-220.

[6] H. Wielandt, Finit Permutation Group, Academic Press, New York, 1964.