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Abstract

The purpose of this work is to present some existence theorems for coupled fixed points of F -type
contractive operator in metric spaces endowed with a directed graph. Our results generalize the main
result obtained by Chifu and Petrusel [C. Chifu, G. Petrusel, Fixed Point Theory Appl., 2014 (2014),
13 pages]. We also present applications to some nonlinear integral system equations to support the
results. c©2016 all rights reserved.
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1. Introduction

In metric fixed point theory, the strong motivation for establishing fixed point results of mappings
which satisfy Banach type contractive condition is due to their applications to large class of problems.
In 2006, Bhaskar and Lakshmikantham [1] introduced the concept of coupled fixed point for mixed
monotone operators and used it to solve various existence problems including periodic boundary value

∗Corresponding author
Email addresses: phumin.su28@mail.kmutt.ac.th (Phumin Sumalai), poom.kum@kmutt.ac.th (Poom

Kumam), pgopaldhananjay@yahoo.in (Dhananjay Gopal)

Received 2016-03-21



P. Sumalai, P. Kumam, D. Gopal, J. Math. Computer Sci. 16 (2016), 372–385 373

problem. Most recently, Chifu and Petrusel [2] applied the ideas from Jachymski [3] to introduce the
concept of coupled G-contraction and proved some interesting coupled fixed point theorems.

Following this direction of research, in this paper, we present some existence results for coupled
fixed points of F -type contractive operator in metric spaces endowed with a directed graph. Our
results extend and generalize the main result given in [2]. Applications to some integral systems are
also discussed.

2. Preliminaries

Throughout the article N,R+, and R will denote the set of natural numbers, positive real numbers,
and real numbers, respectively.

Now, we briefly recall basic notions and notation from the literature. In particular, we refer to
[2, 3].

Let (X, d) be a metric space and ∆ be the diagonal of X ×X. Let G be a directed graph, such
that the set V (G) of its vertices coincides with X and ∆ ⊆ E(G), where E(G) is the set of the edges
of the graph. Assume also that G has no parallel edges and, thus, one can identify G with the pair
(V (G), E(G)).

Throughout the paper we shall say that G with the above-mentioned properties satisfies standard
conditions.

Let us denote by G−1 the graph obtained from G by reversing the direction of edges. Thus,

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Let us consider the function f : X ×X → X.

Definition 2.1 ([2]). An element (x, y) ∈ X ×X is called coupled fixed point of the mapping f , if
f(x, y) = x and f(y, x) = y.

We shall denote by CFix(f) the set of all coupled fixed points of a mapping f , that is,

CFix(f) = {(x, y) ∈ X ×X : f(x, y) = x and f(y, x) = y}.

Definition 2.2 ([2]). We say that f : X×X → X is edge preserving if [(x, u) ∈E(G), (y, v)∈E(G−1)],
then, (f(x, y), f(u, v)) ∈ E(G) and (f(y, x), f(v, u)) ∈ E(G−1).

Definition 2.3 ([2]). The mapping f : X × X → X is called G-continuous if for all (x, y) ∈ X ×
X, (x∗, y∗) ∈ X×X and for any sequence (ni)i∈N of positive integers, with fni(x, y)→ x∗, fni(y, x)→
y∗, as i→∞, and (fni(x, y), fni+1(x, y)) ∈ E(G), (fni(y, x), fni+1(y, x)) ∈ E(G−1), we have that

f(fni(x, y), fni(y, x))→ f(x∗, y∗),

f(fni(y, x), fni(x, y))→ f(y∗, x∗),

as i→∞.

Definition 2.4 ([2]). Let (X, d) be a complete metric space and G be a directed graph. We say that
the triple (X, d,G) has the property (A1), if for any sequence (xn)n∈N ⊂ X with xn → x, as n→∞,
and (xn, xn+1) ∈ E(G), for n ∈ N, we have (xn, x) ∈ E(G).

Definition 2.5 ([2]). Let (X, d) be a complete metric space and G be a directed graph. We say that
the triple (X, d,G) has the property (A2), if for any sequence (xn)n∈N ⊂ X with xn → x, as n→∞,
and (xn, xn+1) ∈ E(G−1), for n ∈ N, we have (xn, x) ∈ E(G−1).
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Following Wardowski [5], we denote by F the family of all functions, F : R+ → R satisfying the
following conditions:

(F1) F is strictly increasing on R+;

(F2) for every sequence {sn} in R+, we have lim
n→∞

sn = 0 if and only if lim
n→∞

F (sn) = −∞;

(F3) there exists a real number k ∈ (0, 1) such that lim
s→0+

skF (s) = 0.

Example 2.6. The following function F : R+ → R belongs to F :

(i) F (s) = ln s, with s > 0,

(ii) F (s) = ln s+ s, with s > 0.

Definition 2.7 ([5]). Let (X, d) be a metric space. A mapping f : X → X is said to be an
F -contraction on X if there exists τ > 0 such that

d(fx, fy) > 0⇒ τ + F (d(fx, fy)) ≤ F (d(x, y))

for all x, y ∈ X and F ∈ F .

2.1. Coupled fixed point theorems

Let (X, d) be a metric space endowed with a directed graph G satisfying the standard conditions.
The set denoted by (X ×X)f is defined as follows:

(X ×X)f = {(x, y) ∈ X ×X : (x, f(x, y)) ∈ E(G) and (y, f(y, x)) ∈ E(G−1)}.

Proposition 2.8 ([2]). If f : X ×X → X is edge preserving, then:

(i) (x, u) ∈ E(G) and (y, v) ∈ E(G−1) implies (fn(x, y), fn(u, v)) ∈ E(G) and (fn(y, x), fn(v, u)) ∈
E(G−1);

(ii) (x, y) ∈ (X×X)f implies (fn(x, y), fn+1(x, y)) ∈ E(G) and (fn(y, x), fn+1(y, x)) ∈ E(G−1) for
all n ∈ N;

(iii) (x, y) ∈ (X ×X)f implies (fn(x, y), fn(y, x)) ∈ (X ×X)f for all n ∈ N.

Definition 2.9. The mapping f : X ×X → X is called an F -G-contraction if:

(i) f is edge preserving;

(ii) there exists a number τ > 0 such that

τ + F (d(f(x, y), f(u, v))) ≤ F (max{d(x, u), d(y, u)})

for all (x, u) ∈ E(G), (y, v) ∈ E(G−1) with d(f(x, y), f(u, v)) > 0.

Remark 2.10. If F is defined by F (s) = ln s, for all s > 0, and the fact that (a+b)
2
≤ max{a, b} for all

non-negative real numbers a and b, the F −G-contraction reduces to G-contraction given in [2].
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Lemma 2.11. Let (X, d) be a metric space endowed with a directed graph G and let f : X×X → X
be a F -G -contraction. Then, for all (x, u) ∈ E(G), (y, v) ∈ E(G−1), we have

F (d(fn(x, y), fn(u, v))) ≤ F (d(x, u))− nτ

or
F (d(fn(x, y), fn(u, v))) ≤ F (d(y, v))− nτ

and
F (d(fn(y, x), fn(v, u))) ≤ F (d(x, u))− nτ

or
F (d(fn(y, x), fn(v, u))) ≤ F (d(y, v))− nτ.

Proof. Let (x, u) ∈ E(G) and (y, v) ∈ E(G−1). Since f is edge preserving, we have

(f(x, y), f(u, v)) ∈ E(G) and (f(y, x), f(v, u)) ∈ E(G−1).

from Proposition 2.8 (i), it follows that (fn(x, y), fn(u, v)) ∈ E(G) and (fn(y, x), fn(v, u)) ∈ E(G−1).
Since f is an F -G-contraction, we obtain

F (d(f 2(x, y), f 2(u, v))) =F (d(f(f(x, y), f(y, x)), f(f(u, v), f(v, u))))

≤F (max{d(f(x, y), f(u, v)), d(f(y, x), f(v, u)))})− τ.

If max{d(f(x, y), f(u, v)), d(f(y, x), f(v, u))} = d(f(x, y), f(u, v)), then, we have

F (d(f 2(x, y), f 2(u, v))) =F (d(f(x, y), f(u, v))− τ
≤F (max{d(x, u), d(y, u)})− 2τ.

(2.1)

If max{d(f(x, y), f(u, v)), d(f(y, x), f(v, u))} = d(f(y, x), f(v, u)), then, we have

F (d(f 2(x, y), f 2(u, v))) =F (d(f(y, x), f(v, u)))− τ
≤F (max{d(y, v), d(x, u)})− 2τ.

(2.2)

Thus, from (2.1) and (2.2), we conclude that

F (d(f 2(x, y), f 2(u, v))) ≤ F (max{d(y, v), d(x, u)})− 2τ.

Now, we consider the two cases:
Case I: If max{d(y, v), d(x, u)} = d(x, u), then we get

F (d(f 2(x, y), f 2(u, v))) ≤ F (d(x, u))− 2τ.

Case II: If max{d(y, v), d(x, u)} = d(y, v), then we get

F (d(f 2(x, y), f 2(u, v))) ≤ F (d(y, v))− 2τ.

Therefore, by mathematical induction, we get

F (d(fn(x, y), fn(u, v))) ≤ F (d(x, u))− nτ

or
F (d(fn(x, y), fn(u, v))) ≤ F (d(y, v))− nτ.
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Similarly, we can write

F (d(f 2(y, x), f 2(v, u))) =F (d(f(f(y, x), f(x, y), (f(f(v, u), f(u, v)))))

≤F (max{d(f(y, x), f(v, u), d(f(x, y), f(u, v)))})− τ.

If max{d(f(y, x), f(v, u), d(f(x, y), f(u, v)))} = d(f(y, x), f(v, u)), then, we have

F (d(f 2(y, x), f 2(v, u))) =F (d(f(y, x), f(v, u))− τ
≤F (max{d(y, v)d(x, u)})− 2τ.

(2.3)

If max{d(f(y, x), f(v, u), d(f(x, y), f(u, v)))} = d(f(x, y), f(u, v)), then, we have

F (d(f 2(y, x), f 2(v, u))) =F (d(f(x, y), f(u, v))− τ
≤F (max{d(x, u), d(y, v)})− 2τ.

(2.4)

From (2.3) and (2.4), we conclude that

F (d(f 2(y, x), f 2(v, u))) ≤ F (max{d(x, u), d(y, v)})− 2τ.

Following the similar reasoning including induction as done above, we get

F (d(fn(y, x), fn(v, u))) ≤ F (d(x, u))− nτ

or
F (d(fn(y, x), fn(v, u))) ≤ F (d(y, v))− nτ.

Lemma 2.12. Let (X, d) be a complete metric space endowed with a directed graph G and let f :
X×X → X be an F -G-contraction. Then, for each (x, y) ∈ (X×X)f , there exist x̂ ∈ X and ŷ ∈ X
such that (fn(x, y))n∈N converges to x̂ and (fn(y, x))n∈N converges to ŷ, as n→∞.

Proof. Let (x, y) ∈ (X × X)f , that is, (x, f(x, y)) ∈ E(G) and (y, f(y, x)) ∈ E(G−1). By Lemma
2.11, we consider u = f(x, y) and v = f(y, x), then we obtain

F (d(fn(x, y), fn(f(x, y))), f(y, x)) ≤F (d(x, f(x, y)))− nτ
that is,

F (d(fn(x, y), fn+1(x, y))) ≤F (d(x, f(x, y)))− nτ
or

F (d(fn(x, y), fn+1(x, y))) ≤F (d(y, f(y, x)))− nτ

(2.5)

and

F (d(fn(y, x), fn+1(y, x))) ≤F (d(x, f(x, y)))− nτ
or

F (d(fn(y, x), fn+1(y, x))) ≤F (d(y, f(y, x)))− nτ.
(2.6)

Now, taking limit as n→∞ in (2.5), we get

lim
n→∞

F (d(fn(x, y), fn+1(x, y))) = −∞.
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Then, by (F2), we have
lim
n→∞

d(fn(x, y), fn+1(x, y)) = 0. (2.7)

Now, from (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(d(fn(x, y), fn+1(x, y)))k(d(fn(x, y), fn+1(x, y))) = 0. (2.8)

Therefore, from (2.5), for all n ∈ N we deduce that

(d(fn(x, y), fn+1(x, y)))k(F (d(fn(x, y), fn+1(x, y))))− F (d(x, f(x, y)))

≤ −nτ(d(fn(x, y), fn+1(x, y)))k ≤ 0,

or

(d(fn(x, y), fn+1(x, y)))k(F (d(fn(x, y), fn+1(x, y))))− F (d(y, f(y, x)))

≤ −nτ(d(fn(x, y), fn+1(x, y)))k ≤ 0.

(2.9)

Now, using (2.7), (2.8) and taking limit n→∞ in (2.9), we get

lim
n→∞

(nd(fn(x, y), fn+1(x, y)))k = 0.

Therefore, there exists n0 ∈ N such that

n(d(fn(x, y), fn+1(x, y)))k ≤ 1 ∀n ≥ n0

that is,,

d(fn(x, y), fn+1(x, y)) ≤ 1

n
1
k

∀n ≥ n0.

Now, for all m > n > n0, we have

d(fn(x, y), fm(x, y)) ≤d(fn(x, y), fn+1(x, y)) + ...+ d(fm−1(x, y), fm(x, y))

≤
∞∑

n≥n0

1

n
1
k

,

which is convergent as k ∈ (0, 1). Therefore as m,n→∞, we get d(fn(x, y), fm(x, y))→ 0.
Similarly, we can obtain

d(fn(y, x), fm(y, x))→ 0 as m,n→∞.

Therefore, (fn(x, y))n∈N and (fn(y, x))n∈N are Cauchy sequences in X. Since (X, d) is a complete
metric space, then there exists x̂ ∈ X and ŷ ∈ X such that (fn(x, y))n∈N converges to point x̂ and
(fn(y, x))n∈N converges to point ŷ, as n→∞.

Theorem 2.13. Let (X, d) be a complete metric space endowed with a directed graph G and let f :
X ×X → X be an F -G-contraction. Suppose that:

(i) f is G-continuous;

or

(ii) The triple (X, d,G) satisfy the properties (A1), (A2) and F is continuous. Then, CFix(f) 6= ∅
if and only if (X ×X)f 6= ∅.
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Proof. Suppose that CFix(f) 6= ∅, then there exists (x∗, y∗) ∈ CFix(f) such that (x∗, f(x∗, y∗)) =
(x∗, x∗) ∈ ∆ ⊂ E(G) and (y∗, f(y∗, x∗)) = (y∗, y∗) ∈ ∆ ⊂ E(G−1).

So (x∗, f(x∗, y∗)) ∈ E(G) and (y∗, f(y∗, x∗)) ∈ E(G−1) that is, (x∗, y∗) ∈ (X × X)f and thus
(X ×X)f 6= ∅.

Suppose that (X ×X)f 6= ∅, then there exists (x, y) ∈ (X ×X)f , that is, (x, f(x, y)) ∈ E(G) and
(y, f(y, x)) ∈ E(G−1).

Let (ni)i∈N be a sequence of positive integers. From Proposition 2.8 (ii), we have

(fni(x, y), fni+1(x, y)) ∈E(G),

(fni(y, x), fni+1(y, x)) ∈E(G−1).
(2.10)

further, from Lemma 2.12, there exists x∗ ∈ X and y∗ ∈ X such that

fni(x, y)→ x∗(x) and fni(y, x)→ y∗(y) as i→∞.

Now, we shall prove that f(x∗, y∗) = x∗ and f(y∗, x∗) = y∗.
Case I. Suppose f is a G-continuous mapping, then we get

f(fni(x, y), fni(y, x))→ f(x∗, y∗) and f(fni(y, x), fni(x, y))→ f(y∗, x∗) as i→∞.

Now,
d(f(x∗, y∗), x∗) ≤ d(f(x∗, y∗), fni+1(x, y)) + d(fni+1(x, y), x∗).

Since f is G-continuous and fni(x, y)→ x∗, therefore, we get

d(f(x∗, y∗), x∗) = 0 that is, f(x∗, y∗) = x∗.

By the same argument, we can be proved that f(y∗, x∗) = y∗.
Thus (x∗, y∗) is a coupled fixed point of the mapping f and hence, CFix(f) 6= ∅.

Case II. Suppose that the triple (X, d,G) has the properties (A1) and (A2), then we get

(fn(x, y), x∗) ∈ E(G) and (fn(y, x), y∗) ∈ E(G−1).

Now,

d(f(x∗, y∗), x∗) ≤ d(f(x∗, y∗), fn+1(x, y)) + d(fn+1(x, y), x∗)

≤ d(f(x∗, y∗), f(fn(x, y), fn(y, x))) + d(fn+1(x, y), x∗),

F (d(f(x∗, y∗), x∗)− d(fn+1(x, y), x∗)) ≤ F (d(f(x∗, y∗), f(fn(x, y), fn(y, x))))

≤ F (max{d(x∗, fn(x, y)), d(y∗, fn(y, x))})− τ.

Then, as n→∞ and continuity of F , we get

F (d(f(x∗, y∗), x∗)) ≤ −∞

that is, d(f(x∗, y∗), x∗) = 0.
Similarly, we can prove that d(f(y∗, x∗), y∗) = 0.
Thus (x∗, y∗) ∈ CFix(f).

Theorem 2.14. Under the condition of Theorem 2.13, if (x∗, y∗) ∈ CFix(f) with (x∗, y∗) ∈ E(G)
and (y∗, x∗) ∈ E(G−1), then x∗ = y∗.
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Proof. Suppose x∗ 6= y∗. Then as (x∗, y∗) ∈ E(G), (y∗, x∗) ∈ E(G−1) and f is an F -G-contraction
mapping, we have

F (d(x∗, y∗)) =F (d(f(x∗, y∗)), d(f(y∗, x∗)))

≤F (max{d(x∗, y∗), d(y∗, x∗)})− τ
=F (d(x∗, y∗))− τ,

a contradiction. Hence x∗ = y∗.

Remark 2.15. From Remark 2.10, we obtain Theorem 2.1 and Theorem 2.3 given in [2].

3. Applications

Integral Equations arise in many scientific and engineering problems. A large class of initial and
boundary value problem can be converted to Volterra or Fredholm type integral equations.

In this section, we apply our main theorem to the existence for a solutions of the some integral
systems.

At first we considered the following integral systems equation given in [4]

x(t) =

∫ T

0

g(t, s, x(s), y(s))ds+ h(t),

y(t) =

∫ T

0

g(t, s, y(s), x(s))ds+ h(t),

(3.1)

where t ∈ [0, T ] with T > 0.
Let X := C([0, T ],Rn) with the usual supremum norm, that is, ‖x‖ = maxt∈[0,T ]|x(t)| for all

x ∈ C([0, T ],Rn). Consider also the graph G defined by using the partial order relation that is,

x, y ∈ X, x ≤ y ⇔ x(t) ≤ y(t) for any t ∈ [0, T ].

Therefore, (X, ‖ · ‖) is a complete metric space endowed with a directed graph G.
If we consider E(G) = {(x, y) ∈ X ×X : x ≤ y}, then the diagonal ∆ of X ×X is included in

E(G). On the other hand E(G−1) = {(x, y) ∈ X ×X : y ≤ x}.
Moreover, (X, ‖ · ‖, G) has the properties (A1) and (A2).
In this case (X ×X)f = {(x, y) ∈ X ×X : x ≤ f(x, y) and f(y, x) ≤ y}.

Theorem 3.1. Consider system (3.1). Suppose that

(i) g : [0, T ]× [0, T ]× Rn × Rn → Rn and h : [0, T ]→ Rn are continuous;

(ii) for all x, y, u, v ∈ Rn with x ≤ u, y ≤ v, we have g(t, s, x, y) ≤ g(t, s, u, v) for all t, s ∈ [0, T ];

(iii) there exists a number τ > 0 such that

|g(t, s, x, y)− g(t, s, u, v)| ≤ τ

T
max{|x− u|, |y − v|}

for all t, s ∈ [0, T ], x, y, u, v ∈ Rn, x ≤ u, v ≤ y;



P. Sumalai, P. Kumam, D. Gopal, J. Math. Computer Sci. 16 (2016), 372–385 380

(iv) there exists (x0, y0) ∈ X ×X such that

x0(t) =

∫ T

0

g(t, s, x0(s), y0(s))ds+ h(t)

and

y0(t) =

∫ T

0

g(t, s, y0(s), x0(s))ds+ h(t),

where t ∈ [0, T ].
Then there exists at least one solution of the integral system (3.1).

Proof. Let f : X ×X → X, (x, y) 7→ f(x, y), where

f(x, y)(t) =

∫ T

0

g(t, s, x(s), y(s))ds+ h(t); t ∈ [0, T ].

Then the system (3.1) can be written as

x = f(x, y) and y = f(y, x).

Now, Let x, y, u, v ∈ X such that x ≤ u and v ≤ y. Then we have

f(x, y)(t) =

∫ T

0

g(t, s, x(s), y(s))ds+ h(t)

≤
∫ T

0

g(t, s, u(s), v(s))ds+ h(t)

=f(u, v)(t), for all t ∈ [0, T ],

and

f(y, x)(t) =

∫ T

0

g(t, s, y(s), x(s))ds+ h(t)

≤
∫ T

0

g(t, s, v(s), u(s))ds+ h(t)

=f(v, u)(t), for all t ∈ [0, T ].

Hence, f is G-edge preserving.
From condition (iv), it follows that

(X ×X)f = {(x, y) ∈ X ×X : x ≤ f(x, y) and y ≤ f(y, x)} 6= ∅.

Further,

|f(x, y)(t)− f(u, v)(t)| ≤
∫ T

0

|g(t, s, x(s), y(s))− g(t, s, u(s), v(s))|ds

≤ τ
T

∫ T

0

(max{|x(s)− u(s)|, |y(s)− v(s)|})ds

≤τ(max{‖x− u‖, ‖y − v‖})
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that is,
‖f(x, y)− f(u, v)‖ ≤ τ(max{‖x− u‖, ‖y − v‖})

or
d(f(x, y), f(u, v)) ≤ τ(max{d(x, u), d(y, v)}.

By passing through a logarithm, we can write

ln d(f(x, y), f(u, v)) ≤ ln(e−τmax{d(x, u), d(y, v)})

and hence

τ + ln d(f(x, y), f(u, v)) ≤ ln(max{d(x, u), d(y, v)}).

Now, we observe that the function F : R+ → R defined by F (α) = lnα, for each α ∈ C([0, T ],Rn),
is in F and so we reduce that the operator f satisfies all condition of Theorem 2.13 and hence there
exists a coupled fixed point (x∗, y∗) ∈ X ×X of the mapping f which is the solution of the integral
system 3.1.

In the next theorem we provide some conditions for existence of solution of nonlinear integral
equation of fredholm type. Precisely, we prove the following theorem.

Theorem 3.2. Consider the non-linear integral equation of Fredholm type:

P (x, y) = h(x, y) +

∫ a

0

∫ b

0

{k1(x, y, t, s) + k2(x, y, t, s)}(f(t, s, p(t, s)) + g(t, s, q(t, s)))dtds, (3.2)

where k1, k2 ∈ C(Ia× Ib× Ia× Ib, R) and f, g ∈ C(Ia× Ib×R×R). Assume that there exists λ, µ > 0
and τ > 0 such that

sup
(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k1(x, y, t, s)dtds

∣∣∣∣∣ ≤ e−τ

2(λ+ µ)

and

sup
(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k2(x, y, t, s)dtds

∣∣∣∣∣ ≤ e−τ

2(λ+ µ)
.

For p1 ≥ p2, (x, y) ∈ Ia × Ib, f and g satisfy

0 ≤ f(x, y, p)− f(x, y, q) ≤ λ(p− q)

and
−µ(p− q) ≤ g(x, y, p)− g(x, y, q) ≤ 0.

If the coupled upper-lower solutions of (3.2) exist, then there exists a unique solution of the integral
equation (3.2).

Proof. Let X = C(Ia × Ib, R), where Ia = [0, a] and Ib = [0, b] with the metric defined by:

d(w1, w2)(x, y) = sup
(x,y)∈Ia×Ib

∣∣w1(x, y)− w2(x, y)
∣∣

for all w1, w2 ∈ X.
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Also, consider the graph G defined by the partial order relation that is, w1(x, y) ≤ w2(x, y). Then
X is a complete metric space, moreover (X, d,G) have the properties (A1) and (A2).

Now, define H : X ×X → X by

H(p, q)(x, y) =

∫ a

0

∫ b

0

k1(x, y, t, s)(f(t, s, p(t, s)) + g(t, s, q(t, s)))dtds

+

∫ a

0

∫ b

0

k2(x, y, t, s)(f(t, s, q(t, s)) + g(t, s, p(t, s)))dtds+ h(x, y)

for all (x, y) ∈ Ia × Ib and p, q ∈ X. Then H is edge preserving mapping.
Now, for p1, p2, q1, q2 ∈ X with p1 ≥ p2 and q1 ≥ q2, then

d(H(p1, q1), H(p2, q2)) = sup
(x,y)∈Ia×Ib

∣∣H(p1, q1)(x, y)−H(p2, q2)(x, y)
∣∣

= sup
(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k1(x, y, t, s)(f(t, s, p1(t, s)) + g(t, s, q1(t, s)))dtds

+

∫ a

0

∫ b

0

k2(x, y, t, s)(f(t, s, q1(t, s)) + g(t, s, p1(t, s)))dtds

−
∫ a

0

∫ b

0

k1(x, y, t, s)(f(t, s, p2(t, s)) + g(t, s, q2(t, s)))dtds

+

∫ a

0

∫ b

0

k2(x, y, t, s)(f(t, s, q2(t, s)) + g(t, s, p2(t, s)))dtds

∣∣∣∣∣
= sup

(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k1(x, y, t, s){f(t, s, p1(t, s))− f(t, s, p2(t, s))

+ g(t, s, q1(t, s)− g(t, s, q2(t, s))}dtds

+

∫ a

0

∫ b

0

k2(x, y, t, s){f(t, s, p1(t, s))− f(t, s, p2(t, s))

+ g(t, s, q1(t, s)− g(t, s, q2(t, s))}dtds

∣∣∣∣∣
≤ sup

(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k1(x, y, t, s)[λ{p1(t, s)− p2(t, s)}

+ µ{q1(t, s)− q2(t, s)}]dtds

∣∣∣∣∣
+ sup

(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k2(x, y, t, s)[λ{q1(t, s)− q2(t, s)}

+ µ{p1(t, s)− p2(t, s)}]dtds

∣∣∣∣∣
≤ sup

(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k1(x, y, t, s)[λd(p1, p2) + µd(q1, q2)]dtds

∣∣∣∣∣
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+ sup
(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k2(x, y, t, s)[λd(q1, q2) + µd(p1, p2)]dtds

∣∣∣∣∣
≤ sup

(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k1(x, y, t, s)dτds

∣∣∣∣∣[λd(p1, p2) + µd(q1, q2)]

+ sup
(x,y)∈Ia×Ib

∣∣∣∣∣
∫ a

0

∫ b

0

k2(x, y, t, s)dtds

∣∣∣∣∣[λd(q1, q2) + µd(p1, p2)]

≤ e−τ

2(λ+ µ)
[λd(p1, p2) + λd(q1, q2)]

+
e−τ

2(r + s)
[λd(q1, q2) + µd(p1, p2)]

=
e−τ

2(λ+ µ)
[(λ+ µ)d(p1, p2) + (λ+ µ)d(q1, q2)]

=e−τ [
d(p1, p2) + d(q1, q2)

2
]

≤e−τ max{d(p1, p2), d(q1, q2)}.

By passing though a logarithm we can write

ln(d(H(p1, q1), H(p2, q2))) ≤ ln(e−τ max{d(p1, p2), d(q1, q2)}),

that is,
τ + ln(d(H(p1, q1), H(p2, q2))) ≤ ln(max{d(p1, p2), d(q1, q2)}),

that is, the operator H is an F - G contraction.
Now, let α(x, y) and β(x, y) be the coupled upper - lower solution of (3.2), then we have

α(x, y) ≤H(α(x, y), β(x, y))

and

β(x, y) ≤H(β(x, y), α(x, y))

for all (x, y) ∈ Ia × Ib, i.e (X ×X)H 6= ∅.
Thus, all the hypothesis of the Theorem 2.13 are fulfilled and thus, there exists a coupled solution

(x∗, y∗) of (3.2).

Example 3.3. Consider the nonlinear Fredholm integral equation

p(x, y) =
1

(1 + x+ y)2
− x

6(1 + y)
+

∫ 1

0

∫ 1

0

x

(1 + y)
(1 + t+ s)p2(t, s)dtds.

Here, we have h(x, y) = 1
(1+x+y)2

− x
6(1+y)

, k1(x, y, t, s) = x
1+y

(1 + t+ s), and f(t, s, p(t, s)) = p2(t, s).

Taking initial p0(t, s) = 1
1+t+s

and using the iterative scheme

pn+1 =
1

(1 + x+ y)2
− x

6(1 + y)
+

∫ 1

0

∫ 1

0

x

(1 + y)
(1 + t+ s)p2ndtds,

the exact solution is p(x, y) = 1
(1+x+y)2

.

The Figure 1 is the exact solution while the Figure 2 shows approximate solution given after 25th

iteration. Error defined as |exact solution - approximation solution| is plotted in Figure 3.
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Figure 1: Plot of the exact solution
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Figure 2: Plot of the approximate solution
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Figure 3: Plot of the error
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