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Abstract

In this research article, we handle the susceptible infected-recovered (SIR) model of the dengue fever epidemic under Caputo
Fabrizio fractional derivative. The dengue fever disease is a complicated disease because of the connection it creates between
humans and mosquitoes. This encouraged scientists to understand the various factors that influence the recurrence of dengue
fever. A new technique called the Laplace Optimized Decomposition (LODM) is used to solve this model numerically and
compared with the 4th order Runge-Kutta Method (RKM). The solution in the proposed method is in the form of a convergent
series with easily computable components. We present the solution via graphs and hence give some remarks about the nature
of the solutions.
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1. Introduction

Infectious diseases are disorders caused by organisms such as bacteria, viruses, fungi or parasites.
Many of these organisms live in and on our bodies. In general, they are harmless but sometimes they may
cause a serious disease. Some of infectious diseases are transmitted from person to person or from insects
and animals to humans or by consuming contaminated food or water or being exposed to organisms in
the environment. The flu, measles, HIV, strep throat, COVID-19, Dengue fever and salmonella are all
examples of infectious diseases. Dengue fever is an infectious disease transmitted by mosquito and it
occurs in several areas of the world. It causes a high fever and flu symptoms but sometimes it causes a
serious bleeding, a sudden drop in blood pressure and death [3, 8, 16, 18]. Dengue fever is most common
in Southeast Asia, the western Pacific islands, Latin America and Africa. It is also spreading to new areas
such as Europe and southern parts of the United States. Scientists are working on dengue fever vaccines
but for now, the best ways to prevent infection are to avoid being bitten by mosquitoes and to take steps
to reduce the mosquito population. Calculus of non-integer order differentiation and integration has
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been identified as a useful tool for describing the properties of complicated dynamical processes more
effectively than standard integer order derivatives and integrals in last few decades. In the literature of
fractional calculus, numerous fractional derivatives have been introduced, with Caputo, Caputo-Fabrizio,
and Atangana-Baleanu being the most often used derivatives in diverse domains. Many research projects
have been carried out with the use of fractional-order derivatives [4–6, 11, 12, 15, 22].

The Adomian decomposition method (ADM) was introduced by G. Adomian in the 1980s. The nonlin-
ear fractional differential equations could be solved using this method, which demonstrated its usefulness
[1, 2, 21]. As a result of the additions and modifications made to the Laplace-Adomian decomposition
method (LADM) in this situation, this hybrid method has become a potent tool for locating an approxima-
tion that is both accurate and valid for a large number of (FPDEs) [10, 20]. Additionally, Odibat proposed
the optimal decomposition approach, which introduced a new idea for the analytical treatment of non-
linear problems. The fundamental principle of the (ODM) is the linear approximation of a nonlinear
operator, which is used to decompose the solution in series form [13, 14].

In this paper, we offer the following system of differential equations of SIR of dengue disease. The
dengue fever epidemic model is divided into three classes:

S(t): the susceptible people to catch infection;
I(t): the infected people with dengue virus;
R(t): the recovered people from dengue virus.

The differential equation system of dengue fever is shown here [9]
dS(t)
dt = ν− (ν− λR(t))S(t),
dI(t)
dt = λS(t)R(t) − ξI(t),
dR(t)
dt = ρI(t) − (ρI(t) +ω)R(t),

(1.1)

where ξ is the infection rate coefficient, ρ is the recover rate after infection, ν is the death rate of the
susceptible host, λ is the average number of bites per infected mosquito and ω is the number of deaths
among the susceptible mosquito.

We use the preceding model (1.1) to expand under (CFFD) as follows [19]
DβS(t) = ν− (ν− λR(t))S(t),
DβI(t) = λS(t)R(t) − ξI(t),
DβR(t) = ρI(t) − (ρI(t) +ω)R(t),

(1.2)

where the initial conditions ae given by

S(0) = N1, I(0) = N2, R(0) = N3,

β ∈ (0, 1] and the total population N is given by

N(t) = S(t) + I(t) + R(t).

To be brief and to remember some details, the Caputo Fabrizio fractional integral and the (CFFD) of order
β ∈ (0, 1] of a function f ∈ H1(a,b), where a < b, are expressed altogether as Iβf(t) =

2(1−β)
(2−β)M(β)f(t) +

2β
(2−β)M(β)

∫t
a f(ϕ)dϕ,

Dβf(t) =
M(β)
1−β

∫t
a f
′(ϕ) exp

[
−βt−ϕ1−β

]
dϕ,

where M(β) is the normalization function with M(1) =M(0) = 1. Whilst the Laplace transform of f(t) is
L [f(t)] = F(t) and

L
[
Dβf(t)

]
=
sL [f(t)] − f(0)
s+β(1 − s)

. (1.3)
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Besides the first section, the paper is organized as follows. Section 2 presents the essential steps of the
(LODM) to solve nonlinear fractional differential operator equations. In Section 3, the fractional dengue
fever epidemic model is solved with the proposed technique, and the graphics of the numerical solution
are presented and discussed. We finalize our study with a conclusion in Section 4.

2. The algorithm of the (LODM)

Laplace Optimized Decomposition Method (LODM) is one of the effective and straight forward tech-
niques to solve nonlinear fractional-order ordinary differential equations. This method combines two
powerful methods for getting approximate solutions for systems of fractional ordinary differential equa-
tions: the Laplace transform method and the optimized decomposition method [7, 9, 10, 13, 14, 17, 19, 22].
To explain the basic steps of the Laplace optimized decomposition method, we will use the following
nonlinear fractional-order ordinary differential equation

Dβχ(t) +N(χ(t)) = g(t), t > 0, and 0 < β 6 1, (2.1)

subject to the initial conditions
χ(0) = α0, (2.2)

where N : R 7→ R is the nonlinear term, g(t) : (0,∞) 7→ R is a given function, and α0 ∈ R. Applying the
Laplace transform to both sides of equation (2.1) and using the linearity of Laplace transforms, the result
is

L
[
Dβχ(t)

]
+L [N(χ(t))] = L [g(t)] ,

based on (1.3), we have
sL [χ(t)] − χ(0)
s+β(1 − s)

= L [g(t)] −L [N(χ(t))]

and so,
sL [χ(t)] = χ(0) + (s+β(1 − s)) (L [g(t)] −L [N(χ(t))]) .

Thus,

L [χ(t)] =
χ(0)
s

+
s+β(1 − s)

s
(L [g(t)] −L [N(χ(t))]) . (2.3)

The (LODM) assumes that we can decompose the solution of (2.3) by the infinite series as

χ(t) =

∞∑
k=0

ϑk(t), (2.4)

where N(χ(t)) is represented by

N(χ(t)) =

∞∑
k=0

Qk(t) (2.5)

such that Qk(t), which are called the Adomian polynomials and can be determined from the relation

Qk(t) =
1
k!
dk

dµk

[
N

( ∞∑
k=0

µkϑk(t)

)]
|µ=0.

Substituting (2.4) and (2.5) into (2.3) and using the initial conditions given in (2.2), we get

L

[ ∞∑
k=0

ϑk(t)

]
=
α0

s
+
s+β(1 − s)

s

(
L [g(t)] −L

[ ∞∑
k=0

Qk(t)

])
. (2.6)



B. Maayah, S. Bushnaq, A. Moussaoui, J. Math. Computer Sci., 32 (2024), 86–93 89

As a result, the iteration is defined by the recursive algorithm below
L [ϑ0(t)] = ψ(t),
L [ϑ1(t)] = −

s+β(1−s)
s L [Q0(t)] ,

L [ϑ2(t)] = −
s+β(1−s)

s L [Q1(t) + ζ(ϑ1(t))] ,
L [ϑk+1(t)] = −

s+β(1−s)
s L [Qk(t) + ζ(ϑk(t) − ϑk−1(t))]] ,k > 2,

(2.7)

where ψ(t) and ζ are

ψ(t) =
α0

s
+
s+β(1 − s)

s
L [g(t)] and ζ =

∂Ω
∂χ

(
Dβχ(t),χ(t)

)
∂Ω
∂Dβχ

(Dβχ(t),χ(t))
,

such that we assume that the function Ω
(
Dβχ(t),χ(t)

)
= Dβχ(t) +N(χ(t)) can be linearized by a 1st-

order Taylor series expansion at t = 0. Solving Ω
(
Dβχ(0),χ(0)

)
= 0, thus, the Taylor series expansion of

the function Ω
(
Dβχ(t),χ(t)

)
near (ϕ0,α0), where ϕ0 = Dβχ(0) and α0 = χ(0) is

Ω
(
Dβχ(t),χ(t)

)
≈ ∂Ω

∂Dβχ(t)
(ϕ0,α0)D

βχ(t) +
∂Ω

∂χ(t)
(ϕ0,α0)χ(t).

Applying the inverse Laplace transform to (2.7), we gain

ϑ0(t) = L−1 [ψ(t)] ,
ϑ1(t) = −L−1

[
s+β(1−s)

s L [Q0(t)]
]

,

ϑ2(t) = −L−1
[
s+β(1−s)

s L [Q1(t) + ζ(ϑ1(t))]
]

,

ϑk+1(t) = −L−1
[
s+β(1−s)

s L [Qk(t) + ζ(ϑk(t) − ϑk−1(t))]]
]

,k > 2.

(2.8)

To facilitate the calculations, we can express the function ψ(t) in Taylor series as ψ(t) =
∑∞
j=0ψj(t) and

so, (2.8) can transform to

ϑ0(t) = L−1 [ψ0(t)] ,
ϑ1(t) = L−1 [ψ1(t)] −L−1

[
s+β(1−s)

s L [Q0(t)]
]

,

ϑ2(t) = L−1 [ψ2(t)] −L−1
[
s+β(1−s)

s L [Q1(t) + ζ(ϑ1(t))]
]

,

ϑk+1(t) = L−1 [ψk+1(t)] −L−1
[
s+β(1−s)

s L [Qk(t) + ζ(ϑk(t) − ϑk−1(t))]]
]

,k > 2.

3. Numerical results

In this section, some investigations are considered to demonstrate the applicability and effectiveness
of the (LODM) for the disease model of dengue fever. The obtained findings show that the (LODM) is
precise, efficient, and systematic in dealing with a variety of essential fractional calculus difficulties. All
the numerical computations were performed by using the Mathematica 12 software package.

3.1. Solutions steps

First, applying the Laplace transform to both sides of (1.2) gives
L
[
DβS(t)

]
= L [ν− (ν− λR(t))S(t)] ,

L
[
DβI(t)

]
= L [λS(t)R(t) − ξI(t)] ,

L
[
DβR(t)

]
= L [ρI(t) − (ρI(t) +ω)R(t)] .
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In view of (1.3), we have
L [S(t)] = N1

p +
(p+β(1−p))ν

p2 +
p+β(1−p)

p L [−(ν− λR(t))S(t)] ,

L [I(t)] = N2
p +

p+β(1−p)
p L [λS(t)R(t) − ξI(t)] ,

L [R(t)] = N3
p +

p+β(1−p)
p L [ρI(t) − (ρI(t) +ω)R(t)] .

(3.1)

Assume the series solution has the form

S(t) =

∞∑
i=0

υi(t), I(t) =

∞∑
i=0

ϑi(t), R(t) =

∞∑
i=0

ψi(t).

Because of (2.6), (3.1) transforms to
L [

∑∞
i=0 υi(t)] =

N1
p +

(p+β(1−p))ν
p2 +

p+β(1−p)
p L [

∑∞
i=0Θi(t)] ,

L [
∑∞
i=0 ϑi(t)] =

N1
p +

p+β(1−p)
p L [

∑∞
i=0 Ψi(t)] ,

L [
∑∞
i=0ψi(t)] =

N3
p +

p+β(1−p)
p L [

∑∞
i=0Λi(t)] .

By some computation, one can simplify
L [υ0(t)] =

N1
p ,

L [υ1(t)] =
(p+β(1−p))ν

p2 +
p+β(1−p)

p L [Θ0(t)] ,

L [υ2(t)] =
p+β(1−p)

p L [Θ1(t) + (ν+ λ(υ0(t) + ϑ0(t)))υ1(t)] ,
L [υi+1(t)] =

p+β(1−p)
p L [Θi(t) + (ν+ λ(υ0(t) + ϑ0(t)))(υi(t) − υi−1(t))] , i > 2,

L [ϑ0(t)] =
N2
p ,

L [ϑ1(t)] =
p+β(1−p)

p L [Ψ0(t)] ,
L [ϑ2(t)] =

p+β(1−p)
p L [Ψ1(t) + (ξ− λ(υ0(t) + ϑ0(t)))ϑ1(t)] ,

L [ϑi+1(t)] =
p+β(1−p)

p L [Ψi(t) + (ξ− λ(υ0(t) + ϑ0(t)))(ϑi(t) − ϑi−1(t))] , i > 2,
L [ψ0(t)] =

N3
p ,

L [ψ1(t)] =
p+β(1−p)

p L [Λ0(t)] ,
L [ψ2(t)] =

p+β(1−p)
p L [Λ1(t) + (ω− ρ(1 − ϑ0(t) −ψ0(t)))ψ1(t)] ,

L [ψi+1(t)] =
p+β(1−p)

p L [Λi(t) + (ω− ρ(1 − ϑ0(t) −ψ0(t)))(ψi(t) −ψi−1(t))] , i > 2,

where the Adomian polynomials Θi,Ψi, and Λi are given by

Θi(t) =
−1
i!
di

dµi
[(ν− λψ0(t))υ0(t) + (ν− λ(ψ0(t) + µψ1(t)))(υ0(t) + µυ1(t)) + · · · ] |µ=0,

Ψi(t) =
1
i!
di

dµi
[λυ0(t)ψ0(t) − ξϑ0(t) + λ(υ0(t) + µυ1(t))(ψ0(t) + µψ1(t)) − ξ(ϑ0(t) + µϑ1(t)) + · · · ] |µ=0,

Λi(t) =
1
i!
di

dµi
[ρϑ0(t) − (ρϑ0(t) +ω)ψ0(t) + ρ(ϑ0(t) + µϑ1(t)) − ρ(ϑ0(t) + µϑ1(t))(ψ0(t) + µψ1(t)) + · · · ]|µ=0.

As a result, the terms of the Laplace optimized decomposition series are given as follows

υ0(t) = N1,
υ1(t) = L−1

[
(p+β(1−p))ν

p2

]
+L−1

[
p+β(1−p)

p L [Θ0(t)]
]

,

υ2(t) = L−1
[
p+β(1−p)

p L [Θ1(t) + (ν+ λ(υ0(t) + ϑ0(t)))υ1(t)]
]

,

υi+1(t) = L−1
[
p+β(1−p)

p L [Θi(t) + (ν+ λ(υ0(t) + ϑ0(t)))(υi(t) − υi−1(t))]
]

, i > 2,



B. Maayah, S. Bushnaq, A. Moussaoui, J. Math. Computer Sci., 32 (2024), 86–93 91

ϑ0(t) = N2,
ϑ1(t) = L−1

[
p+β(1−p)

p L [Ψ0(t)]
]

,

ϑ2(t) = L−1
[
p+β(1−p)

p L [Ψ1(t) + (ξ− λ(υ0(t) + ϑ0(t)))ϑ1(t)]
]

,

ϑi+1(t) = L−1
[
p+β(1−p)

p L [Ψi(t) + (ξ− λ(υ0(t) + ϑ0(t)))(ϑi(t) − ϑi−1(t))]
]

, i > 2,

ψ0(t) = N3,
ψ1(t) = L−1

[
p+β(1−p)

p L [Λ0(t)]
]

,

ψ2(t) = L−1
[
p+β(1−p)

p L [Λ1(t) + (ω− ρ(1 − ϑ0(t) −ψ0(t)))ψ1(t)]
]

,

ψi+1(t) = L−1
[
p+β(1−p)

p L [Λi(t) + (ω− ρ(1 − ϑ0(t) −ψ0(t)))(ψi(t) −ψi−1(t))]
]

, i > 2.

Figure 1: The 4th RKM solution versus the (LODM) solution for β = 1.

Figure 2: The solution of the model by the (LODM) for some cases of fractional order β.
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3.2. Simulation results

In this part, we examine the fractional order SIR model of dengue fever disease to show the effective-
ness of the (LODM). We use initial conditions and parameter values from [2] to execute numerical simu-
lation: N1 = 0.9999400528, N2 = 0.0000599472, N3 = 0.1, λ = 0, 0006, ξ = 0, 333, ρ = 0.375, ω = 0, 02941,
ν = 0, 0045.

In Figure 1, we plotted the 4th RKM solution versus the (LODM) solution for β = 1, we notice from
the graphs that the two methods are in good agreement, while in Figure 2 we have plotted the resultant
solutions of the susceptible class S(t), the infected class I(t) and the recovered class R(t) for different
fractional-order by using (CFFD). Figure 2 shows how the disease is spread in a community that we
assume is susceptible to infection, when the virus attacks, the number of susceptible people decreases
because they turn into an infected people, and thus the decomposition of the susceptible leads to infected
growth. If the appropriate treatment is not applied, the number of people who recover will decrease. The
rate of increase and decrease of the various curves is faster in the lower order, while as the order increases
the process becomes slower and vice versa.

4. Conclusion

In this study, we used (CFFD) to provide an analytical solution for a fractional order model of dengue
fever disease. A comparison between the (LODM) and the 4thorder RKM method is mapped. This study
shows that the (LODM) has a significant impact on the accuracy of efficient solutions in the fundamental
spread of dengue illness. Finally, we conclude that the (LODM) is a very dependable approach for solving
a wide range of dynamical issues due to its consistency over a longer time frame and can be a useful
complement in achieving a model for the dengue virus, thereby assisting in the complete eradication of
the disease.

Data availability

The data (Mathematica code) used to support the findings of this study are available from the corre-
sponding author upon request. The data was generated by Mathematica 13.1 software version.
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