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Abstract
In this paper, all solutions of the Diophantine equation ax ± ay = zn are investigated when a is any nonnegative integer
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1. Introduction

In 1844, Catalan’s conjecture was stated as follows [7]: (3, 2, 2, 3) is the unique solution (a,b, x,y) for
the equation ax − by = 1, where min {a,b, x,y} > 2.

It was proven by Mihǎilescu in 2002 and later published in 2004 [13] by using the theory of cyclotomic
fields and Galois modules. Utilizing the Catalan’s conjecture as a main tool, the Diophantine equation
in the form ax + by = z2 has been studied by many researchers over the past 20 years. In 2007, Acu
[1] found all solutions of the Diophantine equation in the form 2x + 5y = z2. In 2011, Suvarnamani [17]
considered the Diophantine equation in the form 2x + py = z2 when p is prime. In 2012, Tatong and
Suvarnamani [18] studied the Diophantine equation in the form px + py = z2, where p equals 2 or 3 and
x,y, z are nonnegative integers. In 2019, Burshtein [5] generalized the work of Tatong and Suvarnamani
and presented the Diophantine equations px + py = z2 and px − py = z2 when p > 2 is prime and x,y, z
are positive integers. Recently, Burshtein [6] expanded her work, [5], for the case where px + py = z4.
In addition, there were also some articles with the same trend but the term z2 was changed to be the
exponential term, cz, such as ax + by = cz, see [14], and px ± qy ± 2z = 0, see [15].

In this paper, we aim to extend the term z2 on the right-hand side of the expression to be zn for n > 2.
Even though our works look simple but cover all results of Tatong and Suvarnamani are contained in our
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main results Corollary 2.8 when n equals two. We can see that when p = 2, it appears in A and B, and
when p = 3, it appears in C of Corollary 2.8. In addition, all results in both works of Burshtein are still
contained in Corollary 2.8 for px+py = zn when n equals two or four and Corollary 3.7 for px−py = zn

when n equals two. Furthermore, we also attempt to find all solutions for ax ± ay = zn when a is any
positive integer. In addition, the prominent point of this work is only using elementary number theory to
prove all results.

This paper is organized as follows. Section 2 is focused on finding all solutions of the Diophantine
equation ax + ay = zn when a is any nonnegative integer, as shown in Theorem 2.7. In particular, a
is also considered a prime number. In Section 3, we study another form of the Diophantine equation,
ax − ay = zn, which is one of our main results, Theorem 3.5. Finally, in Section 4, we discuss our work
and future research direction. Throughout this paper, we assume that all parameters are nonnegative
integers.

2. All solutions of ax +ay = zn

Lemma 2.1. Let a and n > 2 be positive integers. All solutions of the equation ax + 1 = zn are

(a,n, x, z) ∈
{
(2, 2, 3, 3) ,

(
a,n, 1, n

√
a+ 1

)}
.

In particular, the equation ax + 1 = zn has at most one solution when a and n are fixed.

Proof. If z = 0 or z = 1, then there is no solution since ax = −1 and ax = 0 for z = 0 and z = 1,
respectively. Hereafter, we consider z > 2. If x = 1 and n

√
a+ 1 ∈ N, then the equation has the solution

(a,n, x, z) =
(
a,n, 1, n

√
a+ 1

)
. By Catalan’s conjecture and the fact that a > 2, they lead us to assure that

the equation zn − ax = 1 has only solution (a,n, x, z) = (2, 2, 3, 3) for x > 2. So, we can conclude that
there is no solution for x 6= 1, 3.

Remark 2.2. If a is equal to zero, then (a,n, x, z) = (0,n, x, 1) is a solution of ax + 1 = zn for any positive
integer x.

Lemma 2.3. Let p be prime and n > 2 be a positive integer. All solutions of the equation px + 1 = zn are

(p,n, x, z) ∈ {(2, 2, 3, 3) , (2n − 1,n, 1, 2)} .

In particular, the equation has at most one solution when p and n are fixed. Furthermore, if n is a composite number,
the equation has no solution.

Proof. We consider only the case where z > 2 and x = 1. Then, we have the equation 1+p = zn. It follows
that

p = zn − 1 = (z− 1)
(
zn−1 + zn−2 + · · ·+ 1

)
.

Since zn−1 + zn−2 + · · ·+ 1 is greater than 1, we have z− 1 = 1, and then z = 2. Hence, (p,n, x, z) =
(2n − 1,n, 1, 2).

Remark 2.4. A Mersenne prime is a prime number in the form 2n − 1 for some integer n. The exponent
n and the Mersenne prime are sequences A000043 and A000668 in the OEIS, respectively. Note that it
is easy to see that if 2n − 1 is prime, then n is prime. However, the converse is generally untrue; for
instance, when n = 11. The largest known Mersenne prime is 282589933 − 1, which was discovered by the
Great Internet Mersenne Prime Search (GIMPS) on December 21, 2018. This number is the 51st in the
sequence (48 officially confirmed); for more details, see [20].
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Proposition 2.5. Let a and n > 2 be positive integers. All solutions of the equation 2ax = zn are

(a,n, x, z) ∈

{(
2αa0,n,

βn− 1
α

, 2β
n

√
a
βn−1
α

0

)
: α,β ∈N,a0 are odd integers

}
.

In particular, if a is odd, then this equation has no solution.

Proof. It is clear that z and a are even. Then, we may write z = 2βz0 and a = 2αa0 for some positive
integers α,β and odd integers z0,a0. Now, we have

2βnzn0 =
(
2βz0

)n
= zn = 2ax = 2 (2αa0)

x = 2αx+1ax0 .

Therefore, βn = αx+ 1 and zn0 = ax0 , which implies that

(a,n, x, z) =

(
2αa0,n,

βn− 1
α

, 2β
n

√
a
βn−1
α

0

)
.

Remark 2.6. For
n

√
a
βn−1
α

0 , if a0 6= 1, then we write a0 =
∏k
i=1 p

αi
i by the fundamental theorem of arithmetic.

If we let d = gcd
16i6k

(αi), then a0 = hd for some h ∈ N. Then, we can rewrite
n

√
a
βn−1
α

0 = hK, where

K =
d(βn−1)
nα . In contrast, we see that n(dβ− αK) = d. Hence, under the condition that K is an integer,

this equation has a solution if and only if ngcd (d,α) | d.

Theorem 2.7. Let a and n > 2 be positive integers. If x 6= y, then all solutions of equation ax + ay = zn are
(a,n, x,y, z) ∈ A∪B, where

• A =
{(

2, 2, 2k, 2k+ 3, 3 · 2k
)

,
(
2, 2, 2k+ 3, 2k, 3 · 2k

)
: k ∈N0

}
;

• B =
{(
a,n,nk,nk+ 1,ak n

√
a+ 1

)
,
(
a,n,nk+ 1,nk,ak n

√
a+ 1

)
: k ∈N0

}
.

In particular, if a 6= 2 and n
√
a+ 1 is not an integer, then this equation has no solution.

Proof. WLOG, let x < y and a > 2. We have

zn = ax + ay = ax
(
1 + ay−x

)
.

Applying Lemma 2.1 in the case where x = 0, we get (a,n, x,y, z) = (2, 2, 0, 3, 3),
(
a,n, 0, 1, n

√
a+ 1

)
as the

solutions.
Assume that x > 1. We may write z = akz0 such that k > 1 and a - z0. Consider the equation

aknzn0 =
(
akz0

)n
= zn = ax

(
1 + ay−x

)
.

Since akn | ax (1 + ay−x) and gcd (a, 1 + ay−x) = 1, we get akn | ax, i.e., kn 6 x. We rewrite the equation
as

zn0 = ax−kn
(
1 + ay−x

)
. (2.1)

We claim that x = kn. Then, we rewrite the equation as zn0 = 1 + ay−x. Applying Lemma 2.1 again, we
get

(a,n,y− x, z0) = (2, 2, 3, 3) ,
(
a,n, 1, n

√
a+ 1

)
and

(a,n, x,y, z0) = (2, 2, x, x+ 3, 3) ,
(
a,n, x, x+ 1, n

√
a+ 1

)
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because x < y. When x = kn and z = akz0, we finally get

(a,n, x,y, z) =
(
2, 2, 2k, 2k+ 3, 3 · 2k

)
,
(
a,n,kn,kn+ 1,ak n

√
a+ 1

)
.

It remains to show that x = kn. By the fundamental theorem of arithmetic, we write a =

s∏
i=1

pαii ,

where s,αi ∈N for all i = 1, 2, . . . , s. Suppose that x− kn > 0. From Equation (2.1), it implies that pi | z0

for all i. Thus, z0 can be rewritten to z0 = zp

(
s∏
i=1

p
βi
i

)
, where zp,βi ∈ N and pi - zp for all i. By

substituting z0 into Equation (2.1), it forces that znp = 1 + ay−x has a solution and βin = αi(x− kn) for

all i. Since a - z0, a =

s∏
i=1

pαii and z0 = zp

(
s∏
i=1

p
βi
i

)
, we can set α1 > β1. Consequently, we get αi > βi

for all i because of
α1

β1
> 1 and

αi
βi

=
n

x− kn
for all i. From this fact, we have αi > 2 for all i and we

assure that a 6= 2. By examining the equation znp = 1 + ay−x together with Lemma 2.1, zp = n
√
a+ 1 is

only possible solution if n
√
a+ 1 ∈ N. Then we consider the equation zp = n

√
a+ 1 that equivalent to

znp − a = 1.
If gcd

16i6s
(αi) > 1, then we can apply the Catalan’s conjecture and obtain n = 2 and a = 8 and it implies

that α1 = 3 and β1 = 1 or 2. Since we know that βin = αi(x− kn) for all i, we get

3(x− kn) = 2β1 =

{
2, if β1 = 1,
4, if β1 = 2,

which is a contradiction. Thus, gcd
16i6s

(αi) = 1. We again consider β1n = α1(x− kn). It implies that β1n
α1

is an integer. As a result, n gcd(α1,β1)
α1

is also an integer. Since

αi

(
β1

gcd(α1,β1)

)(
ngcd(α1,β1)

α1

)
= αi

(
β1n

α1

)
= βin,

we obtain αi
(

β1
gcd(α1,β1)

)
= βi

(
α1

gcd(α1,β1)

)
. Therefore, α1

gcd(α1,β1)
| αi for all i. It follows that α1

gcd(α1,β1)
is

a common divisor of αi for all i, that implies

α1

gcd(α1,β1)
6 gcd

16i6s
(αi) = 1.

Then, α1 6 gcd(α1,β1) 6 β1 which contradicts to α1 > β1. Hence, x− kn must be zero.

Corollary 2.8. Let p be prime and n > 2 be a positive integer. All solutions of the equation px + py = zn are
(p,n, x,y, z) ∈ A∪B∪C, where

• A =
{(

2,n,nk− 1,nk− 1, 2k
)
: k ∈N

}
;

• B =
{(

2, 2, 2k, 2k+ 3, 3 · 2k
)

,
(
2, 2, 2k+ 3, 2k, 3 · 2k

)
: k ∈N0

}
;

• C =
{(

2n − 1,n,nk,nk+ 1, 2 · (2n − 1)k
)

,
(

2n − 1,n,nk+ 1,nk, 2 · (2n − 1)k
)
: k ∈N0

}
.

In particular, if p 6= 2 and n is a composite number, this equation has no solution.

Proof. This corollary follows directly from Proposition 2.5 and Theorem 2.7.
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Table 1: Some remarkable solutions in the case, where n
√
a+ 1 is an integer satisfying the condition in B of Theorem 2.7.

ax + ay = zn x y z Comments
3x + 3y = z2 2 3 6 In the set B, where n > 3, we see that n

√
4 is not an integer, so B = ∅,

which means that 3x + 3y = zn has no solution. Furthermore,
3x + 3y = (p(z))n has no solution when p(z) is a polynomial degree
> 1. With the same trace, the following equations definitely have no
solution:

• 7x + 7y = zn for n > 4,

• 15x + 15y = zn for n 6= 2, 4, and

• 21x + 21y = zn for n > 2.

4 5 18
7x + 7y = z3 3 4 14
15x + 15y = z2 2 3 60
15x + 15y = z4 4 5 30
21x + 21y = z2 - - -

Table 2: Some remarkable solutions of px + py = zn, where p 6 127.
px + py = zn x y z Comments
5x + 5y = z2 - - -

By the same reason of the comments in Table 1, we can
establish the exponential equations with no solution on the
nonnegative integer domain such as px + py = zn for n > 2
when p is a prime number less than 100 except p = 3 with
n = 2, p = 7 with n = 3 (see Table 1), and p = 31 with n = 5.
Moreover, the next prime number that makes the exponential
equation exist with a solution is p = 127 with n = 7. This
means px + py = zn has no solution if 37 6 p 6 113 and n > 2.

11x + 11y = z2 - - -
13x + 13y = z2 - - -
17x + 17y = z2 - - -
19x + 19y = z2 - - -
23x + 23y = z2 - - -
29x + 29y = z2 - - -
31x + 31y = z5 5 6 62
127x + 127y = z7 7 8 254

Remark 2.9. From Corollary 2.8, if we consider in case n = 2, all solutions of the equation px+py = z2 are
(p, x,y, z) ∈ A∪B∪C, where

• A =
{(

2, 2k− 1, 2k− 1, 2k
)
: k ∈N

}
;

• B =
{(

2, 2k, 2k+ 3, 3 · 2k
)

,
(
2, 2k+ 3, 2k, 3 · 2k

)
: k ∈N0

}
;

• C =
{(

3, 2k, 2k+ 1, 2 · 3k
)

,
(
3, 2k+ 1, 2k, 2 · 3k

)
: k ∈N0

}
.

As a result, the equation px + py = z2 has solutions when p = 2 or p = 3 under some conditions.
Additionally, we shall observe that both Remark 2.9 and Theorem 3.1 in [9] provide the same outcomes
for p = 5. The main results, Theorem 2.1 (for an odd prime p) and Theorem 3.1 (for p = 2), in [5] are
contained in this remark.

Remark 2.10. Similarly to Remark 2.9, if we consider n = 4 in Corollary 2.8, all solutions of the equation
px + py = z4 are

(p, x,y, z) ∈
{(

2, 4k− 1, 4k− 1, 2k
)
: k ∈N

}
.

As a result, the equation px + py = z4 has solutions when p = 2 under some conditions. These results are
studied in [6] as the main results, Theorem 2.1 (for p = 2) and Theorem 2.2 (for an odd prime p).

3. All solutions of ax −ay = zn

Lemma 3.1. Let a and n > 2 be positive integers. All solutions of the equation ax − 1 = zn are

(a,n, x, z) ∈
{
(3, 3, 2, 2) , (1,n, x, 0) , (a,n, 0, 0) ,

(
a,n, 1, n

√
a− 1

)}
.
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Proof. If a = 1 or x = 0, then z = 0. Thus, (a,n, x, z) = (1,n, x, 0) or (a,n, x, z) = (a,n, 0, 0), respectively.
Assume that a > 2 and x > 1. For the case x = 1, we get (a,n, x, z) =

(
a,n, 1, n

√
a− 1

)
. In the remaining

case x > 2, applying Catalan’s conjecture, we obtain (a,n, x, z) = (3, 3, 2, 2).

Remark 3.2. If a is equal to zero, then (a,n, x, z) = (0,n, x,−1) is a solution of ax − 1 = zn for odd integer
n > 2 and positive integer x.

Lemma 3.3. Let p be prime and n > 2 be a positive integer. All solutions of the equation px − 1 = zn are

(p,n, x, z) ∈
{
(3, 3, 2, 2) , (p,n, 0, 0) , (2,n, 1, 1) ,

(
(2v)2` + 1, 2`, 1, 2v

)
: v, ` ∈N

}
.

In particular, this equation has at most two solutions when p and n are fixed.

Proof. By Lemma 3.1, it is sufficient to show only x = 1, and the equation becomes p = zn + 1. If p = 2,
then (p,n, x, z) = (2,n, 1, 1). When p > 2, it implies that z is even. Suppose that n is odd. Then

p = zn + 1 = (z+ 1)

(
n−1∑
i=0

(−1)i zn−1−i

)
,

which leads to a contradiction since z+ 1 > 1,
∑n−1
i=0 (−1)i zn−1−i > 1 and p has exactly two factors, 1

and itself. Therefore, n is even, and we can write n = 2`α where gcd (2,α) = 1. If α 6= 1, we consider

p = z2`α + 1 =
(
z2` + 1

)(α−1∑
i=0

(−1)i z2`(α−1−i)

)
,

which is a contradiction by using the same reasoning. Thus, α = 1, and then n = 2`. This implies that

(p,n, x, z) =
(
(2v)2` + 1, 2`, 1, 2v

)
.

Remark 3.4. Using symbolic computation, we know that the number of primes is in the form (2v)2` + 1
when ` 6 10 and v 6 2000.

` 1 2 3 4 5 6 7 8 9 10
the number of v 383 375 144 140 66 40 14 13 8 9

Moreover, the number of primes is in the form (2v)2` + 1 when ` = 11, 12, 13 and v 6 1000.

` 11 12 13
the number of v 1 1 0

Theorem 3.5. Let a and n > 2 be positive integers. If x > y, then all solutions of the equation ax − ay = zn are

(a,n, x,y, z) ∈
{(

3, 3, 3k+ 2, 3k, 2 · 3k
)

,
(
a,n,nk+ 1,nk,ak n

√
a− 1

)
: k ∈N0

}
.

In particular, if a 6= 3 and n
√
a− 1 is not an integer, then this equation has no solution.

Proof. Since x > y and a > 2, the equation ax − ay = zn becomes to

ay
(
ax−y − 1

)
= aknzn0 , (3.1)

where z = akz0 and a - z0. By the same argument of the proof in Theorem 2.7, we can show that y = kn
by applying Lemma 3.1 and the Catalan’s conjecture. Substituting y = kn into Equation (3.1), it follows
that zn0 = ax−y − 1. Applying Lemma 3.1 again, we get

(a,n, x,y, z) ∈
{(

3, 3, 3k+ 2, 3k, 2 · 3k
)

,
(
a,n,nk+ 1,nk,ak n

√
a− 1

)}
,

as desired.
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Remark 3.6. For equation ax − ay = zn, where a and n > 2 are positive integers, if a = 1 or x = y, then
z = 0, which forces (a,n, x,y, z) = (1,n, x,y, 0) or (a,n, x,y, z) = (a,n, x, x, 0).

Corollary 3.7. Let p be prime and n > 2 be a positive integer. All solutions of the equation px − py = zn are
(p,n, x,y, z) ∈ A∪B∪C, where

• A = {(p,n, x, x, 0) : x ∈N0} ;

• B =
{(

(2v)2` + 1, 2`, 2`k+ 1, 2`k, 2vpk
)
: v, ` ∈N,k ∈N0

}
;

• C =
{(

2,n,nk+ 1,nk, 2k
)

,
(
3, 3, 3k+ 2, 3k, 2 · 3k

)
: k ∈N0

}
.

Proof. This corollary follows directly from Theorem 3.5 and Remark 3.6.

Table 3: Some remarkable solutions in the case, where (2v)2` + 1 is prime satisfying the condition in B of Corollary 3.7.
px − py = zn x y z Comments
5x − 5y = z2 1 0 2 We see that px − py = zn has no solution if x 6= y, when p > 5

and n is not a power of two such as 5x − 5y = z3, 5x − 5y = z5,
5x − 5y = z6. Specifically, 7x − 7y = zn has no solution for
n > 2 except the case x = y. Similarly, 11x − 11y = zn,
13x − 13y = zn, 19x − 19y = zn, 23x − 23y = zn, and
31x − 31y = zn have no solution for n > 2.

3 2 10
17x − 17y = z2 3 2 68 ,
17x − 17y = z4 5 4 34
37x − 37y = z2 3 2 222
101x − 101y = z2 3 2 1010

Remark 3.8. From Corollary 3.7, if we consider in case n = 2, all solutions of the equation px−py = z2 are
(p, x,y, z) ∈ A∪B∪C, where

• A = {(p, x, x, 0) : x ∈N0} ;

• B =
{(

(2v)2 + 1, 2k+ 1, 2k, 2vpk
)
: v ∈N,k ∈N0

}
;

• C =
{(

2, 2k+ 1, 2k, 2k
)
: k ∈N0

}
.

We also observe that the main results, Theorem 4.1 (for an odd prime p) and Theorem 5.1 (for p = 2), in
[5] are contained in this remark. Moreover, the conclusion of Theorem 3.7 in [4] and all solutions of the
equation 2x − 2y = z2 in this remark belong to the same set of solutions.
Remark 3.9. Similarly to Remark 3.8, if we consider n = 4 in Corollary 3.7, all solutions of the equation
px − py = z4 are (p, x,y, z) ∈ A∪B∪C, where

• A = {(p, x, x, 0) : x ∈N0} ;

• B =
{(

(2v)4 + 1, 4k+ 1, 4k, 2vpk
)
: v ∈N,k ∈N0

}
;

• C =
{(

2, 4k+ 1, 4k, 2k
)
: k ∈N0

}
.

For p = 2, all solutions are studied in [4, Corollary 3.8], which is also shown in this remark.

4. Conclusion

In summary, we deliver all solutions of the Diophantine equation ax ± ay = zn.

(i) For general a ∈N, our results are as follows.

(a) All solutions of equation ax + ay = zn, where n > 2 is a positive integer and x 6= y are
(a,n, x,y, z) ∈ A∪B, where

• A =
{(

2, 2, 2k, 2k+ 3, 3 · 2k
)

,
(
2, 2, 2k+ 3, 2k, 3 · 2k

)
: k ∈N0

}
;
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• B =
{(
a,n,nk,nk+ 1,ak n

√
a+ 1

)
,
(
a,n,nk+ 1,nk,ak n

√
a+ 1

)
: k ∈N0

}
.

In particular, if a 6= 2 and n
√
a+ 1 is not an integer, then this equation has no solution.

(b) All solutions of the equation ax − ay = zn, where n > 2 is a positive integer and x > y are

(a,n, x,y, z) ∈
{(

3, 3, 3k+ 2, 3k, 2 · 3k
)

,
(
a,n,nk+ 1,nk,ak n

√
a− 1

)
: k ∈N0

}
.

In particular, if a 6= 3 and n
√
a− 1 is not an integer, then this equation has no solution.

(i) Furthermore, in case the base a is a prime p, we give all solutions of px ± py = zn as follows.

(a) All solutions of the equation px + py = zn, where n > 2 is a positive integer are (p,n, x,y, z) ∈
A∪B∪C, where

• A =
{(

2,n,nk− 1,nk− 1, 2k
)
: k ∈N

}
;

• B =
{(

2, 2, 2k, 2k+ 3, 3 · 2k
)

,
(
2, 2, 2k+ 3, 2k, 3 · 2k

)
: k ∈N0

}
;

• C =
{(

2n − 1,n,nk,nk+ 1, 2 · (2n − 1)k
)

,
(

2n − 1,n,nk+ 1,nk, 2 · (2n − 1)k
)
: k ∈N0

}
.

In particular, if p 6= 2 and n is a composite number, this equation has no solution.

(b) All solutions of the equation px − py = zn, where n > 2 is a positive integer are (p,n, x,y, z) ∈
A∪B∪C, where

• A = {(p,n, x, x, 0) : x ∈N0} ;

• B =
{(

(2v)2` + 1, 2`, 2`k+ 1, 2`k, 2vpk
)
: v, ` ∈N,k ∈N0

}
;

• C =
{(

2,n,nk+ 1,nk, 2k
)

,
(
3, 3, 3k+ 2, 3k, 2 · 3k

)
: k ∈N0

}
.

From the previous results, we claim that all possible cases of the parameter a in ax ± ay = zn have
been consider. Besides, Remarks 2.9, 2.10, 3.8, and 3.9 include details that pertain to current results in
[4–6, 9, 18]. Our further work is going to study the behavior of polynomial p(z) in Table 1 and we will also
consider in the case px ± qy = zn for two distinct primes p and q. Moreover, we have been investigating
this issue in the way l(px) +m(qy) = zn, where p,q are distinct primes, and l,m are nonzero integers.
The following articles were used to develop the concept: [2, 3, 8, 10–12, 16, 19].
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