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Abstract. The problems concerning equivalent norms of Banach spaces lie

at the heart of Banach space theory. Our aim in this paper is to present a

history of the subject, and to introduce some open problems.

1. Introduction.

Banach space theory is a classic topic in functional analysis. The study of the

structure of Banach spaces provides a framework for many branches of mathematics
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2 EQUIVALENT NORMS

Figure 1. Stephan Banach 1892-1945

like differential calculus, linear and nonlinear analysis, abstract analysis, topology,

probability, harmonic analysis, etc. The geometry of Banach spaces plays an im-

portant role in Banach space theory. Since it is easier to do analysis on a Banach

space which has a norm with good geometric properties than on a general space,

we consider in this survey an area of Banach space theory known as renorming

theory. Renorming theory is involved with problems concerning the construction

of equivalent norms on a Banach space with nice geometrical properties of convex-

ity or differentiability. An excellent monograph containing the main advances on

renorming theory until 1993 is [14].

Definition 1.1. Two norms |.| and ‖.‖ on a Banach space X are called equivalent

if there exist positive constants A, B with A ‖x‖ ≤ |x| ≤ B ‖x‖ for all x ∈ X.

If X is finite dimensional all norms on X are equivalent.

Through this paper X is a real Banach space with norm ‖.‖ and dual X∗, S(X) and

B(X) are, respectively, the unit sphere and the closed unit ball of X. In addition,

`∞, `p denote the space of all real sequence (xn)∞n=1 such that (xn)∞n=1 is bounded,

and
∞∑

n=1

|xn|p < ∞, respectively. The reader is referred to [23] for undefined terms

and notation.
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EQUIVALENT NORMS 3

2. Differentiable norms and renorming theory.

Differentiability of functions on Banach spaces is a natural extension of the

notion of a directional derivative on Rn. A function f : X → R is said to be

Gateaux differentiable at x ∈ X if there exists a functional A ∈ X∗ such that

A(y) = lim
t→0

f(x + ty)− f(x)
t

, for all y ∈ X. In this case, A is called Gateaux

derivative of f . If the above limit exists uniformly for each y ∈ S(X), then f is called

Fréchet differentiable at x with Fréchet derivative A. Similarly, the norm ‖.‖ of X

is Gateaux or Fréchet differentiable at a non-zero x ∈ X if the function f(x) = ‖x‖

has the same property at x. Two important more strong notions of differentiability

are obtained as uniform versions of both Fréchet and Gateaux differentiability.

The norm ‖.‖ of X is uniformly Fréchet differentiable if lim
t→0

‖x + ty‖ − ‖x‖
t

exists

uniformly for (x, y) ∈ S(X)× S(X). Also, it is uniformly Gateaux differentiable if

for each y ∈ S(X), lim
t→0

‖x + ty‖ − ‖x‖
t

exists uniformly in x ∈ S(X).

In the general, Gateaux differentiability not imply Fréchet differentiability. In this

case, we have the following result of R. R. Phelps which provides a norm on `1

that is Gateaux differentiable at all x 6= 0, but nowhere Fréchet differentiable. We

follow [49], and refer the reader to this excellent book for the details. If ‖.‖∞ is the

canonical supremum norm on `∞, define norm on `∞ by

‖x‖∗ = ‖x‖∞ +
( ∞∑

i=1

2−ix2
i

) 1
2

.

Then it is established in [49] that ‖.‖∗ is a dual norm on `∞ = (`1)∗, and its predual

norm ‖.‖ on `1 satisfies the necessary requirements.

Most of our attention will be concentrated on the differentiability of the norm

function.

Lemma 2.1. The norm ‖.‖ of X is Fréchet differentiable at 0 6= x ∈ X if and only

if lim
t→0

‖x + ty‖+ ‖x− ty‖ − 2‖x‖
t

= 0, uniformly for each y ∈ S(X).
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4 EQUIVALENT NORMS

Around the year of 1940, S̆mulian proved his following fundamental dual charac-

terization of differentiability of norms, which is utilized in many basic renorming

results.

Theorem 2.2. [23] For given Banach space (X, ‖.‖) with dual space (X∗, ‖.‖∗)

and x ∈ S(X), the following are equivalent:

(i). ‖.‖ is Fréchet differentiable at x.

(ii). For all (fn)∞n=1, (gn)∞n=1 ⊆ S(X∗), if lim
n→∞

fn(x) = 1 and lim
n→∞

gn(x) = 1, then

lim
n→∞

‖fn − gn‖∗ = 0.

(iii). Each (fn)∞n=1 ⊆ S(X∗) with lim
n→∞

fn(x) = 1 is convergent in S(X∗).

Proof. i ⇒ ii) Since the norm of X is Fréchet differentiable at x, by the lemma

2.1., for each ε > 0 there exists δ > 0 such that

‖x + y‖+ ‖x− y‖ ≤ 2 + ε‖y‖,

for any y with ‖y‖ < δ. Suppose (fn)∞n=1, (gn)∞n=1 ⊆ S(X∗) with lim
n→∞

fn(x) = lim
n→∞

gn(x) = 1.

Since lim
n→∞

fn(x) = 1, there exists N1 ∈ N such that |fn(x) − 1| < εδ for each

n ≥ N1. Similarly, there is N2 ∈ N such that |gn(x)− 1| < εδ for each n ≥ N2. Let

M = max{N1, N2}. Then for any n > M

|fn(x)− 1| < εδ and |gn(x)− 1| < εδ,

and we have

(fn − gn)(y) = fn(x + y) + gn(x− y)− fn(x)− gn(x)

≤ ‖x + y‖+ ‖x− y‖ − fn(x)− gn(x)

≤ 2 + ε‖y‖ − fn(x)− gn(x)

≤ |fn(x)− 1|+ |gn(x)− 1|+ ε‖y‖

≤ 3εδ.
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EQUIVALENT NORMS 5

Hence for each n > M

‖fn − gn‖∗ = sup
h∈S(X)

(fn − gn)(h) = sup
h∈S(X)

(fn − gn)(δh)
δ

≤ 3ε.

ii ⇒ i) Suppose norm is not Fréchet differentiable at x. By the lemma 2.1., there

is ε > 0 such that for each δ = 1
n , ‖x + yn‖ + ‖x − yn‖ > 2 + ε‖yn‖ for some yn

with ‖yn‖ ≤ 1
n . Now by a version of Hahn-Banach theorem, for each n ∈ N, there

are (fn)∞n=1, (gn)∞n=1 ⊆ S(X∗) such that

fn(x + yn) = ‖x + yn‖ and gn(x− yn) = ‖x− yn‖.

Also for each n ∈ N ∣∣∣∣‖x + yn‖ − ‖x‖
∣∣∣∣ ≤ ‖yn‖ ≤

1
n

.

Thus |fn(x + yn) − 1| < 1
n which implies that lim

n→∞
fn(x + yn) = 1. On the other

hand, |fn(yn)| ≤ ‖yn‖ ≤ 1
n which follows that lim

n→∞
fn(yn) = 0. Therefore lim

n→∞
fn(x) = 1.

In a similar way, lim
n→∞

gn(x) = 1. Since

gn(x) ≤ ‖gn‖∗ = 1 and fn(x) ≤ ‖fn‖∗ = 1,

we have fn(x) + gn(x) ≤ 2. Thus we conclude that

(fn − gn)(yn) ≥ ‖x + yn‖+ ‖x− yn‖ − 2 > ε‖yn‖.

Consequently ‖fn − gn‖∗ ≥ ε which is a contradiction.

ii ⇒ iii) Let (fn)∞n=1 ⊆ S(X∗) such that lim
n→∞

fn(x) = 1. There is some f ∈ S(X∗)

such that f(x) = ‖x‖ = 1. For each n ∈ N, let gn = f . Then lim
n→∞

gn(x) = f(x) = 1.

Hence using ii we find that lim
n→∞

‖fn − gn‖∗ = 0 which means that (fn)∞n=1 is con-

vergent.

iii ⇒ ii) Consider (fn)∞n=1, (gn)∞n=1 ⊆ S(X∗) with

lim
n→∞

fn(x) = lim
n→∞

gn(x) = 1.
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6 EQUIVALENT NORMS

For each y ∈ X, define hn(y) = fn+1
2

(y) for odd values of n and hn(y) = gn
2
(y) for

even values of n. So we have

h2n = gn ∈ S(X∗) and h2n−1 = fn ∈ S(X∗),

and therefore hn ∈ S(X∗). Moreover

h2n(x) = gn(x) → 1 and h2n−1(x) = fn(x) → 1.

Hence hn(x) → 1. Using iii there is h ∈ S(X∗) such that ‖hn − h‖∗ → 0. Then

‖fn − gn‖∗ = ‖h2n−1 − h2n‖∗ ≤ ‖h2n−1 − h‖∗ + ‖h2n − h‖∗ → 0,

as required. �

The separable and reflexive Banach spaces occupy an important role in our inves-

tigations, because they contain numerous nice structural aspects.

Recall that X is reflexive if a certain natural isometry of X into X∗∗ is onto. This

mapping iŝ : X → X∗∗ giving by x̂(x∗) = x∗(x).

As a direct application of S̆mulian’s theorem, we have the following corollary:

Corollary 2.3. [23] If the dual norm of X∗ is Fréchet differentiable then X is

reflexive.

Proof. A standard theorem in functional analysis courses is that X is reflex-

ive if and only if each nonzero f ∈ X∗ attains its norm at some x ∈ S(X). Let

f ∈ S(X∗) and choose (xn)∞n=1 ∈ S(X) such that f(xn) → 1. By the S̆mulian’s

theorem, lim
n→∞

xn = x ∈ S(X). Therefore

f(x) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = 1 = ‖f‖∗.

If now f ∈ X∗ is non-zero, then f
‖f‖∗ ∈ S(X∗) and according to the above manner

there exists x ∈ S(X) such that f
‖f‖∗ (x) = 1. �

Theorem 2.4. [23] The following assertions imply the reflexivity of X.

(i). The norm of X is uniformly Fréchet differentiable.

(ii). The third dual norm of X is Gateaux differentiable (Giles-Kadec-Phelps).
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EQUIVALENT NORMS 7

Theorem 2.5. [23] The following statements imply separability of the dual space

of a separable Banach space X.

(i). The second dual norm of X is Gateaux differentiable.

(ii). The norm of X is Fréchet differentiable (Kadec-Restrepo).

Theorem 2.6. [26] If X is reflexive then can be renormed in such a way that both

X and X∗ have Fréchet differentiable norm.

There exist reflexive spaces which do not admit an uniformly Gateaux differentiable

norm. This example can be found in Kutzarova and Troyanski [38]. However, we

do have the following positive result.

Theorem 2.7. [11, 59] If X is separable, then X admits an uniformly Gateaux

differentiable norm.

Theorem 2.8. (Kadec) If X∗ is separable then X admits an equivalent Fréchet

differentiable norm.

As a consequence we obtain
(

combining theorems 2.8. and 2.5.(i)
)

:

Corollary 2.9. A separable Banach space X which has Gateaux differentiable

second dual norm, admits an equivalent Fréchet differentiable norm.

3. Asplund spaces and renorming theory.

If every continuous, convex function f defined on an open and convex subset C

of X is Fréchet differentiable on a dense Gδ subset of C, we say that X is Asplund.

Recall that the dual of a separable Banach space need not to be separable in gen-

eral.

Theorem 3.1. [17, 40] Let X be a separable Banach space. Then the following

are equivalent:

(i). X∗ is separable.

(ii). X is Asplund.

(iii). X admits an equivalent Fréchet differentiable norm.

(iv). X does not admit an equivalent rough norm.
(

A norm ‖.‖ of X is rough if
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8 EQUIVALENT NORMS

there exists ε > 0 such that for all x ∈ X, lim sup
‖y‖→0

‖x + y‖+ ‖x− y‖ − 2‖x‖
‖y‖

≥ ε

)

4. Strictly convex spaces and equivalent norms.

One interesting and fruitful line of research, dating from the early days of Banach

space theory, has been to relate analytic properties of a Banach space to various

geometric conditions on that space. The simplest example of such a condition is

that of strict convexity.

The space (X, ‖.‖) (or the norm ‖.‖ of X) is called strictly convex (R) if for x, y ∈

S(X), ‖x + y‖ = 2 implies x = y, in other words, when S(X) does not contain

non-trivial segments.

For example, the Banach space R2 with Euclidean norm ‖(x, y)‖2 =
√

x2 + y2 is

strictly convex.

Recall that the space c0 :=
{

(xn)∞n=1 : xn ∈ R, lim
n→∞

xn = 0
}

is a Banach space

when endowed with the canonical norm ‖(xn)‖∞ = max
n∈N

{|xn|}. Since for the first

two standard basis vectors e1 and e2 of c0 we have ‖e1‖∞ = ‖e2‖∞ = ‖e1+e2‖∞
2 , it

follows that c0 is not strictly convex with this norm.

Strict convexity is not preserved by equivalent norms. For example consider the

norm

‖|(x, y)|‖ = max

{
2|x|, ‖(x, y)‖2

}
,

on R2. Clearly, ‖|.|‖ is equivalent to the strictly convex Euclidean norm ‖.‖2. But

‖|.|‖ is not strictly convex, for if we take (1, 0), (1, 1) ∈ R2, then

‖|(1, 0)|‖ = 2, ‖|(1, 1)|‖ = 2,

while

‖|(1, 0) + (1, 1)|‖ = ‖|(2, 1)|‖ = 4.

There are few results devoted to strictly convex renormings, most of them are based

on the following simple observation. Let Y be a strictly convex Banach space and
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EQUIVALENT NORMS 9

T : X → Y a linear one-to-one bounded operator; then ‖|x|‖ = ‖x‖ + ‖T (x)‖,

x ∈ X, is an equivalent strictly convex norm on X.

Theorem 4.1. [35, 36] If X is separable then X∗ admits an equivalent dual strictly

convex norm.

Proof. Let ‖.‖∗ be a given dual norm on X∗ and {xi}∞i=1 be dense in S(X).

Define a norm ‖|.|‖ on X∗ by |‖f‖|2 = ‖f‖2∗ +
∑∞

i=1 2−if2(xi). Now one can show

that ‖|.|‖ is an equivalent dual norm on X∗ which is strictly convex.�

5. Equivalent norms and smooth norms.

One of the most beautiful areas of Banach space theory is the close knit rela-

tionship between various notions of smoothness and convexity.

The norm ‖.‖ of X is smooth at x ∈ X \ {0} if there is a unique f ∈ X∗ such

that ‖f‖∗ = 1 and f(x) = ‖x‖. We say that the norm ‖.‖ of X (or X for short)

is smooth if ‖.‖ is smooth at all x ∈ X \ {0}. If the norm ‖.‖ of X is smooth at

non-zero x ∈ X, then x is said to be a smooth point. A smooth point x is said to

be a preserved smooth point if the bidual norm is also smooth at x.

There exists an interest relation between differentiability and smoothness, as fol-

lowing.

Theorem 5.1. The norm of X is smooth at x ∈ X \{0} if and only if it is Gateaux

differentiable at x.

Regarding Gateaux smoothness, we have the following result.

Theorem 5.2. [23] If the dual norm on X∗ is strictly convex (Gateaux differen-

tiable) then the norm of X is Gateaux differentiable (strictly convex).

The converse implications in the above theorem are true for reflexive spaces, but not

in general. Here we mention an example of Troyanski [54] which uses ordinal spaces.

For ω1 the first uncountable ordinal, denote the collection of continuous functions
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10 EQUIVALENT NORMS

on [0, ω1] by C([0, ω1]). Then C([0, ω1]) × `1 is a Banach space with Gateaux dif-

ferentiable norm, the dual of which admits no dual strictly convex norm.

Example 5.3 The spaces `p, 1 < p < ∞, are strictly convex and smooth, while

the spaces `1 and `∞ are neither strictly convex nor smooth.

Theorem 5.4. [28] A separable Banach space is reflexive if and only if each smooth

point is preserved in each equivalent norm.

A point x ∈ C is called an extreme point of a convex subset C of X if C\{x} is

convex, too.

The next theorem is the dual version of the above theorem:

Theorem 5.5. [29] A Banach space is reflexive if and only if for each equivalent

norm the extreme points of the unit ball are preserved.

6. renorming theory and Kadec-Klee property.

The norm ‖.‖ of X has weak-Kadec-Klee property if (xn)∞n=1 ⊆ X converges

weakly to some x ∈ X and lim
n→∞

‖xn‖ = ‖x‖, then lim
n→∞

‖xn − x‖ = 0. Also, a dual

norm ‖.‖∗ of X∗ has weak∗-Kadec-Klee property if lim
n→∞

‖fn − f‖∗ = 0, whenever

(fn)∞n=1 ⊆ X∗ is weak∗-converges to some f ∈ X∗ and lim
n→∞

‖fn‖∗ = ‖f‖∗.

The Kadec-Klee norms play an absolutely key role in geometric Banach space theory

and its applications.

Theorem 6.1. [23] For each separable Banach space X, if the dual norm of X∗

has the weak∗-Kadec-Klee property, then X∗ is separable.

Combining above theorem with theorem 2.8., we have the following corollary:

Corollary 6.2. If X is separable and the dual norm of X∗ has the weak∗-Kadec-

Klee property, then X admits an equivalent Fréchet differentiable norm.

7. Locally uniformly convex spaces and equivalent norms.

The notion of locally uniformly convex norm was introduced by Lovaglia in [42].

The Banach space (X, ‖.‖) (or the norm ‖.‖ of X) is said to be locally uniformly
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EQUIVALENT NORMS 11

convex (LUR) if

lim
n→∞

(
2‖x‖2 + 2‖xn‖2 − ‖x + xn‖2

)
= 0 ⇒ lim

n→∞
‖x− xn‖ = 0,

for any sequence (xn)∞n=1 and x in X.

Lovaglia showed, as a straightforward consequence of theorem 2.2., that the norm

of a Banach space is Fréchet differentiable if the dual norm is LUR. The converse

do not hold, even up to renormings. In fact, there exists a space with a Fréchet

differentiable norm, which does not admit any equivalent norm with a strictly

convex dual norm [14]. However, in the class of spaces with unconditional bases,

we do have equivalence up to a renorming.

Theorem 7.1. [33] If X∗ has a dual LUR norm then X admit an equivalent LUR

norm.

Theorem 7.2. [45] A Banach space X with a Fréchet differentiable norm which

has Gateaux differentiable dual norm admits an equivalent LUR norm.

Theorem 7.3. [35] If X is separable, then X admits an equivalent LUR norm.

Moreover, if X∗ is separable then X∗ admits an equivalent dual norm that is LUR.

Proof. We show the second statement. Let ‖.‖∗ be a given dual norm on X∗,

{xi}∞i=1 be dense in S(X) and {fi}∞i=1 be dense in S(X∗). For i ∈ N, put Fi =

span{f1, f2, ..., fi}. Define a norm |‖.‖| on X∗ by

|‖f‖|2 = ‖f‖2∗ +
∞∑

i=1

2−idist(f, Fi)2 +
∞∑

i=1

2−if2(xi).

Then |‖.‖| is an equivalent LUR norm on X∗. �

The above theorem shows that, in particular, every separable Banach space admits

an equivalent strictly convex norm.

Another classical and powerful result of Troyanski [55] asserts that a Banach space

X admits an equivalent LUR norm if and only if it admits an equivalent weak-

Kadec-Klee norm and an equivalent strictly convex norm.
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12 EQUIVALENT NORMS

8. Renorming theory and Uniformly convex spaces.

The space (X, ‖.‖) (or the norm ‖.‖ of X) is said to be uniformly convex (UR)

if for all sequences (xn)∞n=1, (yn)∞n=1 ⊆ X

lim
n→∞

(
2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2

)
= 0 ⇒ lim

n→∞
‖xn − yn‖ = 0.

It is not hard to show that any Hilbert space is uniformly convex.

We have (UR)⇒(LUR)⇒(R), but the converse is not true, necessarily. For exam-

ple, define a norm |‖.‖| on C[0, 1] by |‖f‖|2 = ‖f‖2∞ + ‖f‖22, where ‖.‖∞ denotes

the standard supremum norm of C[0, 1] and ‖.‖2 denotes the canonical norm of

L2[0, 1], the L2-space over the Lebesgue interval [0, 1]. Then |‖.‖| is strictly convex

but not LUR on C[0, 1]. Consider functions f ≡ 1 and gn for every n, where gn

is the broken line determined by the points (0, 1), ( 1
n , 1),(1, 1). It is easy to verify

that f , gn fail to have the property of local uniform convexity [23].

There is a complete duality between uniform convexity and uniform Fréchet differ-

entiability.

Theorem 8.1. (S̆mulian) For any Banach space X with dual space X∗, the dual

norm on X∗ is uniformly convex if and only if the norm of X is uniformly Fréchet

differentiable. Also, the dual norm on X∗ is uniformly Fréchet differentiable if and

only if the norm of X is uniformly convex.

The above theorem implies that the norm of every Hilbert space is uniformly Fréchet

differentiable.

One of the first theorems to relate the geometry of the norm to linear topological

properties is the following;

Theorem 8.2. (Milman-Pettis) Any uniformly convex Banach space is reflexive.

9. Mazur intersection property and equivalent norms.

Recall that the space X is said to have the Mazur intersection property (MIP) if

every bounded closed convex set in X is an intersection of closed balls. Equivalently,

506



EQUIVALENT NORMS 13

for any bounded closed convex set K in X and for any x 6∈ K, there exists a ball B,

B ⊇ K and x 6∈ B. S. Mazur was the first to study Banach spaces with MIP. R. R.

Phelps [48] showed that for a finite-dimensional Banach space X to have the MIP, it

is necessary and sufficient that the set of extreme points of B(X∗) is dense in S(X∗).

Theorem 9.1. [41] X has the MIP if and only if for any two disjoint bounded

weak∗-closed convex sets K1, K2 in X∗∗, there exist balls B∗∗1 , B∗∗2 in X∗∗ with

centers in X such that B∗∗i ⊇ Ki, i = 1, 2, and B∗∗1 ∩B∗∗2 = ∅.

In 1978, J. Giles, D. Gregory and B. Sims [27] raised the question whether every

Banach space with the MIP is an Asplund space. In 1995, M. J. sevilla and J.

P. Moreno [51] has exhibited a class of non-Asplund spaces that admit equivalent

norms with the MIP.

10. Basis and renorming theory.

A Hamel basis (eα) for X is a set of linearly independent vectors in X such that

each x ∈ X is uniquely representable as a finite linear combination of eα. A Hamel

basis for an infinite-dimensional Banach space must, in fact, be uncountable.

A Schauder basis for X is a sequence (xn)∞n=1 of vectors in X such that every vector

in X has a unique representation of the form
∞∑

n=1

αnxn with each αn a scalar and

where the sum is converges in the norm topology.

A Schauder basis (xn)∞n=1 is said to be an unconditional basis provided that every

permutation of (xn)∞n=1 is also a Schauder basis.

Theorem 10.1. [23] Every Banach space with a countable Hamel basis admits an

equivalent Fréchet differentiable norm.

Theorem 10.2. [52] Let X have an unconditional basis. Then X admits an

equivalent norm with an LUR dual norm whenever X admits an equivalent Fréchet

differentiable norm.

507



14 EQUIVALENT NORMS

11. Equivalent norms and weakly-compactly-generated spaces.

A wide class of Banach spaces, which still enjoy many useful topological prop-

erties, have proved to be a deciding generalization over the past forty years. They

are defined as follows.

The Banach space X is said to be weakly-compactly-generated (WCG) if there ex-

ists a weakly compact set K ⊆ X whose closed linear span is X.

Recall that the space X is separable if there exists a countable set {xn}∞n=1 with

{xn}∞n=1 = X. An important characterization of reflexivity is the result that X is

reflexive if and only if B(X) is weakly compact.

Remark. If X is reflexive, then one may take K = B(X) in the above defi-

nition, whereas if X is separable, with {xn}∞n=1 dense in the S(X), we can take

K = {n−1xn}∞n=1

⋃
{0}. In this way we see that both separable and reflexive spaces

are (WCG).

Theorem 11.1. [53] Every (WCG) space admits an equivalent LUR norm.

The above theorem shows that every reflexive Banach space admits an equivalent

Fréchet differentiable norm with weak-Kadec-Klee property. Also, we obtain that

if X∗ is a (WCG) space, X admits an equivalent Fréchet differentiable norm.

Theorem 11.2. (Amir-Lindenstrauss) If X is a (WCG) space, X∗ admits an

equivalent strictly convex dual norm.

Theorem 11.3. [5] If X is a (WCG) and Asplund space, X∗ admits an equivalent

LUR norm.

12. Vasak spaces and equivalent norms.

A class of spaces wider than (WCG) spaces, known as weakly countably deter-

mined or Vasak spaces, was originally defined and investigated by Vasak.

The space X is Vasak if there is a sequence (Bn)∞n=1 of weak∗-compact sets in X∗∗

such that given x ∈ X and u ∈ X∗∗\X, there is n ∈ N such that x ∈ Bn and

u 6∈ Bn.
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Theorem 12.1. [26] If X∗ is Vasak then X admits an equivalent Fréchet differen-

tiable norm.

Theorem 12.2. [43] Every Vasak space has an equivalent norm the dual of which

is strictly convex.

Many of the renorming results for (WCG) Banach spaces actually apply to Vasak

spaces. Further details can be found in [19].

13. uniform Eberlein compact spaces and renorming theory.

Recall that a compact space K is called a uniform Eberlein compact if K is

homeomorphic to a weakly compact subset of a Hilbert space in its weak topology.

Theorem 13.1. (Fabian-Godefroy-Zizler) [22] (B(X∗), w∗) is uniform Eberlein

compact if and only if X admits an equivalent uniformly Gateaux differentiable

norm.

14. Super-reflexivity and renorming theory.

Given Banach spaces X, Y and ε > 0, we say that Y is finitely representable

in X if for every finite-dimensional subspace Z of Y , there is an isomorphism T of

Z onto T (Z) ⊆ X such that ‖T‖‖T−1‖ < 1 + ε. A Banach space X is said to be

super-reflexive if every Banach space finitely representable in X is reflexive.

It is not hard to show that every super-reflexive Banach space, is reflexive.

One of the well-known super-reflexive Banach spaces are Hilbert spaces. One may

think that these are the only examples of super-reflexive spaces. In the following

theorem, we see that this is far from the case, indeed the family of super-reflexive

Banach spaces is quite a rich one.

Theorem 14.1. (Enflo-James) X is super-reflexive if and only if X admits an

equivalent uniformly Fréchet differentiable norm.

In [50] Pisier gave a new proof, based on probabilistic methods with martingales,

of a theorem of Enflo [18]: every super-reflexive Banach space admits an equivalent

uniformly convex norm. Inspired by the martingale approach of Pisier, in 1979
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Troyanski stated the first characterization of existence of LUR renormings in Ba-

nach spaces [53].

15. Equivalent norms and Isomorphically polyhedral spaces.

Recall that a set B ⊆ X∗ is called a boundary for X if for every x ∈ X there is

a f ∈ B such that f(x) = ‖x‖.

The norm of X is said to be polyhedral if the unit ball of every finite-dimensional

subspace of X has finitely many extreme points. The Banach space X is isomor-

phically polyhedral if there is an equivalent polyhedral norm on X. Isomorphically

polyhedral spaces were studied first by Fonf. He proved that a separable isomor-

phically polyhedral Banach space has a separable dual.

Theorem 15.1. [15] A separable Banach space X is isomorphically polyhedral if

and only if X admits an equivalent norm with a countable boundary.

Therefore, if the separable Banach space X admits an equivalent norm with a count-

able boundary, then X is isomorphically polyhedral and consequently, X admits a

Fréchet differentiable equivalent norm.

16. Some interesting problems.

The following problems in this area arise:

(Q1) If the Banach space X has the Radon-Nykodym property (i.e., every bounded

closed convex subset of X is the closed convex hull of its strongly exposed points.),

does it follow that X admits an equivalent weak-Kadec-Klee norm? Does it admits

an equivalent strictly convex norm?

(Q2) Does every Asplund space admit an equivalent SSD norm? Recall that the

norm ‖.‖ on X is called strongly subdifferentiale (SSD) if for each x ∈ X, the one-

sided limit lim
t→0+

‖x + ty‖ − ‖x‖
t

exists uniformly on y in S(X).

(Q3) Assume that a Banach space X admits an equivalent Gateaux differentiable

norm and that X admits also an equivalent SSD norm. Does X admit an equivalent
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Fréchet differentiable norm?

(Q4) Assume that X is a nonseparable non Asplund space. Does X admit an

equivalent norm that is nowhere SSD except at the origin? For separable non As-

plund space the answer is yes.

(Q5) Assume that the norm of a separable Banach space X has the property that

its restriction to every infinite dimensional closed subspace Y ⊆ X has a point of

Fréchet differentiability on Y . Is then X∗ necessarily separable?

(Q6) Assume that X is Vasak. Does X admit an equivalent norm that has the

following property: (fn)∞n=1 is weak∗-convergent to some f ∈ B(X∗) whenever

fn ∈ S(X∗) are such that ‖fn + fm‖ → 2 as n,m →∞?

(Q7) Assume that X has an unconditional basis and admits an equivalent Gateaux

differentiable norm. Does X admit an equivalent norm the dual of which is strictly

convex?
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